Nach Anlage 4 OGewV sind für die Bewertung des ökologischen Zustands vier biologische Komponenten heranzuziehen: hier Bewertung Phytoplankton
Coccolithophoriden sind eine Gruppe von ca. 200-300 marinen Phytoplanktonarten, die in allen Weltmeeren vorkommt. Sie besitzen die besondere Fähigkeit eine Kalkschale (Coccosphäre) zu bauen, die sie aus vielen kleinen Kalkplättchen (Coccolithen) zusammensetzen. Aufgrund ihrer Fähigkeit zu kalzifizieren sind sie ein wichtiger Bestandteil im Klimasystem, denn die Produktion von Kalk nahe der Meeresoberfläche führt zu einem vertikalen Gradienten der Seewasseralkalinität, beschleunigt den Kohlenstoffexport in die Tiefsee und erhöht die Rückstrahlung von einfallender Sonnenenergie von der Erdoberfläche ins Weltall. Trotz intensiver Forschung an der Physiologie der Kalzifizierung und dessen biogeochemischer Relevanz konnten wir eine der entscheidenden Fragen immer noch nicht beantworten: Wozu bauen Coccolithophoriden eine Kalkschale? Die Beantwortung dieser Frage ist von außerordentlicher Bedeutung, denn solange wir nicht wissen wozu die Kalkschale dient können wir auch nicht vorraussagen in welchem Maße sich die durch die Ozeanversauerung zu erwartende Abnhame in der Kalzifizierung negativ auf die Fitness dieser Lebewesen in ihrem natürlichen Lebensraum auswirkt. In dem hier vorgestellten Projekt möchten wir die Frage nach der Bedeutung der Kalzifizierung erforschen, indem wir untersuchen ob die Coccosphäre einen Schutz gegen planktonische Räuber, Bakterien und Viren darstellt. Dazu haben wir eigens einen experimentellen Ansatz entwickelt wobei kalzifizierte und dekalzifizierte Coccolithophoridentzellen zusammen mit deren Fressfeinden und Pathogenen kultiviert werden. Dieser Ansatz erlaubt es uns folgende Fragestellungen zu untersuchen: 1) Sind kalzifizierte Zellen besser in der Lage sich gegen Fraß und Infektion zu schützen als Zellen ohne Coccosphäre? 2) Bevorzugen Fressfeinde und Pathogene solche Zellen, bei denen die Coccosphäre entfernt wurde, wenn ihnen beides angeboten wird? 3) Sind Wachstum und Reproduktion von Fressfeinden und Pathogenen verlangsamt, wenn sie kalzifizierte Zellen fressen oder infizieren?
Die Wasserrahmenrichtlinie (WRRL) fordert den umfassenden Schutz des oberirdischen und unterirdischen Wassers. Die zehn Flussgebietsgemeinschaften Deutschlands stellen dazu alle sechs Jahre Bewirtschaftungspläne und Maßnahmenprogramme auf. Das Umweltbundesamt und das Bundesumweltministerium haben diese Berichte für Deutschland ausgewertet und stellen die Ergebnisse in dieser Anwendung vor.
