s/physikalischer-prozess/Physikalischer Prozess/gi
Temperatur (02.01.2) Die Temperatur ist eine bedeutende Einflussgröße für alle natürlichen Vorgänge in einem Gewässer. Biologische, chemische und physikalische Vorgänge im Wasser sind temperaturabhängig , z.B. Zehrungs- und Produktionsprozesse, desgleichen Adsorption und Löslichkeit für gasförmige, flüssige und feste Substanzen. Dies gilt auch für Wechselwirkungen zwischen Wasser und Untergrund oder Schwebstoffen und Sedimenten sowie zwischen Wasser und Atmosphäre. Die Lebensfähigkeit und Lebensaktivität der Wasserorganismen sind ebenso an bestimmte Temperaturgrenzen oder -optima gebunden wie das Vorkommen unterschiedlich angepasster Organismenarten und Fischbesiedelungen nach Flussregionen in Mitteleuropa. Die Darstellung der Heizkraftwerke in der Karte sowie deren Einfluss auf die Gewässertemperatur sind bei der Betrachtung zu berücksichtigen. Aus der Temperaturverteilungskarte wird deutlich sichtbar, dass die Wärmeeinleitungen in die Berliner Gewässer in den letzten Jahren rückläufig war, vor allem im Bereich der Spreemündung und der Havel. Die kritische Schwelle von 28° C wurde nicht überschritten, die Maxima bzw. 95-Perzentile liegen im Bereich um 25° C. Ende der neunziger Jahre wurden sporadisch noch Temperaturen über 28° C gemessen. Der Rückgang der Wärmefrachten der Berliner Kraftwerke in die Gewässer beträgt seit 1993 ca. 13 Mio. GJ und ist im Wesentlichen auf den Anschluss des Berliner Stromnetzes an das westeuropäische Verbundnetz zurückzuführen. Durch die Liberalisierung des Strommarktes bedingte sinkende Strombeschaffungskosten und damit verbundene geringere Erzeugung in den Berliner Kraftwerken hat zur Stilllegung bzw. Teilstilllegung von Kraftwerken geführt, die zum Teil mit Modernisierungen zur Effizienzsteigerung verbunden waren. Die derzeitige Wärmefracht beträgt ca. 10 Mio. GJ. Sauerstoffgehalt (02.01.1) Der Sauerstoffgehalt des Wassers ist das Ergebnis sauerstoffliefernder und -zehrender Vorgänge . Sauerstoff wird aus der Atmosphäre eingetragen, wobei die Sauerstoffaufnahme vor allem von der Größe der Wasseroberfläche, der Wassertemperatur, dem Sättigungsdefizit, der Wasserturbulenz sowie der Luftbewegung abhängt. Sauerstoff wird auch bei der Photosynthese der Wasserpflanzen freigesetzt, wodurch Sauerstoffübersättigungen auftreten können. Beim natürlichen Abbau organischer Stoffe im Wasser durch Mikroorganismen sowie durch die Atmung von Tieren und Pflanzen wird Sauerstoff verbraucht . Dies kann zu Sauerstoffmangel im Gewässer führen. Der kritische Wert liegt bei 4 mg/l, unterhalb dessen empfindliche Fischarten geschädigt werden können. Sowohl aus den Werten der Messstationen als auch aus den Stichproben ist eine Verbesserung des Sauerstoffgehaltes der Berliner Gewässer nur teilweise ablesbar. Kritisch sind nach wie vor die Gewässer, in die Mischwasserüberläufe stattfinden. In der Mischwasserkanalisation werden Regenwasser und Schmutzwasser in einem Kanal gesammelt und über Pumpwerke zu den Klärwerken gefördert. Dieses Entwässerungssystem ist in der gesamten Innenstadt Berlins präsent. (vgl. Karte 02.09) Im Starkregenfall reicht die Aufnahmekapazität der Mischkanalisation nicht aus und das Gemisch aus Regenwasser und unbehandeltem Abwasser tritt in Spree und Havel über. Infolge dessen kann es durch Zehrungsprozesse zu Sauerstoffdefiziten kommen. Besonders extreme Ereignisse lösen in einigen Gewässerabschnitten (v.a. Landwehrkanal und Neuköllner Schifffahrtskanal) sogar Fischsterben aus. Um die Überlaufmengen künftig deutlich zu verringern, werden im Rahmen eines umfassenden Sanierungsprogramms zusätzliche unterirdische Speicherräume aktiviert bzw. neu errichtet. Die kritischen Situationen im Tegel Fließ sind auf nachklingende Rieselfeldeinflüsse bzw. Landwirtschaft zurückzuführen. TOC (02.01.10) und AOX (02.01.7) Die gesamtorganische Belastung in Oberflächengewässern wird mit Hilfe des Leitparameters TOC (total organic carbon) ermittelt. Die Summe der “Adsorbierbaren organisch gebundenen Halogene” wird über die AOX -Bestimmung wiedergegeben. Bei der Bestimmung des Summenparameters AOX werden die Halogene (AOJ, AOCl, AOBr) in einer Vielfalt von Stoffen mit ganz unterschiedlichen Eigenschaften erfasst. Dieser Parameter dient insofern weniger der ökotoxikologischen Gewässerbewertung, sondern vielmehr in der Gewässerüberwachung dem Erfolgsmonitoring von Maßnahmen zur Reduzierung des Eintrags an “Adsorbierbaren organisch gebundenen Halogenen”. Beide Messgrößen lassen prinzipiell keine Rückschlüsse auf Zusammensetzung und Herkunft der organischen Belastung zu. Erhöhte AOX – Befunde in städtischen Ballungsräumen wie Berlin dürften jedoch einem vornehmlich anthropogenen Eintrag über kommunale Kläranlagen zuzuschreiben sein. TOC-Einträge können sowohl anthropogenen Ursprungs als auch natürlichen Ursprungs z.B. durch den Eintrag von Huminstoffen aus dem Einzugsgebiet bedingt sein, was die ökologische Aussagefähigkeit des Parameters teilweise einschränkt. Bewertungsmaßstab ist für beide Messgrößen das 90-Perzentil. Unter