API src

Found 18 results.

Sonderforschungsbereich Transregio 181 (SFB TRR): Energietransfer in der Atmosphäre und im Ozean, Teilprojekt (18) S02: Verbesserte Parametrisierungen und Numerik in Klimamodellen

Das Ziel dieses Projektes ist es, neue Parametrisierungen und numerische Algorithmen zur Verbesserung der Energiekonsistenz in die Ozeankomponenten der neuen Erdsystemmodelle, die momentan in Deutschland entwickelt werden, zu implementieren. Das Projekt wird ebenfalls die Entwicklung und Implementierung von neuen atmosphärischen Parametrisierungen unterstützen. In Zusammenarbeit mit den anderen Projekten im SFB/TRR wird das Projekt einen Rahmen für die Synthese der gemeinsamen Arbeit liefern und dient - zusammen mit S1 - als ein Erfolgskriterium.

Sonderforschungsbereich (SFB) 1357: MIKROPLASTIK - Gesetzmäßigkeiten der Bildung, des Transports, des physikalisch-chemischen Verhaltens sowie der biologischen Effekte: Von Modell- zu komplexen Systemen als Grundlage neuer Lösungsansätze; MICROPLASTICS - Understanding the mechanisms and processes of biological effects, transport and formation: From model to complex systems as a basis for new solut, Teilprojekt B 04: Partikelaustausch an der Luft-Wasser-Grenzfläche

Fällt ein Regentropfen auf eine Wasseroberfläche oder platzt dort eine Gasblase, so wird in einem komplizierten strömungsmechanischen Prozess eine Vielzahl kleinster Tröpfchen produziert und in die Luft geschleudert. Diese Tröpfchen können ursprünglich im Wasser vorhandene Mikroplastikpartikel in die Luft übertragen. Da sowohl Regen als auch platzende Gasblasen in natürlichen und technischen Systemen wie Ozeanen, Pfützen oder Kläranlagen extrem häufige Ereignisse sind, liegt hier ein potenziell hochrelevanter Migrationspfad von Mikroplastik aus der Hydro- in die Atmosphäre vor. Dieser Prozess soll im vorliegenden Projekt durch eine Kombination aus Modell-Experimenten und Computersimulationen im Detail untersucht und verstanden werden.

Schwerpunktprogramm (SPP) 1889: Regional Sea Level Change and Society (SeaLevel), Teilprojekt: Bestimmung von Wärmeänderungen im Ozean durch Kombination von Satellitengravimetrie, Argo und Radaraltimetrie - ROCSTAR

Veränderungen der Ozeanwärme sind eng mit dem Wärmefluss an der Ozean-Atmosphärengrenze verbunden und spielen daher eine wic--htige Rolle bei der Regulierung des Erdklimas. Allerdings weisen in-situ-Messungen immer noch hohe Ungenauigkeiten auf und sind nur in wenigen Regionen in ausreichender Anzahl vorhanden. ROCSTAR wird neue Einsichten in das Energiebudget der Erde durch die verbesserten Schätzungen der ozeanischen Temperatur (T) und des Salzgehalts (S) liefern. Durch die Kombination der geodätischen Raumverfahren mit Argo-Profilen, werden gleichzeitig die Temperatur, der Salzgehalt und regional variierende Meeresspiegelbeiträge ermittelt. Die daraus resultierenden Schätzungen umfassen die gesamte Ozeansäule und die zugehörigen sterischen Änderungen werden sowohl mit dem beobachteten Meeresbodendruck als auch mit den Meeresspiegelanomalien konsistent sein. Vor diesem Hintergrund verfolgt das Projekt folgende Ziele:1. Erhöhung der Genauigkeit der in sich konsistenten T- und S-Felder und Bereitstellung von realistischen Fehlerschätzungen2. Ermittlung der T- und S-Schätzungen in Regionen mit wenigen Beobachtungen und in den Tiefen des Ozeans3. Quantifizierung der Rolle, welche die flachen und tiefen Schichten des Ozeans in der Energiebilanz der Erde und im Meeresspiegel-Budget spielen4. Identifizierung und Untersuchung von Ozeanwärmehotspots und deren Verbindung zum terrestrischen Wasserkreislauf im Südosten Asiens. ROCSTAR wird innerhalb des SPP1189-Schwerpunkts WPA (Ursprung der regionalen Meeresspiegeländerungen) angesiedelt sein. Das Projekt befasst sich mit globalen Beobachtungen, führt aber intensive Untersuchungen im indischen Ozean und Westpazifik durch, welche die Hauptquellen für Feuchtigkeit, Zyklon und Taifun Entwicklung in der südostasiatischen Region darstellen. Darüber hinaus wird ROCSTAR aktiv an den Öffentlichkeitsarbeiten des SPPs teilnehmen und ein konzeptionelles Brettspiel entwickeln, um Nicht-Wissenschaftlern das regionale Meeresspiegelbudget näher zu bringen.