Makronährstoffe, wie Phosphor, sind wichtig für das Wachstum von Meeresmikroorganismen, wie Phytoplankton. Diese sind sehr bedeutsam für die marine Nährstoffkette und Biologie. Verschiedene Phytoplanktonarten emittieren klimarelvante organische Verbindungen, z.B. DMS, welches in der Atmosphäre zu Schwefelsäure oxidiert wird und anschließend zur Bildung neuer Aerosolpartikel beiträgt. Diese können weiterhin als potentielle Wolkenkondensaktionskeime dienen. Informationen über die Verfügbarkeit von Phosphor für diese Mikroorganismen sind somit essentiell für ein besseres Verständnis der Ozean-Atmosphären-Wechselwirkung. Der Haupteintrag von Phosphor in den offenen Ozean erfolgt vorwiegend über atmosphärische Deposition. Informationen über atmosphärische Phosphorkonzentrationen, die Bioverfügbarkeit und Quellen sind notwendig, um den Verbleib in den Ozeanen zu verstehen. Dabei werden vor allem in den Regionen des tropischen Nord- und Südost-Atlantik immer noch Daten benötigt. Die wenigen verfügbaren Daten basieren zumeist auf kurzzeitigen Schiffsmessungen, die in ihrer Anwendung auf langfristige Prognosen und jahreszeitlichen Zyklen sehr begrenzt sind. Um das Verständnis über die Phosphorverfügbarkeit, -quellen, und -bioverfügbarkeit in diesen ozeanischen Gebieten zu verbessern, sollen größenaufgelöste Langzeitmessungen zur Bestimmung des Phosphorgehalts von Aerosolpartikeln durchgeführt werden. Weiterhin werden analytische Methoden entwickelt und optimiert (basierend auf der Kombination von drei Techniken). Diese sollen eine empfindliche Bestimmung von löslichem als auch dem Gesamtphosphor in feinen Partikeln ermöglichen, aufgrund der geringen Aerosolmasse in dieser Größenfraktion. Die ermittelten Daten werden benutzt, um wichtige Quellen des Phosphors in diesen Regionen zu charakterisieren, die Rolle von unterschiedlichen Quellen wie Mineralstaub, Biomassenverbrennung, sowie anthropogenen Verbrennungsaerosols auf die Speziation (organische und anorganische Zusammensetzung), Löslichkeit und atmosphärische Prozessierung des Phosphors, sowie ihre saisonale Variabilität zu untersuchen. Darüber hinaus soll eine regionale Staubmodellsimulation angewendet werden, um den Aerosoltransport und die Staupdeposition in diesen Regionen besser zu beschreiben. Die Ergebnisse sind wichtig für kombinierte Modelle zur Ozean-Atmosphäre Wechselwirkung und das Verständnis der wichtigsten Faktoren, die den Verbleib von atmosphärischem Phosphor im Ozean beeinflussen.
Marine Ökosysteme sowie das Sediment am Meeresboden binden auf natürliche Weise Kohlenstoff aus der Atmosphäre und fungieren als CO2-Senken und -Speicher. Die Mechanismen, die dieser Speicherung zugrunde liegen, sind bisher wenig untersucht. Somit muss das Grundverständnis, dass Meeresschutz auch Klimaschutz ist, in den nächsten Jahren fachlich detailliert untermauert werden. Die pelagischen Habitate haben dabei eine Schlüsselrolle im globalen Kohlenstoffkreislauf. Sie bilden die Grundlage des Nahrungsnetzes und unterstützen damit alle höheren trophischen Ebenen bei der Bindung von Kohlenstoff. Das Verständnis der komplexen im Pelagial ablaufenden Prozesse steht in der Nordsee erst am Anfang. Es gilt daher, die Rolle pelagischer Habitate bei Umsetzung, Bindung und Transports von Kohlenstoff in die Tiefe zur langfristigen Speicherung besser zu verstehen, um letztendlich die Meeresschutzmaßnahmen so auszurichten, dass die pelagischen Habitate diese Rolle optimal erfüllen können. Um den Zustand pelagischer Habitate zu bewerten und deren Rolle im natürlichen Klimaschutz einzuschätzen, sind Monitoringdaten sowie adäquate Indikatoren essentiell. Die Monitoringdaten müssen in hoher Frequenz gewonnen werden, da das Plankton schnellen saisonalen Veränderungen unterliegt. Für die deutschen Nordseegewässer liegt ein erster innovativer Monitoringkonzept vor, das noch weiter erprobt werden muss und sich an den bereits bei OSPAR etablierten Indikatoren für die Bewertung von pelagischen Habitaten wie auch deren Funktion im Kohlenstoffkreislauf orientiert. Übergeordnetes Ziel des Projektes ist die Ausarbeitung einer adäquaten und kostengünstigen Monitoringstrategie, die in-situ Probenahmen sinnvoll mit innovativen Monitoringmethoden wie automatischen Samplern, Satelliten- und FerryBoxdaten, DNA-Analyse sowie Bildaufnamen kombiniert und so die Beurteilung der Rolle von pelagischen Habitaten im Zusammenhang mit der Eutrophierung im natürlichen Klimaschutz ermöglicht. Das Monitoringkonzept muss dabei kostengünstig sein, zeitgleich aber eine zuverlässige und raumzeitlich hinreichende Erfassung des Artenspektrums des Phyto- und Zooplanktons gewährleisten. Im Rahmen des Vorhabens sollen einerseits herkömmliche Methoden zur Erfassung der Phyto- und Zooplanktongemeinschaften zur Anwendung kommen, welche praktische Probenahmen auf See sowie die mikroskopische Analyse der genommenen Proben umfassen. Die Probenahmen werden dabei auf BSH-Schiffen im Rahmen des chemischen Monitorings des BSH durchgeführt. Die Auswertung der Proben wird an spezialisierte Labore vergeben. Außerdem sollen unterschiedliche innovative Methoden getestet und bewertet werden. Für das Metabarcoding wird ebenfalls die o.g. Probenahme auf See benötigt. Bei den anderen Methoden wird auf Daten Dritter bzw. Kooperationen mit anderen Instituten zurückgegriffen. Eine Literaturrecherche soll dabei helfen, die erhaltenen Ergebnisse im Kontext anderer Untersuchungen zu Auswirkung des Klimawandels auf das Pelagial einzuordnen.