Anwendung dieses strengen Maßstabs wird die Zielgröße Güteklasse II für den TOC bereits in den Zuflüssen nach Berlin und im weiteren Fließverlauf durch die Stadt in sämtlichen Haupt- und Nebenfließgewässern überschritten . Für AOX liegen die Messwerte nicht durchgängig für alle Fließabschnitte der Berliner Oberflächengewässer vor. Dennoch lässt sich ableiten, dass lediglich in den Gewässerabschnitten, die unmittelbar den Klärwerkseinleitungen ausgesetzt sind (Neuenhagener Fließ, Wuhle, Teltowkanal, Nordgraben), leicht erhöhte AOX – Messwerte auftreten und die Zielvorgabe knapp überschritten wird (Güteklasse II bis III). Ammonium-Stickstoff (02.01.3), Nitrit-Sickstoff (02.01.5), Nitrat-Stickstoff (02.01.4) Stickstoff tritt im Wasser sowohl molekular als Stickstoff (N 2 ) als auch in anorganischen und organischen Verbindungen auf. Organisch gebunden ist er überwiegend in pflanzlichem und tierischem Material (Biomasse) festgelegt. Anorganisch gebundener Stickstoff kommt vorwiegend als Ammonium (NH 4 ) und Nitrat (NO 3 ) vor. In Wasser, Boden und Luft sowie in technischen Anlagen (z.B. Kläranlagen) finden biochemische (mikrobielle) und physikalisch-chemische Umsetzungen der Stickstoffverbindungen statt (Oxidations- und Reduktionsreaktionen). Eine Besonderheit des Stickstoffeintrages ist die Stickstofffixierung, eine biochemische Stoffwechselleistung von Bakterien und Blaualgen (Cyanobakterien), die molekularen gasförmigen Stickstoff aus der Atmosphäre in den Stoffwechsel einschleusen können. Innerhalb Berlins ist der Eintrag über die Kläranlagen die Hauptbelastungsquelle . Durch die Regenentwässerungssysteme werden sporadisch kritische Ammoniumeinträge verursacht. Ammonium kann in höheren Konzentrationen erheblich zur Belastung des Sauerstoffhaushalts beitragen, da bei der mikrobiellen Oxidation (Nitrifikation) von 1 mg Ammonium-Stickstoff zu Nitrat rd. 4,5 mg Sauerstoff verbraucht werden. Dieser Prozess ist allerdings stark temperaturabhängig. Erhebliche Umsätze erfolgen nur in der warmen Jahreszeit . Bisweilen überschreitet die Sauerstoffzehrung durch Nitrifikationsvorgänge die durch den Abbau von Kohlenstoffverbindungen erheblich. Toxikologische Bedeutung kann das Ammonium bei Verschiebung des pH-Wertes in den alkalischen Bereichen erlangen, wenn in Gewässern mit hohen Ammoniumgehalten das fischtoxische Ammoniak freigesetzt wird. Nitrit-Stickstoff tritt als Zwischenstufe bei der mikrobiellen Oxidation von Ammonium zu Nitrat ( Nitrifikation ) auf. Nitrit hat eine vergleichsweise geringere ökotoxikologische Bedeutung. Mit zunehmender Chloridkonzentration verringert sich die Nitrit-Toxizität bei gleichem pH-Wert. Während für die Spree, Dahme und Havel im Zulauf nach Berlin die LAWA – Qualitätsziele (Güteklasse II) für NH 4 -N eingehalten werden, werden die Ziele überall dort überschritten, wo Gewässer dem Ablauf kommunaler Kläranlagen und Misch- und Regenwassereinleitungen ausgesetzt sind. Die Ertüchtigung der Nitrifikationsleistungen in den Klärwerken der Berliner Wasserbetriebe seit der Wende führte stadtweit zu einer signifikanten Entlastung der Gewässer mit Gütesprüngen um drei bis vier Klassen . Viele Gewässerabschnitte konnten den Sprung in die Güteklasse II schaffen. Die Werte für die Wuhle und in Teilen für die Vorstadtspree sind für den jetzigen Zustand nicht mehr repräsentativ, da mit der Stilllegung des Klärwerkes Falkenberg im Frühjahr 2003 eine signifikante Belastungsquelle abgestellt wurde. Mit der Stillegung des Klärwerkes Marienfelde (Teltowkanal, 1998) und der Ertüchtigung von Wassmansdorf konnte die hohe Belastung des Teltowkanals ebenfalls deutlich reduziert werden. Das Neuenhagener Mühlenfließ ist nach wie vor sehr hoch belastet. Hier besteht Handlungsbedarf beim Klärwerk Münchehofe . Die Stadtspree (von Köpenick bis zur Mündung in die Havel) weist durchgängig die Güteklasse II bis III auf und verfehlt damit die LAWA – Zielvorgabe ebenso wie die Unterhavel , der Teltowkanal und die mischwasserbeeinflussten innerstädtischen Kanäle . In 2001 ist eine Überschreitung der LAWA – Zielvorgabe für Nitrit-Stickstoff (90-Perzentil) in klärwerksbeeinflussten Abschnitten von Neuenhagener Fließ und Wuhle (s. Anmerkung oben) sowie in drei Abschnitten des Teltowkanals zu verzeichnen. Die Nitratwerte der Berliner Gewässer sind durchgehend unkritisch. Chlorid (02.01.8) In den Berliner Gewässern liegt der natürliche Chloridgehalt unter 60 mg/l. Anthropogene Anstiege der Chloridkonzentration erfolgen durch häusliche und industrielle Abwässer sowie auch durch Streusalz des Straßenwinterdienstes. Einem typischen Jahresverlauf unterliegt das Chlorid durch den sommerlichen Rückgang des Spreewasserzuflusses und der damit verbundenen Aufkonzentrierung in der Stadt. Bei Chloridwerten über 200 mg/l können für die Trinkwasserversorgung Probleme auftauchen. Die Chloridwerte der Berliner Gewässer stellen kein gewässerökologisches Problem dar. Sulfat (02.01.9) Der Beginn anthropogener Beeinträchtigungen im Berliner Raum wird mit etwa 120 mg/l angegeben. Die Güteklasse II (< 