Der arktische Ozean 2020 - Ventilationszeitskalen, anthropogener Kohlenstoff und Variabilität in einer sich verändernden Umgebung

In der Arktis tritt der der Klimawandel am offensichtlichsten zu Tage. Dies zeigt sich zum Beispiel im starken Rückgang der Meereisbedeckung des arktischen Ozeans, mit Auswirkungen auf die Wärmebilanz der Region und indirekt die Zirkulation in Ozean und Atmosphäre. Die Bildung von Tiefenwasser geht einher mit dem Transport von gelösten Gasen von der Oberfläche in das Innere der Ozeane, auch Ventilation genannt. Die entsprechende Aufnahme von Kohlendioxid, die im arktischen Ozean überproportional ausgeprägt ist, stellt einen wichtigen Puffer für Treibhausgasemissionen dar. Ihre Kenntnis ist entscheidend für aussagekräftige Klimaszenarien.Die Ventilationszeitskalen können über die Messung gewisser Spurenstoffe (Tracer) bestimmt werden, die einem zeitlich variablen Eintrag oder dem radioaktiven Zerfall unterliegen. Allerdings sind klassische Tracer wie Freon-12 und Schwefelhexafluorid (SF6) sowie eine Reihe moderner so genannter „Medusa Tracer“ in den tiefsten Bereichen des arktischen Ozeans nicht nachweisbar. Mit der neuen Atom Trap Trace Analysis (ATTA) Methode ist es nun möglich, das Radioisotop 39Ar in Meerwasser zu messen und damit genau die Zeitskala abzudecken, welche bisher nicht präzise bestimmt werden konnte. Im Zusammenspiel mit den genannten Tracern sowie dem Radiokohlenstoff 14C können somit Altersverteilungsfunktionen und letztlich die Ventilationszeitskalen der gesamten Wassersäule bestimmt werden. Dieser Ansatz wird ergänzt durch Messungen von Edelgasen zur Bestimmung von Sättigungsanomalien an der Oberfläche sowie der langlebigen anthropogenen Radioisotope 236U und 129I, die als Markierung von Atlantikwasser das Studium des Austausches zwischen Nordatlantik und Arktischem Ozean ermöglichen. In diesem Projekt sollen Proben für alle genannten Tracer während einer Expedition auf dem Eisbrecher ODEN im Jahr 2021 in der Zentralarktis genommen und gemessen werden. Die Daten dienen zur Bestimmung von Modellparametern von Aufenthaltszeitverteilungen, die wiederum die Grundlage zur Berechnung des Wassersäuleninventars des anthropogenen Kohlenstoffes bilden. Die Resultate werden mit biogeochemischen Ansätzen verglichen und zur Abschätzung der Ozeanversauerungsrate verwendet. Die weiteren Tracerdaten geben Aufschluss über die Zirkulation im nordatlantischen Raum sowie die Prozesse an der Ozeanoberfläche. Um die aufgrund der klimatischen Effekte zu erwartenden Veränderungen der letzten Jahrzehnte zu bestimmen, werden wir zusätzlich historische Tracermessungen aus der Arktis analysieren.Aus der Kombination unterschiedlicher innovativer Methoden versprechen wir uns darüber hinaus wichtige methodische Erkenntnisse sowie datenbasierte Randbedingungen für Ozeanmodelle. Die Ergebnisse dieses Projekts werden somit umfangreiche Beiträge liefern zum besseren Verständnis der Zirkulation und Ventilation des arktischen Ozeans, der Kohlenstoffaufnahmekapazität der Ozeane und der Konsequenzen des sich ändernden arktischen und globalen Klimas.

