This pre-study pilot project will be carried out in Kenya and Tanzania and is part of a more extensive remote sensing project (initiated by the European Space Agency, ESA) aiming to develop a monitoring system for the assessment of land cover change of farmlands, rangelands and forest standings (logging, fires, uncontrolled deforestation, new settlements, etc.) at a national regional level. An integrated approach of remote sensing techniques (both through the use of satellite and ground data), physical vegetation models and ground measurements will be adopted. Operatively, the execution will consist of a 6-month period (pre-study) consisting in a ground campaign along a north-south transect, which is almost unknown to the current vegetation cartography. Based on the field results of the pre-study and within an on-going 30 month period (extended study, see Annexed 3), new classification methods and algorithms will be developed for assessment of land use and cover change using ENVISAT-data. An outcoming of this research will be a system capable to monitor and plan the available agricultural food resources for those developing regions.
Die instationaeren Vorgaenge (Temperaturaenderungen) bei der Trocknung keramischer Gueter in grossen Trocknern wie sie beispielsweise in der Ziegelindustrie eingesetzt werden, wurden durch ein mathematisch-physikalisches Modell simuliert. Diese Modellierung konzentrierte sich auf den eigentlichen Tockner. Erfasst wurde hierbei das Verhalten derartiger Kammern in Verbundbauweise ebenso wie der Einfluss der Speicherwirkung des Erdbodens bzw. der Bodenplatten. Die bisher simulierten Trockner waren aus Fertigbauteilen (Blechkonstruktion mit inwaendig angebrachten Isolierungen) hergestellt.
Der menschliche Einfluss auf großräumige Änderungen des Klimas hat in den letzten Jahrzehnten stark zugenommen, sowohl in Atmosphäre, Ozean und Kryosphäre. Die genauen Eigenschaften physikalischer Prozesse und Mechanismen, die den menschlichen Einfluss von großräumigen auf lokale Skalen übertragen, sind allerdings kaum bekannt. Dies bedeutet eine erhebliche Unsicherheit für die Folgen des Klimawandels in der Zukunft. Das Problem der Übertragung betrifft auch den Gletscherrückgang im Hochgebirge, der überdies ein seltener Indikator für den Klimawandel in der mittleren Troposphäre ist. --- Das vorliegende Projekt hat das Ziel, unser Verständnis des Klimawandels in großer Höhe entscheidend zu verbessern. Das Fundament dafür legt eine neuartige und interdisziplinäre Methodik, mit der wir den menschlichen Anteil am Klimawandel in der großräumigen Klimadynamik, der regionalen Zirkulation über den ausgewählten Gebirgen sowie in der atmosphärischen Grenzschicht der dortigen Gletscher quantifizieren können. Die Verknüpfung prozessauflösender, physikalischer Modelle von globaler bis lokaler Skala sowie außergewöhnliche Messungen auf Gletschern in großer Höhe spannen diese Methodik auf. Sie wird letztlich ermöglichen, den menschlichen Anteil präzise zu erklären und die dafür verantwortlichen Mechanismen ausweisen zu können, inklusive der empfindlichsten Zusammenhänge im multiskaligen System ('Achillesfersen'). --- Der Einfluss des Projekts wird sich deutlich über die Glaziologie hinaus erstrecken. Unser Wissen über das globale Klimasystem wird durch den besser verstandenen Aspekt der Verknüpfung zwischen bodennahen Luftschichten und der mittleren Troposphäre profitieren. Auf regionalen und lokalen Skalen helfen die Ergebnisse für die Abschätzung von Klimafolgen, da Gletscheränderungen Wasserreserven und Naturgefahren beeinflussen. Und schließlich werden die Ergebnisse neue Wege für die Klimafolgenforschung allgemein aufzeigen, indem sie eine prozessauflösende und skalenübergreifende Methodik demonstrieren.