100 mg/l) kann somit für unsere Region nicht Zielgröße sein. Die Bedeutung des Parameters Sulfat liegt im Spree-Havel-Raum weniger in seiner ökotoxikologischen Relevanz, als vielmehr in der Bedeutung für die Trinkwasserversorgung. Der Trinkwassergrenzwert liegt bei 240 mg/l (v.a. Schutz der Nieren von Säuglingen vor zu hoher Salzfracht). Die Zuläufe nach Berlin weisen Konzentrationen von 150 bis 180 mg/l auf. Hier ist in Zukunft mit einer Zunahme der Sulfatfracht aus den Bergbauregionen der Lausitz zu rechnen. Folgende Einträge in die Gewässer sind im Spreeraum von Relevanz: Eintrag über Sümpfungswässer aus Tagebauen Direkter Eintrag aus Tagebaurestseen, die zur Wasserspeicherung genutzt werden indirekter Eintrag über Grundwässer aus Tagebaugebieten Einträge des aktiven Bergbaus Atmosphärischer Schwefeleintrag (Verbrennung fossiler Brennstoffe) Diffuse und direkte Einträge (Kläranlageneinleitungen, Abschwemmungen, Landwirtschaft) In gewässerökologischer Hinsicht können erhöhte Sulfatkonzentrationen eutrophierungsfördernd sein. Sulfat kann zur Mobilisierung von im Sediment festgelegten Phosphor führen. Gesamt-Phosphor (02.01.6) Phosphor ist ein Nährstoffelement, das unter bestimmten Bedingungen Algenmassenentwicklungen in Oberflächengewässern verursachen kann (nähere Erläuterungen siehe Karte 02.03). Unbelastete Quellbäche weisen Gesamt-Phosphorkonzentrationen von weniger als 1 bis 10 µg/l P, anthropogen nicht belastete Gewässeroberläufe in Einzugsgebieten mit Laubwaldbeständen 20-50 µg/l P auf. Die geogenen Hintergrundkonzentrationen für die untere Spree und Havel liegen in einem Bereich um 60 bis 90 µg/l P. Auf Grund der weitgehenden Verwendung phosphatfreier Waschmittel und vor allem auch der fortschreitenden Phosphatelimination bei der Abwasserbehandlung ist der Phosphat-Eintrag über kommunale Kläranlagen seit 1990 deutlich gesunken , vor allem in den Jahren bis 1995. Der Eintrag über landwirtschaftliche Flächen ist ebenfalls rückgängig. Die Phosphorbelastung der Berliner Gewässer beträgt für den Zeitraum 1995-1997: Zuflüsse nach Berlin 188 t/a Summe Kläranlagen 109 t/a Misch- und Trennkanalisation 38 t/a Summe Zuflüsse und Einleitungen 336 t/a Summe Abfluss 283 t/a In den Zuflüssen nach Berlin überwiegen die diffusen Einträge mit ca. 60 %. Der Grundwasserpfad ist mit ca.50 % der dominante Eintragspfad (diffuser Eintrag 100 %). Beim Gesamtphosphor wird der Mittelwert der entsprechenden Jahre zugrundegelegt. Deutlich wird die erhöhte P-Belastung der Berliner Gewässer etwa um den Faktor 2 bis 3 über den Hintergrundwerten. Eine Ausnahme bildet der Tegeler See . Der Zufluss zum Hauptbecken des Tegeler Sees wird über eine P-Eliminationsanlage geführt und somit der Nährstoffeintrag in den See um ca. 20 t/a entlastet.
Da vor allem von Bedeutung ist, wie die Luft belastet ist, die wir im täglichen Leben atmen, wird dies regelmäßig gemessen. 16 ortsgebundene Stationen erfassen täglich die Schadstoffkonzentration in der Berliner Luft. Um die verschiedenen Belastungen in der Stadt abzubilden, sind die Messstationen an stark befahrenen Straßen in der Innenstadt ebenso wie in Wohngebieten (man spricht hier vom innerstädtischen Hintergrund) und am Stadtrand zu finden. Diese Stationen senden alle fünf Minuten die gemessenen Werte jedes Schadstoffs zur Messnetzzentrale in der Brückenstraße (Berlin Mitte). Dort werden aus der Fülle an Daten Stunden- und Tageswerte für die einzelnen Stationen berechnet. Die aktuellen Messwerte sind für jeden auf der Webseite des Berliner Luftgüte-Messnetzes ( BLUME ) einsehbar. Gemessen werden Stickstoffmonoxide (NO), Stickstoffdioxid (NO 2 ), Feinstaub PM 10 (Staubpartikel mit einer Größe von 10 oder weniger Mikrometer), Ozon, Schwefeldioxid (SO 2 ), Kohlenmonoxid (CO), Benzol und Toluol. Abgestuft nach ihrer Bedeutung, sprich nach dem Grad der Belastung, werden diese Schadstoffe nicht an allen, sondern nur an ausgewählten Stationen gemessen. Einige Messstationen sammeln zusätzlich Daten zu den Konzentrationen von Ruß, Feinstaub PM 2,5 (Staubpartikel mit einer Größe von 2,5 oder weniger Mikrometer), Benzo(a)pyren oder Schwermetallen. Da für diese Stoffe aufwändige Labormessverfahren notwendig sind, stehen die Werte jedoch nicht direkt online zur Verfügung. Zum BLUME-Messnetz kommen zudem Kleinstsammler des RUBIS-Messnetzes hinzu, die vor allem an Hauptverkehrsstraßen verteilt sind. Diese Geräte sammeln im Zwei-Wochen-Rhythmus Ruß- und Benzolimmissionen, um auch deren Schadstoffkonzentration bestimmen zu können. Außerdem ist am gleichen Standort meistens ein Passivsammler für Stickstoffdioxid vorhanden, der auf dem Prinzip der passiven Diffusion beruht. Stickstoffdioxid wird dabei von einem geeigneten Medium absorbiert. Die Ruß- und Stickstoffdioxidmessungen helfen, die Wirkung von verkehrsbezogenen Maßnahmen zur Luftreinhaltung einschätzen zu können. Die Messdaten zeigen, dass in Berlin immer noch regelmäßig die Grenzwerte von Stickstoffdioxid und Feinstaub PM 10 überschritten werden. Die Einhaltung des Jahresmittel-Grenzwerts für Stickstoffdioxid (40 