Farbpartikel in Meeressediment: Wechselwirkungen mit Mikrobiota und Auswirkungen auf Sedimentprozesse

Die Farben unterscheiden sich erheblich in ihrer chemischen Zusammensetzung. Daher besteht das erste Ziel darin, zu bestimmen, welche spezifischen chemischen Eigenschaften der Farben für die wichtigsten mikrobiellen Veränderungen im Meeressediment verantwortlich sind, das den Farbpartikeln ausgesetzt ist. Dies soll mit Hilfe eines Labor-Expositionsexperiments untersucht werden. Sediment, das Farbpartikel unterschiedlicher chemischer Zusammensetzung (einschließlich Antifoulingbestandteile) enthält, wird im Laufe der Zeit inkubiert, und die mikrobielle Gemeinschaft dieses Sediments wird sequenziert. Betreute Ansätze des maschinellen Lernens, wie z.B. randomisierte Wälder, werden verwendet, um zu bestimmen, welche spezifische Farbchemie den größten Einfluss auf die mikrobielle Gemeinschaft hat, insbesondere im Hinblick auf Veränderungen von Taxa, die für die biogeochemischen Prozesse im Sediment wichtig sind. Sobald die chemischen Eigenschaften bekannt sind, wird das zweite Experiment durchgeführt. Mit dem zweiten Experiment soll das zweite Ziel verfolgt werden, nämlich zu bestimmen, wie Farbpartikel die umgebenden Sediment-Mikrobengemeinschaften beeinflussen, und zu modellieren, wie dieser Effekt mit der Farbpartikelkonzentration im Sediment skaliert, um letztendlich zu bestimmen, auf welchem Niveau die Farbpartikelkontamination im Sediment Veränderungen verursacht, die kritisch genug sind, um biogeochemische Prozesse zu implizieren. Speziell entworfene Kammern werden in der Ostsee eingesetzt, die Sediment und unterschiedliche Mengen von Farbpartikeln enthalten (deren Chemie durch das vorherige Experiment vorher festgelegt wurde). Nach einer Expositionszeit werden die Kammern gesammelt und die mikrobiellen Gemeinschaften des Sediments sequenziert. Mit Hilfe von Zufallswäldern wird ein Vorhersagemodell für den Grad der Farbverschmutzung in Abhängigkeit von der Zusammensetzung der mikrobiellen Gemeinschaften erstellt. Zusätzlich werden phylogenetische Distanzbäume der wichtigsten Taxa mit der verfügbaren Literatur kombiniert, um Veränderungen in den mikrobiell vermittelten biogeochemischen Zyklen abzuschätzen. Schätzungen darüber, wie sich Umweltparameter (z.B. Schwefelwasserstoff- oder Eisengehalt) verändern könnten, werden in das Modell einbezogen.Das Endziel ist die Validierung des Modells. Dazu wird eine Reihe von Standorten an der deutschen Ostseeküste beprobt. Die Sedimente werden sowohl auf Farbverschmutzung als auch auf Umweltparameter untersucht. Die mikrobielle Gemeinschaft der Sedimente wird ebenfalls sequenziert, und das Modell wird zur Vorhersage der Farbverschmutzung auf der Grundlage der Zusammensetzung der mikrobiellen Gemeinschaft verwendet. Diese Vorhersage wird mit realen Verschmutzungs- und Umweltdaten verglichen. Auf diese Weise kann das Modell bewertet, angepasst und schließlich validiert werden.