Die Ausdehnung des antarktischen Meereises nahm im Laufe der letzten Jahre zu und steht damit im Gegensatz zur Abnahme in der Arktis. Die Gründe hierfür sind Gegenstand aktueller Forschungsprojekte. Wechselwirkungen mit der Atmosphäre und dem Ozean spielen sicherlich eine wesentliche Rolle, aber auch die dicke und heterogene Schneeauflage des Meereises hat einen große Einfluss auf das Meereis und seine Rolle im globalen Klima und Wettergeschehen. Zugleich erschwert die Schneeauflage flugzeug- und satellitenbasierte Messungen über Meereis, da sie die Oberflächeneigenschaften bestimmt und zu großen Unsicherheiten beiträgt. Entsprechend ist eine bessere Kenntnis der Schneeverteilung auf Meereis dringend erforderlich, um Veränderungen besser verstehen und simulieren zu können. Ziel des Projektes ist es die Menge und Verteilung von Schnee auf antarktischem Meereis sowie dessen physikalische Eigenschaften und deren zeitliche Variabilität zu quantifizieren. Die Entwicklung eines neuen und konsistenten Datenprodukts für Schnee auf antarktischem Meereis steht im Vordergrund des Projektes. Dieses soll die hohe Variabilität über unterschiedliche Größenskalen und Jahreszeiten abbilden. Mithilfe dieses Produktes sind wir dann in der Lage Fernerkundungsalgorithmen und Modellsimulationen zu verbessern und zu validieren. Schließlich wird unser Projekt das Gesamtverständnis der Massenbilanz und Dynamik antarktischen Meereises verbessern, und leistet so einen wichtigen Beitrag für die biologische und geochemische Erforschung des eisbedeckten Südozeans. Um diese Ziele zu erreichen, werden hochaufgelöste Modelle betrieben, die durch Feld- und Fernerkundungsdaten von antarktischem Schnee auf Meereis gestützt und geleitet werden. Im Rahmen einer neuen deutsch-schweizer Zusammenarbeit (D-A-CH Programm) werden die Meereisexpertisen aus Feldmessungen und Fernerkundung der deutschen Partner mit der Schneeexpertise aus Feldmessungen und Modellierung der Schweizer Partner kombiniert. Die Projektpartner verfügen über detaillierte Schneemessungen mehrerer erfolgreicher Feldkampagnen auf antarktischem Meereis, die durch autonome Messungen ergänzt werden. Daten der Satelliten AMSR-2, SMOS und CryoSat-2 sind verfügbar und werden genutzt, um neue Algorithmen für die Bestimmung von Schneeeigenschaften auf Meereis zu entwickeln. Diese Algorithmen und daraus resultierende Datensätze werden durch Beobachtungen validiert und verbessert. Durch die Kopplung der numerischen Schneemodelle SNOWPACK und MEMLS werden Schneedicke, -temperatur, -dichte und Mikrowellenemissivität simuliert. Das Projekt ist darauf ausgelegt drei junge Wissenschaftler für Ihre Arbeit in der Meereisforschung zu finanzieren. Zwei erfahrene Post-Doktoranden sind vorgesehen. Beide haben bereits ähnliche Methoden und Datensätze im Rahmen ihren Doktorarbeiten bearbeitet. Ein Doktorand wird dieses Projekt zur Promotion nutzen.
Ziele: 1. Bestimmung effektiver Transportparameter wie Dispersion und hydraulische Leitfaehigkeit aus kleinskaligeren Modellen. 2. Identifikation charakteristischer Parameter zur Beschreibung von Adsorption und Desorption loeslicher Substanzen am bzw. vom Sediment. 3. Rekonstruktion von Fliesswegen und Transportgroessen aus geophysikalischen Messungen. 4. Analyse der Transportprozesse in Batch- und Saeulenversuchen (im Labor) und im Feldmassstab (Versuchsgelaende mit 72 Grundwassermessstellen). 5. Entwicklung von Softwarepaketen zur Simulation des Verhaltens von Schadstoffen in Grundwasserleitern, die sowohl fuer UNIX Umgebungen als auch fuer die Parallelrechner des Forschungszentrums verfuegbar sind. Auf Grund ihrer komplementaeren Eigenschaften kommen hierbei sowohl 'Finite Elemente (FE)' als auch 'Partide-Tracking' zum Einsatz.
Neben der thermischen Schichtung bestimmt wesentlich der Turbulenzzustand eine Vielzahl der in der bodennahen Windgrenzschicht ablaufenden Strömungs- und Transportprozesse. Das vom Menschen wahrnehmbare Mikroklima, Windlasten oder z.B. die Windenergiegewinnung werden substanziell von Turbulenzphänomenen im bodennahen Wind beeinflusst. In der durch Orographie, Bebauung und Bewuchs unmittelbar beeinflussten bodennahen Windgrenzschicht ist die Dynamik des Windes hochkomplex und deshalb auch heute noch Gegenstand der Forschung. Turbulenzphänomene im bodennahen Wind können prinzipiell mit Hilfe von Naturmessungen oder mit Hilfe numerischer oder physikalischer Modelle untersucht werden. Die Repräsentativität und Verallgemeinerbarkeit von Naturversuchen zur Turbulenzcharakterisierung wird allerdings durch die begrenzte 'räumliche Auflösung' bzw. Datendichte und die ständig wechselnden, in der Regel nicht vollständig dokumentierbaren Strömungsrandbedingungen limitiert. Die an einem Standort erhobenen Naturdaten können nicht ohne vereinfachende Annahmen verallgemeinert und nur bedingt auf andere orographische Verhältnisse übertragen werden. Auch bei der mathematisch numerischen Modellierung kleinskaliger turbulenter Strömungs- und Transportprozesse wird auf eine Reihe vereinfachender Annahmen zurückgegriffen. Dennoch kann mit Hilfe partiell wirbelauflösender LES-Modelle ein deutlich besserer Einblick in die Dynamik des bodennahen Windes sowie die Wirkung der Turbulenz auf den bodennahen Stoff- und Impulstransport gewonnen werden. Voraussetzung ist, dass die für die entsprechende Modellanwendung ausreichende Güte der Simulationsergebnisse durch eine anwendungsbezogene, systematische und vollständige Modellvalidierung nachgewiesen wird. Im Projekt wird der Einfluss orographischer Strukturen auf die Turbulenzcharakteristik und Dynamik des bodennahen Windes erstmals systematisch mit Hilfe von Laborversuchen im Grenzschichtwindkanal untersucht und analysiert. Die bodennahe Windturbulenz in Raum und Zeit hinreichend auflösende Simulationen werden mit zeitgemäßer Messtechnik untersucht, um systematische Informationen zu turbulenten Impulsflüssen, Druck-Strömungs-Korrelationen und zum turbulenten Stofftransport in Abhängigkeit von der überströmten Orographie zu gewinnen und entsprechende Kausalzusammenhänge abzuleiten. Gleichzeitig werden für die systematische Validierung wirbelauflösender numerischer Modelle geeignete Referenzdatensätze mit bekannter und dokumentierter Datenqualität erzeugt. Das Projekt legt den Grundstein für einen systematischen Datenfundus, der bisher nicht existiert. Die experimentellen Daten werden noch während der Projektumsetzung in aufbereiteter, qualitätsgesicherter und dokumentierter Form potenziellen Nutzern in einer Referenzdatenbank im Internet zur Verfügung gestellt.