Mikrogramm pro Kubikmeter Luft) gelingt an fast keiner der verkehrsnahen Messstationen. Auch für Feinstaub PM 10 gilt der Grenzwert von 40 Mikrogramm pro Kubikmeter Luft, der im Jahresmittel überall seit mehr als zehn Jahren eingehalten wird. Dahingegen wird der Tagesgrenzwert von 50 Mikrogramm pro Kubikmeter Luft an mehr als den maximal möglichen 35 Tagen überschritten. Dies hängt unter anderem mit den jeweils vorherrschenden meteorologischen Bedingungen zusammen. Für ein flächendeckendes Bild zur Luftqualität in der Stadt reichen die Messdaten allein nicht aus. Da es jedoch nicht möglich ist, an jeder Straße und in jedem Wohngebiet zu messen, gibt es zusätzliche Modellsimulationen, die die Immissionen (Messwerte BLUME), Verkehrszahlen, Emissionen und meteorologischen Daten für Berlin berücksichtigen. Daraus lässt sich unter anderem ein Bild über die räumliche Verteilung der Luftbelastung zwischen den Messstationen erstellen. Und auch die Luftqualität für einzelne städtische Wohngebiete oder das gesamte Berliner Hauptstraßennetz kann damit berechnet werden. Was dabei deutlich wird : Die kombinierte Belastung aus Stickstoffdioxid und Feinstaub ist in der ganzen Stadt vorhanden, allerdings in verschieden starker Ausprägung. Innerhalb der Umweltzone und in den nördlichen angrenzenden Gebieten des Weddings und Prenzlauer Bergs sowie in Teilen von Spandau und Neukölln sind die Hauptverkehrsstraßen weiterhin stärker von der Luftverschmutzung betroffen als am Stadtrand. Damit die gemessenen Werte aussagekräftig und vergleichbar sind – nicht nur innerhalb Berlins, sondern auch mit anderen Bundesländern sowie mit anderen EU-Mitgliedstaaten – ist die richtige Platzierung der Messstationen von wesentlicher Bedeutung. Deshalb muss hierfür eine ganze Reihe von Kriterien berücksichtigt werden, die gesetzlich geregelt sind. Nur so lassen die erhobenen Daten auch Rückschlüsse in Bezug auf die Grenzwerte für die menschliche Gesundheit zu. Berliner Luftgüte-Messnetz Messdaten im Umweltatlas Für die Standortwahl von Bedeutung ist, dass die Messstationen nicht nur eine Aussage zur Schadstoffbelastung in der unmittelbaren Umgebung ermöglichen, sondern darüber hinaus für ein größeres Gebiet sowie für andere Bereiche mit ähnlichen Charakteristika in anderen Bezirken der Stadt repräsentativ sind. So entstehen die Proben in einer Höhe von 3,5 bis 4 Metern über dem Boden. Auch der Abstand zu Gebäuden und anderen Hindernissen, wie Balkonen oder Bäumen, ist vorgegeben. Außerdem ist die Entfernung zu möglichen Emissionsquellen festgelegt. Das bedeutet für Messstationen an Straßen, dass zwischen der Mitte der nächstgelegenen Fahrspur und der Messstation selbst mindestens vier Meter liegen müssen. Damit wird ausgeschlossen, dass direkt die Emissionen der Fahrzeuge gemessen werden, die Luftprobe erst dort entsteht, wo sich die Emissionen schon mit der Umgebungsluft vermischt haben. Verkehrsnahe Messstellen dürfen allerdings nicht weiter als zehn Meter vom Fahrbahnrand entfernt liegen und sollen für einen längeren Straßenabschnitt, mindestens 100 Meter, vergleichbar sein. Weitere Information Die Schadstoffe, die zum Beispiel aus dem Auspuff eines jeden Autos kommen, sind nicht gleichzusetzen mit den Schadstoffen in der Luft, die wir Menschen einatmen. Vom Ausstoß (Emission) kann nicht unmittelbar auf die Luftbelastung durch Schadstoffe (Immission) geschlossen werden: Der Begriff Emission bezeichnet den Ausstoß an Schadstoffen. Die Quellen sind vielfältig und reichen von Industrieanlagen über Heizkraftwerke bis zum Verkehr. Mit dem Begriff der Transmission wird der Transport der Schadstoffe in der Luft von der Quelle zum Menschen und ihre Umwandlung in der Atmosphäre bezeichnet. Dabei unterliegen sie verschiedenen Einflüssen. So spielen bspw. das Wetter und die Topographie eine wichtige Rolle bei der Verteilung von Schadstoffen in der Luft: Wind und Windrichtung beeinflussen, ob und wie sie sich verbreiten. Berge und geschlossene Straßenschluchten behindern den Schadstofftransport und verstärken die Luftbelastung (siehe sogenannte Kessellagen von Städten wie Stuttgart und Freiburg). Beim Transport in der Atmosphäre werden die Stoffe nicht nur verteilt und verdünnt, es bilden sich durch chemische und physikalische Vorgänge auch neue Stoffe. Der wichtigste neu entstandene Stoff ist Ozon, das fast ausschließlich aus diesem Prozess stammt und kaum direkt emittiert wird. Außerdem bildet sich auch ein erheblicher Teil des Feinstaubs durch Umwandlung von Gasen in feste Salze (z.B. Nitrate, Sulfate und Choride). Der Begriff Immission bezeichnet das Resultat der Transmission: die Luftbelastung mit Schadstoffen in der Außenluft, die wir letztendlich einatmen und die auf Menschen, Tiere, Pflanzen, Gewässer, Böden und alle anderen Materialien einwirkt. Damit sind die Immission und die damit verbundenen gesetzlich festgelegten Immissionsgrenzwerte für Menschen und Umwelt das letztlich auschlaggebende Maß, um die Luftqualität zu beurteilen. Weil sie anzeigen, wie die Schadstoffbelastung der Luft tatsächlich aussieht.