Schwerpunktprogramm (SPP) 1704: Flexibilität entscheidet: Zusammenspiel von funktioneller Diversität und ökologischen Dynamiken in aquatischen Lebensgemeinschaften; Flexibility Matters: Interplay Between Trait Diversity and Ecological Dynamics Using Aquatic Communities as Model Systems (DynaTrait), Teilprojekt: Modellierung saisonaler vertikaler Migrationen bei marinem Zooplankton

Die saisonale vertikale Migration (SVM) beim marinem Zooplankton spiele potentiell eine Schlüsselrolle für die Primär- und Exportproduktion in höheren Breiten mit ausgeprägter Saisonalität. SVM ist ein wichtiger Teil des Verhaltens vieler mariner Zooplanktongemeinschaften in höheren Breiten, das ihnen ermöglicht, die bei der Frühjahrsblüte gebildete Biomass effizient zu nutzen. Geeignete Tage für den SVM Aufstieg im Frühjahr und den SVM Abstieg im Sommer sind wichtig, um die Verfügbarkeit von Futter zu maximieren und die Gefahr des Gefressenwerdens zu minimieren: wer zu früh oder zu spät aufsteigt, riskiert zu verhungern und wer zu spät absteigt wird leichter gefressen (Match-Mismatch-Hypothese). SVM tritt in niederen Breiten wenig bis gar nicht auf. Wegen dieser Komplikationen berücksichtigen die meisten biogeochemischen Modelle nur das Fraßverhalten, aber nicht die SVM des Zooplanktons. SVM wurde in Individuen-basierten Modellen (IBM) simuliert, um die saisonale Entwicklung und regionale Verteilung von Copepoden und deren Entwicklungsstadien zu untersuchen. IBM sind aber zu rechenintensiv für eine Anwendung in globalen 3D Modellen, insbesondere für Langzeitsimulationen. In vorangegangenen Projekten zu biogeochemischer Modellierung haben wir signifikante Diskrepanzen zwischen beobachteter und modellierter Sekundärproduktion beobachtet, die höchstwahrscheinlich auf das Fehlen von SVM im Modell zurückgehen. Hier wollen wir einfachere, trait- und optimalitäts-basierte SVM Modelle für globale Langzeitsimulationen entwickeln. Dabei können wir auf unsere bisher entwickelten Methoden zurückgreifen, um zu untersuchen, wie Traits, z.B. Tag des Aufstiegs oder Grad-Tage, das SVM Verhalten und seine Evolution steuern. Wir werden, zunächst in 1D und später auch in 3D biogeochemischen Modellen, trait-basierten SVM Beschreibungen entwickeln, um die treibenden Kräfte des SVM Verhaltens zu analysieren. Das Hauptziel ist dabei zu verstehen, welche Umweltfaktoren die Evolution von SVM Verhalten lokal bestimmen und wie sie globale Verteilungsmuster im SVM Verhalten und dessen Effekte auf Plankton-Ökologie und -Biogeochemie beeinflussen. Anschließend werden wir das Potential von SVM untersuchen, das Verhalten globaler Modelle zu verbessern, z.B. bezüglich der Verteilungen von Nährstoffen und Exportproduktion. Schließlich möchten wir SVM Effekte in Langzeitsimulationen vergangener und zukünftiger Klima-Szenarien analysieren. Unser Projekt bringt enge Verbindungen zwischen DynaTrait und anderen großen Forschungsprojekten mit sich, wobei DynaTrait vom DFG-finanzierten SFB 754 zu Sauerstoff-Minimum-Zonen und dem BMBF-finanzierten PalMod Projekt zu Langzeit-Klimasimulationen profitiert, aber auch einen Beitrag zu diesen Projekten leistet. Dadurch kann die Sichtbarkeit und Relevanz von DynaTrait für die globale Modellierung deutlich verbessert werden.

