Kohäsive Feinpartikel sind potentielle Träger von anorganischen und organischen Schadstoffen und spielen eine entscheidende Rolle beim Stoffaustausch zwischen Wasserkörper, Schwebstoff und Sediment. Daher ist die Kenntnis der Depositionsdynamik dieser Feinpartikel ein wichtiger Baustein für ein effizientes Sedimentmanagement und eine physikalisch basierte Modellierung des Schadstofftransfers in Fließgewässern. Es überrascht jedoch, dass sich Untersuchungen zum Transport- und Sedimentationsverhalten kohäsiver Partikel bisher häufig auf definierte stationäre Randbedingungen im Labormaßstab und Trockenwetterbedingungen im Gelände konzentrieren. Weitgehend ungeklärt ist hingegen das Verhalten von Feinpartikeln und deren Speicherung im Gerinnebett während der dynamischen Phase von Hochwasserereignissen. Um die im Gerinne ablaufenden Prozesse weitgehend unabhängig von den Einzugsgebietsprozessen zu untersuchen hat sich in unserer Arbeitsgruppe seit nunmehr über 10 Jahren ein Ansatz mit künstlich generierten Hochwasserwellen bewährt. Es ist ein genereller Vorteil von solchen Geländeexperimenten, dass einzelne steuernde Größen ausgeschlossen oder gezielt kontrolliert werden können. Außerdem ist ein solcher Ansatz eine Voraussetzung, um die Aussagekraft experimentell gewonnener Laborergebnisse zur potentiell hohen Feinpartikel-Retention in Sand- und Kiessedimenten in einem natürlichen System zu validieren. Das übergeordnete Ziel des hier beantragten Projekts ist es, die Gerinnespeicherung kohäsiver Feinpartikel in einem natürlichen System bei variierenden hydrologisch-hydraulischen Randbedingungen zu quantifizieren. Zu diesem Zweck werden standardisierte Feinpartikeltracer (Kaolinit, d50 = 2ìm, ñ = 2,6 g/cm3) sowohl im Verlauf von künstlich generierten Hochwasserwellen als auch während stationärer Trockenwetterbedingungen in einen Mittelgebirgsbach induziert. Die Retention und Sedimentation der eingegebenen Feinpartikel wird gezielt in kleinräumig variierenden Flussbettstrukturen (Hyporheische Zone, Stillwasserzonen, Gerinnerandbereiche, Riffle-Pool-Sequenzen) und für einzelne Gerinneabschnitte erfasst. Die Quantifizierung der Speicherung erfolgt mit bereits erprobten Resuspensionstechniken und Sedimentfallen sowie einer in Pilotprojekten erfolgreich getesteten Tracerfrachtberechnung mittels FTIR-DRIFT Spektroskopie an mehreren Basismessstationen im Längsprofil. In einem interdisziplinären Forscherverbund mit Kollegen des 'Hydraulics Laboratory' und des 'Dept. of Civil Engineering' der Universität Gent, der 'Ecosystem Management Research Group, Dept. of Biology' der Universität Antwerpen und des 'Dept. of Hydrology and Hydraulic Engineering' der Freien Universität Brüssel in Belgien wird darüber hinaus die Transport- und Speicherdynamik der Feinpartikel mit der neuen, FORTRAN basierten Modellierungssoftware 'FEMME' ('Flexible Environment for Mathematically Modelling the Environment') abgebildet.
This pre-study pilot project will be carried out in Kenya and Tanzania and is part of a more extensive remote sensing project (initiated by the European Space Agency, ESA) aiming to develop a monitoring system for the assessment of land cover change of farmlands, rangelands and forest standings (logging, fires, uncontrolled deforestation, new settlements, etc.) at a national regional level. An integrated approach of remote sensing techniques (both through the use of satellite and ground data), physical vegetation models and ground measurements will be adopted. Operatively, the execution will consist of a 6-month period (pre-study) consisting in a ground campaign along a north-south transect, which is almost unknown to the current vegetation cartography. Based on the field results of the pre-study and within an on-going 30 month period (extended study, see Annexed 3), new classification methods and algorithms will be developed for assessment of land use and cover change using ENVISAT-data. An outcoming of this research will be a system capable to monitor and plan the available agricultural food resources for those developing regions.