In Berlin wird nicht nur die gesamte öffentliche Trinkwasserversorgung aus dem eigenen Grundwasser gedeckt, sondern auch die private Versorgung über eine Vielzahl von Eigenwasserversorgungsanlagen. Aus diesem Grund muss dem dauerhaften Erhalt einer guten Grundwasserqualität ein besonderer Stellenwert zugemessen werden. Durch das menschliche Einwirken bestehen im Grundwasser bereits erhöhte Temperaturen, so dass die Wasserbehörde in der Regel weitere Wärmeeinträge in das Grundwasser nicht zulassen wird. Dagegen ist der Wärmentzug aus dem Grundwasser durch Wasser/Wasser-Wärmepumpenanlagen mit Förderung und Wiedereinleitung von Grundwasser oder aber auch durch Erdsonden/-kollektor grundsätzlich möglich. Zur Vermeidung hoher Bohrkosten, Verockerungen von Brunnenanlagen und wiederkehrender Untersuchungen der Grundwasserqualität sollte der Errichtung einer Erdsondenanlage der Vorzug gegeben werden. Für die weitere Planung und Information über die bei Bau und Betrieb der Anlage einzuhaltenden Bedingungen kann der “Leitfaden für Erdwärmesonden und Erdwärmekollektoren mit einer Heizleistung bis 30 kW” Hilfestellung geben. Bei Erdwärmeanlagen > 30 kW Heizleistung ist zunächst immer ein Geothermal Response Test bei der Wasserbehörde zu beantragen und durchzuführen. Danach erfolgt die Antragsstellung für die Grundwasserbenutzung einer Erdwärmeanlage > 30 kW Heizleistung. Im Rahmen des wasserrechtlichen Antragsverfahrens ist grundsätzlich eine thermohydrodynamische Modellierung durchzuführen. Die diesbezügliche Verfahrensweise ist in dem Pflichtenheft zur Methodik und Dokumentation thermohydrodynamischer Modellierungen im Rahmen des wasserrechtlichen Erlaubnisverfahrens zum Betrieb von Erdwärmesondenanlagen mit einer Heizleistung von >30 kW dargestellt. Antrag für Erdwärmeanlagen In Berlin wird nicht nur die gesamte öffentliche Trinkwasserversorgung aus dem eigenen Grundwasser gedeckt, sondern auch die private Versorgung über eine Vielzahl von Eigenwasserversorgungsanlagen. Aus diesem Grund muss dem dauerhaften Erhalt einer guten Grundwasserqualität ein besonderer Stellenwert zugemessen werden. Durch das menschliche Einwirken bestehen im Grundwasser bereits erhöhte Temperaturen, so dass die Wasserbehörde in der Regel weitere Wärmeeinträge in das Grundwasser nicht zulassen wird. Dagegen ist der Wärmentzug aus dem Grundwasser durch Wasser/Wasser-Wärmepumpenanlagen mit Förderung und Wiedereinleitung von Grundwasser oder aber auch durch Erdsonden/-kollektor grundsätzlich möglich. Zur Vermeidung hoher Bohrkosten, Verockerungen von Brunnenanlagen und wiederkehrender Untersuchungen der Grundwasserqualität sollte der Errichtung einer Erdsondenanlage der Vorzug gegeben werden. Bei der Errichtung von Erdwärmesonden sind insbesondere die Bohrtätigkeit und die ggf. erforderliche Verbindung verschiedener Grundwasserstockwerke sowie die Verwendung von Spülungszusätzen geeignet, schädliche Veränderungen des Grundwassers herbeizuführen. Auch mit dem Betrieb der Erdwärmeanlage kann eine schädliche Veränderung der Beschaffenheit des Grundwassers durch den Wärmeentzug über die Sonden bzw. die Kollektoren oder das Auslaufen eines wassergefährdenden Wärmeträgermittels verbunden sein. Durch den Wärmeentzug werden der Boden und das Grundwasser abgekühlt, wodurch sich die physikalischen, chemischen und biologischen Eigenschaften des Wassers verändern. Diese Veränderungen der Grundwasserqualität stellt eine Gewässerbenutzung nach dem Wasserhaushaltsgesetz (WHG) dar. Gewässerbenutzungen bedürfen nach dem Wasserhaushaltsgesetz (WHG) einer wasserbehördlichen Erlaubnis. Diese ist bei der Wasserbehörde der Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt zu beantragen. Für die Antragstellung ist ein Antragsformular zu verwenden. Antragsformular Für die Errichtung von Erdwärmekollektoren, die dem Erdreich Wärme entziehen und bei denen die Kollektoren mindestens 1 Meter über dem höchsten Grundwasserstand (HGW) liegen und damit keine Auswirkungen auf das Grundwasser haben, ist keine wasserbehördliche Erlaubnis erforderlich. Die Nutzung von Erdwärme ist in den ausgewiesenen Trinkwasserschutzgebieten des Landes Berlin grundsätzlich verboten. Die Temperatur des Bodens und Grundwassers hat einen entscheidenden Einfluss auf alle Stoffwechselvorgänge von Organismen und auf chemische und physikalische Vorgänge. Bei Temperaturabsenkungen verlangsamt sich die biologische Aktivität im Boden, so dass ein positiv zu wertender Abbau im Boden nicht mehr in der zur Verfügung stehenden Zeit ablaufen kann. Da Bakterien, Amöben und andere Kleinstlebewesen an eine bestimmte Temperatur angepasst sind, kann die Abkühlung im Boden und Grundwasser die Lebensgemeinschaft von Mikroorganismen maßgeblich verändern. Trinkwasser soll frei von Krankheitserregern und anderen Schadstoffen, genusstauglich und geschmacklich einwandfrei sein. Es soll mit minimalem Aufwand in den Wasserwerken aufbereitet werden und in bester Qualität den Haushalten zur Verfügung stehen. Aus diesem Grund hat die Versorgung der Bevölkerung mit Trinkwasser uneingeschränkten Vorrang vor thermischen Grundwasserbenutzungen.