Schwerpunktprogramm (SPP) 1889: Regional Sea Level Change and Society (SeaLevel), Teilprojekt: Zuordnung von Verantwortlichkeit für durch Gletscher verursachte, regionale Meeresspiegeländerungen

Abschmelzende Gletscher liefern einen von drei Hauptbeiträgen zum globalen Meeresspiegelanstieg, zusammen mit der Wärmeausdehnung des Meereswassers und den Massenverlusten der Eisschilde in Grönland und der Antarktis. Im 20. Jahrhundert waren sie sehr wahrscheinlich die Hauptursache des Meeresspiegelanstiegs. In den kommenden Jahrhunderten wird der Massenverlust von Grönland und der Antarktis signifikant steigen, während der Gletscherbeitrag durch ihre relativ geringe Größe begrenzt wird. Dieser Anteil wird im 21. Jahrhundert jedoch beträchtlich und über die nächsten mindestens 300 Jahre nicht unbedeutend bleiben. Ein anthropogener Beitrag zur Gletscherschmelze ist in der zweiten Hälfte des 20. Jahrhunderts eindeutig feststellbar, und in den vergangenen Jahrzehnten sind anthropogene zu den Hauptursachen der Gletscherschmelze geworden. Die Reaktion der Gletscher auf Treibhausgasemissionen hängt jedoch von der zeitlichen Abfolge der Emissionen ab. Das zentrale Ziel des beantragten Projekts ist es, die Zuordnung von Verantwortlichkeiten für durch Gletscher verursachte, regionale Meeresspiegeländerungen zu spezifischen Emissionspfaden der Vergangenheit zu ermöglichen. Im Einzelnen werden wir- die Klimasensitivität der globalen Gletschermasse unter Berücksichtigung ihrer Abhängigkeit vom Grundzustand des Klimasystems quantifizieren;- die räumliche Verteilung dieser Sensitivität berechnen, wobei zwischen verschiedenen Strahlungsantriebsmechanismen unterschieden wird (d. h. CO2 und andere langlebige Treibhausgase, Aerosole und Landnutzungsänderung);- regionale Meeresspiegeländerungen ermitteln, die durch die Reaktion der Gletscher auf den Strahlungsantrieb des Klimasystems verursacht werden, wieder mit Unterscheidung verschiedener Mechanismen;- die Informationen über regionale Meeresspiegelmuster mit bestimmten realen, historischen Emissionspfaden (z. B. denen individueller Länder) verbinden, um Verantwortlichkeiten für durch Geltscher verursachte regionale Meeresspiegeländerungen Verursachern zuzuordnen;- die zeitliche Entwicklung von durch Gletscher verursachter Meeresspiegeländerungen ermitteln, die von einem bestimmten Emissionspfad verursacht wurden;- den Ansatz validieren durch Anwendung des globalen Gesamtstrahlungsantriebs, um entsprechende globale Gletschermassenverluste zu rekonstruieren, sowie durch Vergleiche mit Beobachtungsdaten von Gletschern. Mithilfe dieser Schritte wird es uns beispielsweise möglich, Fragen wie die folgenden zu beantworten:- Wie gestaltet sich die Verantwortlichkeit Deutschlands - angesichts seines historischen Emissionspfades - für durch Gletscher verursachte Meeresspiegeländerungen in Indonesien?- Wie viel dieser Meeresspiegeländerungen ist bereits erfolgt, und wie war der zeitliche Ablauf?- Wie viel Meeresspiegeländerung wird in Zukunft erfolgen, und wie wird zeitliche Ablauf sein?- Was sind die Unsicherheiten bei dieser Zuordnung von Verantwortlichkeit?