Im Rahmen dieses Vorhabens sollen die Wechselwirkungen zwischen ökonomischen Marktgleichgewichten und physischer Energiebereitstellung in sektorgekoppelten Energiesystemen unter Berücksichtigung von Nachhaltigkeits- und Resilienzanforderungen analysiert werden. In diesem Zusammenhang wird der bestehende ganzheitliche Modellierungsrahmen, der in den vorangegangenen BMWI-geförderten Projekten TransiEnt.EE und ResiliEntEE zur Untersuchung der technischen Herausforderungen (d.h. Systemdynamik und -stabilität) entwickelt wurde, weiterentwickelt, um Aspekte der Markt- und Betriebsoptimierung sowie physikalische Modelle leistungselektronisch gekoppelter Anlagen einzubeziehen. Vor diesem Hintergrund werden die Auswirkungen verschiedener marktbasierter Anreizsysteme für die Bereitstellung von Flexibilität auf das Verhalten der relevanten Marktakteure im Hinblick auf einen resilienten Betrieb sektorgekoppelter Energiesysteme untersucht. Darüber hinaus konzentriert sich dieses Vorhaben auf die Entwicklung von Modellen und Methoden zur Optimierung des Echtzeitbetriebs von sektorgekoppelten Energiesystemen unter Berücksichtigung von Resilienz, Effizienz und Nachhaltigkeit, wobei ein spezieller Fokus auf der Untersuchung der Auswirkungen der Verwendung verschiedener Ansätze zur Optimierung bei mehrfacher Zielsetzung auf die resultierenden Lösungen liegt. Ein simulationsbasierter Demonstrator wird entwickelt, um das geplante Konzept zu evaluieren.
Im Rahmen dieses Vorhabens sollen die Wechselwirkungen zwischen ökonomischen Marktgleichgewichten und physischer Energiebereitstellung in sektorgekoppelten Energiesystemen unter Berücksichtigung von Nachhaltigkeits- und Resilienzanforderungen analysiert werden. In diesem Zusammenhang wird der bestehende ganzheitliche Modellierungsrahmen, der in den vorangegangenen BMWI-geförderten Projekten TransiEnt.EE und ResiliEntEE zur Untersuchung der technischen Herausforderungen (d.h. Systemdynamik und -stabilität) entwickelt wurde, weiterentwickelt, um Aspekte der Markt- und Betriebsoptimierung sowie physikalische Modelle leistungselektronisch gekoppelter Anlagen einzubeziehen. Vor diesem Hintergrund werden die Auswirkungen verschiedener marktbasierter Anreizsysteme für die Bereitstellung von Flexibilität auf das Verhalten der relevanten Marktakteure im Hinblick auf einen resilienten Betrieb sektorgekoppelter Energiesysteme untersucht. Darüber hinaus konzentriert sich dieses Vorhaben auf die Entwicklung von Modellen und Methoden zur Optimierung des Echtzeitbetriebs von sektorgekoppelten Energiesystemen unter Berücksichtigung von Resilienz, Effizienz und Nachhaltigkeit, wobei ein spezieller Fokus auf der Untersuchung der Auswirkungen der Verwendung verschiedener Ansätze zur Optimierung bei mehrfacher Zielsetzung auf die resultierenden Lösungen liegt. Ein simulationsbasierter Demonstrator wird entwickelt, um das geplante Konzept zu evaluieren.
Origin | Count |
---|---|
Bund | 520 |
Land | 3 |
Wissenschaft | 21 |
Type | Count |
---|---|
Förderprogramm | 518 |
unbekannt | 26 |
License | Count |
---|---|
geschlossen | 3 |
offen | 524 |
unbekannt | 17 |
Language | Count |
---|---|
Deutsch | 431 |
Englisch | 184 |
Resource type | Count |
---|---|
Archiv | 2 |
Datei | 1 |
Keine | 342 |
Unbekannt | 1 |
Webseite | 199 |
Topic | Count |
---|---|
Boden | 352 |
Lebewesen und Lebensräume | 312 |
Luft | 319 |
Mensch und Umwelt | 544 |
Wasser | 314 |
Weitere | 536 |