TableOfContents
During this short cruise, we explored the potential of acoustic echo sounding techniques (wideband single-beam and multibeam systems) for the quantitative investigation of turbulence and other small-scale processes in the water column. These activities were embedded in the research project „Four dimensional Research applying Modeling and Observations for the Sea and Atmosphere“ (FORMOSA), funded by the German Leibniz-Association (WGL) in the framework of the national funding line “Cooperative Excellence”. The cruise took place in May 2021 in the Kattegat region and the western Baltic Sea (Arkona Basin). Our activities focused on the mixing of salty North Sea waters and brackish outflow waters from the Baltic Sea in the Kattegat region with the help of turbulence microstructure and acoustic observations. Measurements were conducted by scientists from IOW in collaboration with project partners from Stockholm University (Sweden) and an additional engineering group from Rostock University (Germany).
Im Forschungsprojekt TrilaWatt (Digitaler hydromorphologischer Zwilling des trilateralen Wattenmeers) wurden durch die Integration und Analyse von Geodaten konsistente Basisdaten zur Bathymetrie, Sedimentologie, Hydrodynamik und Morphodynamik entwickelt. Die Erstellung dieser Daten wurde mit praxisnahen Use-Cases, die im Laufe des Projekts mit externen Partnern entstanden sind, begleitet. Use-Cases existieren beispielsweise im Bereich der wissenschaftlichen Küstenforschung, in der Unterstützung von Bau- und Entwicklungsprojekten im Küstenbereich sowie in der Umweltüberwachung bzw. im Naturschutz. Datenprodukte aus TrilaWatt führen im Bereich der Deutschen Bucht die Zeitreihe des Projekts EasyGSH-DB (Link, 1996 - 2015) bis einschl. 2021 fort. Alle Daten sind kostenfrei nach den FAIR Grundsätzen "Findable, Accessible, Interoperable, Re-Usable" auffindbar und referenzierbar. Langzeitdaten tragen zum Systemverständnis der hydromorphologischen und physikalischen Prozesse im trilateralen Wattenmeer bei. Dieser Metadatensatz ist der Elterndatensatz für alle in TrilaWatt entwickelten Use-Cases. Jeder Use-Case enthält dokumentierte Projektbeschreibungen zum Bedarf bzw. der Relevanz, neuer Methodik, der Durchführung und neuen Datenprodukten. English: Data products from the digital twin of the trilateral Wadden Sea are used in scientific coastal research, for planning and evaluation of construction and development projects in coastal areas, environmental monitoring and nature conservation. By integrating and analyzing extensive consistent data on bathymetry, sedimentology, hydrodynamics and morphodynamics, the digital twin enables reliable statements to be made about physical processes and developments. Data products from TrilaWatt continue the time series of the EasyGSH-DB project (Link, 1996 - 2015) in the German Bight up to and including 2021. All data can be found and referenced free of charge in accordance with the FAIR principles “Findable, Accessible, Interoperable, Re-Usable”. This metadata set is the parent to all documented use cases. The metadata of the individual use cases include descriptions on methodology, data requirements and implementation.
In the face of rapid global change it is imperative to preserve geodiversity for the overall conservation of biodiversity. Geodiversity is important for understanding complex biogeochemical and physical processes and is directly and indirectly linked to biodiversity on all scales of ecosystem organization. Despite the great importance of geodiversity, there is a lack of suitable monitoring methods. Compared to conventional in-situ techniques, remote sensing (RS) techniques provide a pathway towards cost-effective, increasingly more available, comprehensive, and repeatable, as well as standardized monitoring of continuous geodiversity on the local to global scale. This paper gives an overview of the state-of-the-art approaches for monitoring soil characteristics and soil moisture with unmanned aerial vehicles (UAV) and air- and spaceborne remote sensing techniques. Initially, the definitions for geodiversity along with its five essential characteristics are provided, with an explanation for the latter. Then, the approaches of spectral traits (ST) and spectral trait variations (STV) to record geodiversity using RS are defined. LiDAR (light detection and ranging), thermal and microwave sensors, multispectral, and hyperspectral RS technologies to monitor soil characteristics and soil moisture are also presented. Furthermore, the paper discusses current and future satellite-borne sensors and missions as well as existing data products. Due to the prospects and limitations of the characteristics of different RS sensors, only specific geotraits and geodiversity characteristics can be recorded. The paper provides an overview of those geotraits. Quelle: https://www.mdpi.com