Forschergruppe (FOR) 5094: Dynamik des tiefen Untergrundes von Hochenergiestränden, Teilprojekt Spurenelemente und Metallisotope: Transformation und Fraktionierung

Durch DynaDeep soll ein Verständnis der Funktionsweise und Relevanz des Land-Meer Übergangs im Untergrund von Hochenergiestränden gewonnen werden. Wir nehmen an, dass dieser einen hoch dynamischen Bioreaktor und ein einzigartiges mikrobiologisches Habitat darstellt und Netto-Stoffflüsse in Richtung Meer stark beeinflusst. Um dieses Ziel zu erreichen, werden sechs Teilprojekte gemeinsam Felduntersuchungen und experimentelle Arbeiten durchführen und diese mit mathematischen Modellen integrativ kombinieren. P4 wird die Dynamik von Spurenmetallen und Metallisotopen im Zusammenhang mit biogeochemischen Prozessen im subterranen Ästuar (STE) auf Spiekeroog untersuchen. Wir werden die Hypothese testen, dass überlappende Redoxzonen, dynamische Änderungen mikrobieller Aktivität und räumlich-zeitliche Änderungen in Redox- und Salinitätsgrenzflächen eindeutige Spurenmetall- und Isotopensignaturen in hochenergetischen Stränden generieren. P4 wird Spurenmetallkonzentrationen (Fe, Mn, Co, Mo, Re, Tl, U, V, Seltenerdelemente) und Fe und Mo Isotope in (Poren-)Wasser und Sedimenten messen. Regelmäßige Feldprobenahmen werden Einblick in die räumlich-zeitlichen Änderungen von Spurenmetall- und Metallisotopen-Mustern unter sich ändernden Randbedingungen liefern. Inkubationsexperimente im Labor sollen genutzt werden, um die Mobilisations-, Retentions- und Fraktionierungsraten zu bestimmen, um die physikochemischen und mikrobiellen Änderungen im Detail zu verstehen, die diese Reaktionen im tiefen bis flachen Untergrund des STEs auf Spiekeroog antreiben. Spurenmetalle und zusätzlich Hauptionen, Nährstoffe und Gesamtalkalinität werden für mathematische Modellierungen (P1, P6), Bestimmung von Reaktionsraten (P2) und biogeochemische Studien in P3 und P5 zur Verfügung gestellt. Gemeinsam sollen die Daten genutzt werden, um zu beurteilen, wie die Transformation und Fraktionierung von Spurenmetallen und Metallisotopen mit der Quelle und dem Alter des Wassers, den Redoxbedingungen und den Eigenschaften von organischer Substanz und der mikrobiellen Gemeinschaft zusammenhängen.

Forschergruppe (FOR) 5094: Dynamik des tiefen Untergrundes von Hochenergiestränden, Teilprojekt: Koordinationsfonds

Subterrane Ästuare sind die Übergangszonen zwischen terrestrischen Aquiferen und dem Meer, in denen sich meteorisches Süßwasser und zirkulierendes Meerwasser mischen und in denen es durch biogeochemische Reaktionen zur Veränderung der Grundwasserzusammensetzung kommt. Somit stellen diese Systeme effektive biogeochemische Reaktoren dar, die die Stoffflüsse in Richtung Meer wesentlich beeinflussen. Die Motivation für das Projekt DynaDeep ist die Tatsache, dass ein Verständnis des Ausmaßes und der Funktionsweise subterraner Ästuare notwendig ist, um die gegenwärtige Dynamik und zukünftige Entwicklung von Ökosystemfunktionen am Land-Meer Übergang zu erfassen. Bislang ist unklar, wie Hydro- und Morphodynamik die Grundwasserströmung beeinflussen. Außerdem wurden die sich daraus ergebenden Konsequenzen für biogeochemische Prozesse und für die Bedingungen als mikrobielles Habitat bislang nicht abgeschätzt. Wir nehmen an, dass der Untergrund von Hochenergiestränden in Bezug auf Grundwasserströmung und -transport sowie assoziierte biogeochemische Prozesse hoch dynamisch ist und von gängigen vereinfachten Modellvorstellungen abweicht. Dieses einmalige mikrobiologische Habitat unterscheidet sich vermutlich grundlegend von den normalerweise stabilen Lebensräumen im Untergrund. DynaDeep wird deshalb Grundwasserströmungsmuster als Funktion hydro- und morphodynamischer Randbedingungen untersuchen. Wir werden abiotische und biotische Umsatzraten organischer Substanz quantifizieren. Umsetzung und Fraktionierung von Spurenmetallen und Metallisotopen sind ebenso Gegenstand der Untersuchungen wie die Diversität und Funktionsweise der mikrobiellen Gemeinschaft. In einem integrativen Ansatz werden sechs Teilprojekte gemeinsam Felduntersuchungen durchführen sowie experimentelle Ansätze und mathematische Modelle entwickeln und nutzen. DynaDeep wird sich in einer ersten Phase zunächst auf einen Standort konzentrieren und ein “Subterranean Estuary Online Observatory” auf der Insel Spiekeroog aufbauen. Die Erkenntnisse werden anschließend in einer zweiten Phase an anderen Standorten überprüft und gegebenenfalls auf diese übertragen. Ultimatives Ziel ist es, die globale Bedeutung tiefer, dynamischer biogeochemischer Reaktoren im Untergrund von Hochenergiestränden für Küstenökosysteme und globale Stoffkreisläufe abzuschätzen.