Übergreifendes Ziel des Vorhabens ist es, die Rolle der Turbulenz für die Populationsdynamik des Phytoplanktons in marinen Systemen zu untersuchen. Im Zentrum des Projektes steht die zu überprüfende Hypothese, dass Ausprägung und Sukzession morphofunktionaler Lebensformen im Phytoplankton nicht ausschließlich Ausdruck unterschiedlicher Nährstoff-, Licht- und Temperaturregime im Milieu sind, sondern im entscheidenden Maße von direkten Turbulenzeffekten abhängen, die unmittelbar das Wachstum einzelner Arten regulieren und mit den anderen Steuerfaktoren interagieren. Im vorliegenden Projekt werden Auswirkungen unterschiedlicher kleinskaliger Turbulenzintensitäten auf die Phytoplanktonzuammensetzung im Feld, in Mesokosmen und Laborexperimenten untersucht und das Wachstum dominanter Arten auf seine Turbulenzsensitivität hin getestet. Eine praktische Herausforderung hierbei ist darüber hinaus die Beantwortung der Frage, wie zuverlässig und reproduzierbar Turbulenzintensitäten im experimentellen Modellsystemen erzeugt werden können.
Wellen- und tidebeeinflusste sandige Strände machen einen Großteil der weltweiten Küstenlinie aus und spielen eine wichtige Rolle für Kohlenstoff-, Nährstoff- und Metallkreisläufe. Während Flut strömt Meerwasser in den Sedimentkörper, ebenso wird organisches Material eingetragen. Im Sediment wird dieses von Mikroorganismen abgebaut, sodass bei Ebbe an Nährstoffen angereichertes Wasser zurück in den Küstenozean strömt, wo die rezirkulierten Nährstoffe zur Primärproduktion genutzt werden. Durch mikrobielle Abbauprozesse entwickeln sich Redoxgradienten, die den Porenwasser-Chemismus prägen. Strände können sich außerdem in einer Mischzone zwischen süßem Grundwasser und Salzwasser befinden (subterranes Ästuar), sodass Salinitätsgradienten die Sediment-Porenwasser-Interaktion beeinflussen. Süßwasser ist zudem eine Quelle für terrestrische gelöste Stoffe. Um die globale Rolle von Strandsystemen in Bezug auf Kohlenstoff-, Nährstoff- und Metallzyklen verstehen zu können, ist es notwendig, biogeochemische Prozesse in Strandsedimenten detailliert und an verschiedenen Stränden weltweit zu untersuchen. Da in diesem Forschungsbereich nur wenige Studien existieren und insbesondere die Quellen- oder Senkenfunktion dieser Systeme bezüglich redoxsensitiver Metalle noch weitgehend unbekannt ist, wird dieses Projekt einen wichtigen Beitrag zur Aufklärung der Metallzyklen in solchen Systemen liefern. Wir planen, biogeochemische Prozesse in den subterranen Ästuaren von zwei kontrastierenden Strandsystemen auf den Inseln Spiekeroog (NW Deutschland, mesotidal, siliziklastisch) und Mallorca (Spanien, mikrotidal, carbonatisch) zu untersuchen. Es sollen Hauptionen, DOC, O2, H2S, Nährstoffe (N, P, C, Si) und Spurenmetalle (Mn, Fe, U, Mo, V, Re) sowie Fe-Isotopenverhältnisse im Strandporenwasser analysiert werden. Wir planen ebenfalls die Sedimentzusammensetzung zu charakterisieren, da diese die Porenwasserzusammensetzung maßgeblich beeinflusst. An beiden Standorten sollen Transekte zwischen Düne und Niedrigwasserlinie bis in 5 m (Spiekeroog) bzw. 2 m (Mallorca) Tiefe hochaufgelöst beprobt werden. Der Fokus des Projekts liegt darin, Redox- und Salinitätsgradienten zu identifizieren sowie deren Auswirkungen auf die Porenwasserzusammensetzung zu interpretieren. Hydrochemische Modellierung anhand der erhobenen Daten soll zu einem besseren Verständnis der Effekte der Mischung von Grundwässern unterschiedlicher Zusammensetzung beitragen. Es sollen quantitative Aussagen zur Quellen- oder Senkenfunktion der Strände bezüglich essentieller Nährstoffe und redoxsensitiver Metalle erarbeitet werden. Fe-Isotopenverhältnisse dienen dazu, das limitierte Wissen über den Fe-Kreislauf in subterranen Ästuaren zu erweitern und die Fe-Isotopensignatur des Porenwasserflusses aus diesen Systemen besser zu definieren. Weiterhin wird diese Studie eine solide Datenbasis für die Modellierung des Porenwasser-Austroms von einzelnen Elementspezies aus permeablen Sedimenten in den Küstenozean liefern.