Die Einbeziehung klimatologischer Gesichtspunkte in die Bewertung der Umweltsituation städtischer Ballungsgebiete und deren räumliche Planung setzt zunächst eine Definition des Begriffes Stadtklima voraus. Unter Stadtklima versteht man nach Schirmer et al. (1987) “das gegenüber dem Umland stark modifizierte Mesoklima von Städten und Industrieballungsräumen. Es umfasst das gesamte Volumen der bodennahen Luftschicht oberhalb und in unmittelbarer Umgebung der Stadt bzw. der städtischen Grenzschicht. Verursacht wird es durch die Art und Dichte der Bebauung, das Wärmespeicherungsvermögen der Baustoffe, die Versiegelung des Bodens, das Fehlen von Vegetation, durch einen veränderten Wasserhaushalt und die vermehrte Emission von Abgasen, Aerosolen und Abwärme.” Bewertungs- und Untersuchungsansätze Für die Bewertung der jeweiligen Klimasituation fehlen verbindliche Grenz- und Richtwerte analog den Luftgüte-Werten des Bundes-Immissionsschutz-Gesetzes. Empfehlenden Charakter besitzt eine Richtlinie der Kommission Reinhaltung der Luft im VDI (vgl. Verein Deutscher Ingenieure (VDI) 3787 Blatt 2 1998). Diese hat das Ziel, Bewertungsverfahren der Human-Biometeorologie als Standard für die auf Menschen bezogene Berücksichtigung von Klima und Lufthygiene (Bioklima) bei der Stadt- und Regionalplanung bereitzustellen. Die Human-Biometeorologie beschäftigt sich mit den Wirkungen von Wetter, Witterung, Klima und Lufthygiene auf den menschlichen Organismus. Im vorliegenden ersten Teil dieser Richtlinie werden die human-biometeorologischen Wirkungskomplexe zusammengestellt und die empfohlenen Bewertungsmethoden für den Bereich “Klima” erläutert. Insbesondere steht hierbei der thermische Wirkungskomplex im Vordergrund, der in der Stadt- und Regionalplanung mit dem Ziel eingesetzt werden soll, gesunde Wohn- und Arbeitsbedingungen zu sichern. Mit seiner Hilfe können planerische Fragestellungen aus bioklimatologischer Sicht behandelt werden. Als Idealzustand sollte ein Stadtklima angestrebt werden, das weitgehend frei von Schadstoffen ist und den Stadtbewohnern eine möglichst große Vielfalt an Atmosphärenzuständen unter Vermeidung von Extremen bietet (vgl. Deutsche Meteorologische Gesellschaft 1989). Zur Erfassung des städtischen Klimas bietet sich neben der Anwendung der Methoden der klassischen klimatologischen Forschung mit Messfahrten und Messgängen (vgl. Karten 04.02 – 04.05) auch die Berechnung der Temperaturen der einzelnen Oberflächenelemente (Dächer, Straßen, Baumkronen usw.) mittels Thermal-Infrarot (IR)-Rasteraufnahmen an. Dabei wird von dem physikalischen Prinzip ausgegangen, dass alle Körper entsprechend ihrer Oberflächentemperatur Wärmestrahlung abgeben (vgl. Methode). Indikatoren Als Steuerungsgröße für den Wärmehaushalt der Erdoberfläche kommt der Wärmestrahlung und damit der Oberflächentemperatur als Bestandteil der Strahlungsbilanz jedes Körpers eine große Bedeutung zu. Während tagsüber der kurzwellige Strahlungsbereich vor allem mit der direkten Einstrahlung der Sonnenenergie und ihrer Absorption bzw. Reflexion (Albedo, vgl. Tab. 1) an der Körperoberfläche bestimmend ist, beeinflusst nachts der langwellige Bereich mit dem Bodenwärmestrom ausschließlich das thermische Ausstrahlungsverhalten eines Körpers. Je nach Art und Beschaffenheit von Oberflächen ergeben sich deshalb bei gleichen Einstrahlungs- und Ausstrahlungsbedingungen u.U. erhebliche Unterschiede in der Oberflächentemperatur (vgl. Abb. 1). Digitale Thermalkarten Für (städtische) Klimaanalysen liegt der wesentliche Nutzen von Thermalkarten in ihrem flächenhaften, digital verarbeitbaren Informationsgehalt . Es ist zu unterscheiden zwischen Infrarot-Aufnahmen mit Thermal-Scannern von Flugzeugen aus und den für die vorliegenden Karten benutzten Satellitendaten . Unter Berücksichtigung der Größe Berlins und des engeren Verflechtungsraumes von fast 2 000 km² ermöglicht nur ein satellitengestütztes Verfahren die jeweils fast zeitgleiche Erfassung der langwelligen Eigenstrahlung der Erde (Oberflächentemperatur) in einer aufeinanderfolgenden Nacht-/Tagsituation. Andererseits sind die Überfliegungszeiten des Satelliten nicht beeinflussbar und in diesem Falle für den Berliner Raum als nicht optimal einzuschätzen (vgl. Datengrundlage). Die Interpretation der IR-Thermalbilder erlaubt es, einzelnen Oberflächenelementen und Raumeinheiten über die spezielle erfasste Situation hinaus qualitativ allgemeine thermische Eigenschaften zuzuordnen. Diese Umsetzung setzt jedoch großes klimatisches Fachwissen und die Nutzung weiterer Datengrundlagen wie Nutzungs- und Reliefkarten voraus, da die Ausprägung der Oberflächentemperatur verschiedener Nutzungsstrukturen im Rasterbild stets das Ergebnis komplexer physikalischer Prozesse ist, an denen verschiedene horizontale und vertikale Wärmeflüsse und Energieumsätze (Verdunstung, Kondensation) beteiligt sind. Unter Einbeziehung weiterer klimatologischer Parameter wie Lufttemperatur und Windgeschwindigkeit können Oberflächentemperaturkarten zusätzlich als Unterstützung für die Bestimmung von Klimafunktionsräumen herangezogen werden (vgl. Karte 04.07).