Forschergruppe (FOR) 5094: Dynamik des tiefen Untergrundes von Hochenergiestränden, Teilprojekt Organisches Material: Abiotische Umwandlungen und mikrobielle Interaktionen

Durch DynaDeep wird ein Verständnis der Funktionsweise und Relevanz des Land-Meer Übergangs im Untergrund von Hochenergiestränden gewonnen werden. Wir nehmen an, dass dieser einen hoch dynamischen Bioreaktor und einzigartiges mikrobiologisches Habitat darstellt und Netto-Stoffflüsse in Richtung Meer stark beeinflusst. Um dieses Ziel zu erreichen werden sechs Teilprojekte gemeinsam Felduntersuchungen und experimentelle Arbeiten durchführen und diese mit mathematischen Modellen integrativ kombinieren. Teilprojekt P3 wird die Quellen, die Zusammensetzung und die Umwandlungen organischen Materials als Hauptfaktoren biogeochemischer Prozesse im tiefen subterranen Ästuar untersuchen. Wir verfolgen die Hypothese, dass der transiente Charakter des tiefen Untergrundes entscheidend für den Umsatz und die molekulare Umwandlung organischen Materials durch wechselwirkende abiotische und biotische Prozesse ist. Eine Kombination von gezielten Laborexperimenten und Feldarbeiten wird angewandt zur Identifizierung und Charakterisierung von (1) potentiellen Quellen des organischen Materials im tiefen subterranen Ästuar, (2) abiotischen Veränderungen der Menge und Zusammensetzung des gelösten organischen Materials (DOM) an zeitlich und räumlich variablen Redox-Grenzflächen, und (3) Abbau und Umwandlung von DOM durch mikrobielle Gemeinschaften. Dabei wird die detaillierte molekulare Information genutzt, um Zusammenhänge zwischen der DOM-Zusammensetzung und der Zusammensetzung und Aktivität der mikrobiellen Gemeinschaften zu entschlüsseln. Die Charakterisierung des organischen Materials erfolgt durch modernste molekulare Ansätze wie ultrahochauflösende Fourier-Transformations-Ionenzyklotronresonanz-Massenspektrometrie (FT-ICR-MS) und Ultra-Leistungs-Flüssigkeitschromatographie, ergänzt durch Analysen von stabilen und Radiokohlenstoff-Isotopen. Molekulare Marker werden als Diagnosewerkzeuge für spezifische biogeochemische Zustände des tiefen subterranen Ästuars und der daraus resultierenden mikrobiellen Nischen etabliert. Die Ergebnisse von P3 werden das gekoppelte hydrogeologische Transport-Reaktionsmodell (P6) mit Reaktivitätstermen bestücken und Informationen über Quellen und Alter von DOM (P1) liefern. Die in P3 gewonnenen molekularen Daten werden im Zusammenhang mit den Daten zur mikrobiellen Gemeinschaft (P5) und zur Verteilung der relevanten Spurenelemente (P4) interpretiert und tragen zu einem mechanistischen Verständnis der mikrobiellen Atmung bei (P2).

1 2