Derzeit wird das Phytoplankton an 78 Wasserkörpern untersucht. Für die WRRL werden fünf Wasserkörper in der überblicksweisen Überwachung und 67 Wasserkörper im operativen Messnetz anhand des Phytoplanktons untersucht. Weiterhin sind sechs nicht berichtspflichtige Seen kleiner 50 ha im regelmäßigen Monitoring, darunter in SH besonders seltene und schützenswerte Seetypen, wie die karbonatarmen Weichwasserseen sowie Seen, die ökologisch noch weitgehend intakt sind.
Gesamt- und Einzelbewertung der Ostseeküstengewässer Deutschlands gemäß Wasserrahmenrichtlinie. Es werden Qualitätskomponenten Phytoplankton (QE1_1), Großalgen und Angiospermen (QE1_2) und Makroinvertebraten (QE1_3) sowie der ökologische und chemische Gesamtzustand der Küstengewässer bis zur Hoheitsgrenze auf dem 10x10 km Grid der Europäischen Umweltagentur dargestellt. >50%-Ansatz: Rasterzellen die ganz oder auch nur zum Teil Meeresgewässer beinhalten, bekommen den Wert, der von mehr als 50% der entsprechenden Meeresfläche des zu bewertenden Attributes eingenommen wird.
Gesamt- und Einzelbewertung der Nordseeküstengewässer Deutschlands gemäß Wasserrahmenrichtlinie. Es werden Qualitätskomponenten Phytoplankton (QE1_1), Großalgen und Angiospermen (QE1_2) und Makroinvertebraten (QE1_3) sowie der ökologische und chemische Gesamtzustand der Küstengewässer bis zur Hoheitsgrenze auf dem 10x10 km Grid der Europäischen Umweltagentur dargestellt. >50%-Ansatz: Rasterzellen die ganz oder auch nur zum Teil Meeresgewässer beinhalten, bekommen den Wert, der von mehr als 50% der entsprechenden Meeresfläche des zu bewertenden Attributes eingenommen wird.
Origin | Count |
---|---|
Bund | 641 |
Europa | 1 |
Land | 160 |
Wissenschaft | 145 |
Type | Count |
---|---|
Ereignis | 1 |
Förderprogramm | 540 |
Kartendienst | 2 |
Messwerte | 76 |
Software | 4 |
Strukturierter Datensatz | 115 |
Taxon | 10 |
Text | 78 |
unbekannt | 102 |
License | Count |
---|---|
geschlossen | 113 |
offen | 692 |
unbekannt | 37 |
Language | Count |
---|---|
Deutsch | 609 |
Englisch | 313 |
Resource type | Count |
---|---|
Archiv | 38 |
Bild | 17 |
Datei | 96 |
Dokument | 65 |
Keine | 477 |
Unbekannt | 13 |
Webdienst | 8 |
Webseite | 206 |
Topic | Count |
---|---|
Boden | 547 |
Lebewesen & Lebensräume | 842 |
Luft | 456 |
Mensch & Umwelt | 829 |
Wasser | 773 |
Weitere | 796 |