Die Einbeziehung klimatologischer Gesichtspunkte in die Bewertung der Umweltsituation städtischer Ballungsgebiete und deren räumliche Planung setzt zunächst eine Definition des Begriffes Stadtklima voraus. Unter Stadtklima versteht man nach Schirmer et al. (1987) “das gegenüber dem Umland stark modifizierte Mesoklima von Städten und Industrieballungsräumen. Es umfasst das gesamte Volumen der bodennahen Luftschicht oberhalb und in unmittelbarer Umgebung der Stadt bzw. der städtischen Grenzschicht. Verursacht wird es durch die Art und Dichte der Bebauung, das Wärmespeicherungsvermögen der Baustoffe, die Versiegelung des Bodens, das Fehlen von Vegetation, durch einen veränderten Wasserhaushalt und die vermehrte Emission von Abgasen, Aerosolen und Abwärme.” Für die Bewertung der jeweiligen Klimasituation fehlen verbindliche Grenz- und Richtwerte. Als Idealzustand sollte ein Stadtklima angestrebt werden, das weitgehend frei von Schadstoffen ist und den Stadtbewohnern eine möglichst große Vielfalt an Atmosphärenzuständen unter Vermeidung von Extremen bietet (vgl. Deutsche Meteorologische Gesellschaft 1989). Zur Erfassung des städtischen Klimas bietet sich neben der Anwendung der Methoden der klassischen klimatologischen Forschung mit Messfahrten und Messgängen (vgl. Karten 04.02 – 04.05) auch die Berechnung der Temperaturen der einzelnen Oberflächenelemente (Dächer, Straßen, Baumkronen usw.) mittels Thermal-Infrarot(IR)-Rasteraufnahmen an. Dabei wird von dem physikalischen Prinzip ausgegangen, dass alle Körper entsprechend ihrer Oberflächentemperatur Wärmestrahlung abgeben (vgl. Methode). Als Steuerungsgröße für den Wärmehaushalt der Erdoberfläche kommt der Wärmestrahlung und damit der Oberflächentemperatur als Bestandteil der Strahlungsbilanz jedes Körpers eine große Bedeutung zu. Während tagsüber der kurzwellige Strahlungsbereich vor allem mit der direkten Einstrahlung der Sonnenenergie und ihrer Absorption bzw. Reflexion (Albedo, vgl. Tab.1) an der Körperoberfläche bestimmend ist, beeinflusst nachts der langwellige Bereich mit dem Bodenwärmestrom ausschließlich das thermische Ausstrahlungsverhalten eines Körpers. Je nach Art und Beschaffenheit von Oberflächen ergeben sich deshalb bei gleichen Einstrahlungs- und Ausstrahlungsbedingungen u.U. erhebliche Unterschiede in der Oberflächentemperatur (vgl. Abb.1). Für (städtische) Klimaanalysen liegt der wesentliche Nutzen von Thermalkarten in ihrem flächenhaften, digital verarbeitbaren Informationsgehalt . Es ist zu unterscheiden zwischen Infrarot-Aufnahmen mit Thermal-Scannern von Flugzeugen aus und den für die vorliegenden Karten benutzten Satellitendaten . Unter Berücksichtigung der Größe Berlins und des engeren Verflechtungsraumes von fast 2 000 km2 ermöglicht nur ein satellitengestütztes Verfahren die jeweils fast zeitgleiche Erfassung der langwelligen Eigenstrahlung der Erde (Oberflächentemperatur) in einer aufeinanderfolgenden Nacht-/Tagsituation. Andererseits sind die Überfliegungszeiten des Satelliten nicht beeinflussbar und in diesem Falle für den Berliner Raum als nicht optimal einzuschätzen (vgl. Datengrundlage). Die Interpretation der IR-Thermalbilder erlaubt es, einzelnen Oberflächenelementen und Raumeinheiten über die spezielle erfasste Situation hinaus qualitativ allgemeine thermische Eigenschaften zuzuordnen. Diese Umsetzung setzt jedoch großes klimatisches Fachwissen und die Nutzung weiterer Datengrundlagen wie Nutzungs- und Reliefkarten voraus, da die Ausprägung der Oberflächentemperatur verschiedener Nutzungsstrukturen im Rasterbild stets das Ergebnis komplexer physikalischer Prozesse ist, an denen verschiedene horizontale und vertikale Wärmeflüsse und Energieumsätze (Verdunstung, Kondensation) beteiligt sind. Unter Einbeziehung weiterer klimatologischer Parameter wie Lufttemperatur und Windgeschwindigkeit können Oberflächentemperaturkarten zusätzlich als Unterstützung für die Bestimmung von Klimafunktionsräumen herangezogen werden (vgl. Karte 04.07).
Ein bekanntes Beispiel der Bionik ist der sogenannte Haifischhauteffekt. Hierbei handelt sich um einen physikalischen Vorgang, der sich -inspiriert durch die Struktur von an eben jener Fischhaut - an einer fluidüberströmten, definiert strukturierten Oberfläche einstellt. Durch feine Rillen bilden sich an derart ausgebildeten Flächen winzige Verwirbelungen, die zu einer deutlichen Reduzierung des Strömungswiderstandes beitragen. Am Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM in Bremen ist es einer Forschergruppe nun gelungen, ein Lacksystem zu entwickeln, das die Effekte der Haifischhaut auf beliebige Objekte anwendbar macht. Zusammen mit der Muehlhan AG wurden die mit dem Speziallack beschichteten Rotoren einer Windkraftanlage im Modellmaßstab bereits erfolgreich getestet. Als Ergebnis konnten die Forscher eine Ertragssteigerung von 5 bis 6 Prozent pro Jahr feststellen. Diese Ertragssteigerung geht mit einer Verringerung der Geräuschentwicklung einher und kann ohne größere technische Maßnahmen treffen zu müssen auf jede Windkraftanlage übertragen werden. Die vielversprechenden Ergebnisse ermutigten die Beteiligten, eine Ausweitung der Versuchsreihen zu starten. Zusammen mit einem Kooperationspartner soll die kommerzielle Nutzung der sogenannten Riblet-Beschichtung und deren Potenzial nun in einem Feldversuch erprobt werden.
Origin | Count |
---|---|
Bund | 974 |
Land | 11 |
Wissenschaft | 2 |
Zivilgesellschaft | 1 |
Type | Count |
---|---|
Förderprogramm | 960 |
Text | 19 |
unbekannt | 8 |
License | Count |
---|---|
geschlossen | 23 |
offen | 962 |
unbekannt | 2 |
Language | Count |
---|---|
Deutsch | 983 |
Englisch | 243 |
Resource type | Count |
---|---|
Archiv | 1 |
Bild | 4 |
Dokument | 5 |
Keine | 474 |
Multimedia | 2 |
Webseite | 508 |
Topic | Count |
---|---|
Boden | 711 |
Lebewesen & Lebensräume | 669 |
Luft | 680 |
Mensch & Umwelt | 987 |
Wasser | 624 |
Weitere | 975 |