Die instationaeren Vorgaenge (Temperaturaenderungen) bei der Trocknung keramischer Gueter in grossen Trocknern wie sie beispielsweise in der Ziegelindustrie eingesetzt werden, wurden durch ein mathematisch-physikalisches Modell simuliert. Diese Modellierung konzentrierte sich auf den eigentlichen Tockner. Erfasst wurde hierbei das Verhalten derartiger Kammern in Verbundbauweise ebenso wie der Einfluss der Speicherwirkung des Erdbodens bzw. der Bodenplatten. Die bisher simulierten Trockner waren aus Fertigbauteilen (Blechkonstruktion mit inwaendig angebrachten Isolierungen) hergestellt.
Der menschliche Einfluss auf großräumige Änderungen des Klimas hat in den letzten Jahrzehnten stark zugenommen, sowohl in Atmosphäre, Ozean und Kryosphäre. Die genauen Eigenschaften physikalischer Prozesse und Mechanismen, die den menschlichen Einfluss von großräumigen auf lokale Skalen übertragen, sind allerdings kaum bekannt. Dies bedeutet eine erhebliche Unsicherheit für die Folgen des Klimawandels in der Zukunft. Das Problem der Übertragung betrifft auch den Gletscherrückgang im Hochgebirge, der überdies ein seltener Indikator für den Klimawandel in der mittleren Troposphäre ist. --- Das vorliegende Projekt hat das Ziel, unser Verständnis des Klimawandels in großer Höhe entscheidend zu verbessern. Das Fundament dafür legt eine neuartige und interdisziplinäre Methodik, mit der wir den menschlichen Anteil am Klimawandel in der großräumigen Klimadynamik, der regionalen Zirkulation über den ausgewählten Gebirgen sowie in der atmosphärischen Grenzschicht der dortigen Gletscher quantifizieren können. Die Verknüpfung prozessauflösender, physikalischer Modelle von globaler bis lokaler Skala sowie außergewöhnliche Messungen auf Gletschern in großer Höhe spannen diese Methodik auf. Sie wird letztlich ermöglichen, den menschlichen Anteil präzise zu erklären und die dafür verantwortlichen Mechanismen ausweisen zu können, inklusive der empfindlichsten Zusammenhänge im multiskaligen System ('Achillesfersen'). --- Der Einfluss des Projekts wird sich deutlich über die Glaziologie hinaus erstrecken. Unser Wissen über das globale Klimasystem wird durch den besser verstandenen Aspekt der Verknüpfung zwischen bodennahen Luftschichten und der mittleren Troposphäre profitieren. Auf regionalen und lokalen Skalen helfen die Ergebnisse für die Abschätzung von Klimafolgen, da Gletscheränderungen Wasserreserven und Naturgefahren beeinflussen. Und schließlich werden die Ergebnisse neue Wege für die Klimafolgenforschung allgemein aufzeigen, indem sie eine prozessauflösende und skalenübergreifende Methodik demonstrieren.
Ziele: 1. Bestimmung effektiver Transportparameter wie Dispersion und hydraulische Leitfaehigkeit aus kleinskaligeren Modellen. 2. Identifikation charakteristischer Parameter zur Beschreibung von Adsorption und Desorption loeslicher Substanzen am bzw. vom Sediment. 3. Rekonstruktion von Fliesswegen und Transportgroessen aus geophysikalischen Messungen. 4. Analyse der Transportprozesse in Batch- und Saeulenversuchen (im Labor) und im Feldmassstab (Versuchsgelaende mit 72 Grundwassermessstellen). 5. Entwicklung von Softwarepaketen zur Simulation des Verhaltens von Schadstoffen in Grundwasserleitern, die sowohl fuer UNIX Umgebungen als auch fuer die Parallelrechner des Forschungszentrums verfuegbar sind. Auf Grund ihrer komplementaeren Eigenschaften kommen hierbei sowohl 'Finite Elemente (FE)' als auch 'Partide-Tracking' zum Einsatz.
1
2
3
4
5
…
53
54
55