Pflanzen passen sich an räumliche und zeitliche Fluktuationen von Nährstoffen im Boden durch das "Sensing" von Nährstoffen und Veränderungen in der Wurzelarchitektur an. Solche morphologischen Anpassungen ermöglichen es, verfügbare Nährstoffe im Boden effizienter zu erschließen. Wenn Pflanzen unter leichtem bzw. mildem Mangel an Stickstoff (N) wachsen, erhöhen sie die Länge von Primär- und Seitenwurzeln. Diese Reaktion birgt Potential zur Verbesserung der N-Effizienz, weil sich das Bodenvolumen vergrößert, aus dem limitierende Nährstoffe aufgenommen werden. In unseren Vorarbeiten haben wir in natürlichen Akzessionen der Modellpflanze Arabidopsis allelische Variation in Genen der Brassinosteroid- und Auxinbiosynthese bzw.-Signaltransduktion (YUC8, BSK3) gefunden, die die Wurzelverlängerung unter mildem N-Mangel verändern. Das finale Ziel dieses 6-jährigen Projekts ist es, die hormonelle Regulation der Wurzelverlängerung unter N-Mangel aufzuklären und diese Kenntnis zu nutzen, um in Gerstenwurzeln die Wurzelentwicklung unter N-Mangel und damit die N-Aufnahmeeffizienz zu verbessern. Ziele der ersten 3 Jahre sind: i) in Arabidopsis die Rolle der YUC8-abhängigen Auxinbiosynthese und ihre Beziehung zu Brassinosteroiden in der Wurzelverlängerung unter leichtem N-Mangel aufzuklären und ii) in einem translationalen Ansatz in Gerste den Beitrag der allelischen Variation von Genen der Brassinosteroid- bzw. Auxinbiosynthese oder Signaltransduktion zur Wurzelstreckung zu untersuchen und zu modulieren. Zunächst werden in Arabidopsis die molekularen Mechanismen hinter den identifizierten allelischen Variationen im YUC8-Gen sowie seine Rolle in der Regulation der Wurzelverlängerung bestimmt. Dabei wird die Wurzelantwort auf milden N-Mangel in yuc-Mutanten und YUC8-komplementierten Linien charakterisiert. Diese und weitere Mutanten- und Reporterlinien werden auch eingesetzt, um die Beziehung zwischen Brassinosteroiden und Auxin in der transkriptionellen Regulation der Wurzelantwort auf milden N-Mangel aufzuklären. In einem translationalen Ansatz wird in Gerste das "schwache" BSK3-Allel durch das "starke" BSK3-Allel aus Arabidopsis ersetzt, da alle bisher untersuchen Gerstenakzessionen nur ein "schwaches" BSK3-Allel tragen. In einem Schritt wird die Cas Endonuklease-vermittelte Deletion des schwachen BSK3-Endogens mit der Komplementation durch das starke Transgen kombiniert. In einem RNA-Sequenzierungsansatz werden N-Mangel-regulierte Gene in Gerstenwurzeln identifiziert, um Kandidatengene auszuwählen, die zur CRISPR-Cas-vermittelten Gendeletion und zur Überexpression mithilfe eines wurzelspezifischen Promoters eingesetzt werden. Alle transgene Linien werden anschliessend hinsichtlich der Veränderung ihrer Wurzelarchitektur unter N-Mangel phänotypisiert.
Die CO2 - Aufnahme höherer Pflanzen erfolgt diffusiv über kleine Öffnungen der Blattoberfläche, die Stomata. Gleichzeitig geht auf demselben Weg Wasserdampf verloren, angetrieben vom atmosphärischen Sättigungsdefizit (VPD). Die Flüsse beider Gase werden durch die stomatäre Öffnungsweite bestimmt. Seit mehreren Jahrzehnten ist daher die wechselseitige Skalierung der Flüsse von Wasserdampf und CO2 ein zentraler Teil aller wichtigen Gaswechsel-Modelle - erkennbar am Faktor 1.6, dem Verhältnis der Diffusionskonstanten. Allerdings wird die Gültigkeit dieser Annahme in Frage gestellt, wenn sich Feinstaubablagerungen auf den Blättern befinden. Hygroskopische Feinstaubbestandtteile lösen sich in der feuchten Blattgrenzschicht auf, kriechen als dünne Filme in die substomatäre Höhle und verbinden sich dort mit apoplastischem Wasser. Durch diese „hydraulische Aktivierung der Stomata“ (HAS) transportieren die Stomata sowohl flüssiges als auch gasförmiges Wasser vom Blattinneren in die Atmosphäre. Wir konnten zeigen, dass bereits moderate Luftverschmutzung die stomatäre Transpiration bei Tag, die minimale Leitfähigkeit bei Nacht, sowie das Verhältnis zwischen Transpiration und Blattöffnungsweite signifikant beeinflusste. Diese Effekte werden durch den klimawandelbedingten Anstieg von VPD noch verstärkt: Wassernutzungseffizienz und Trockentoleranz nehmen ab und die Modellentwicklung auf Basis der gegenseitigen Skalierung von CO2 und H2O wird unzuverlässiger. In diesem Projekt soll in Labor, Gewächshaus und Freiland der HAS-Einfluss auf den pflanzlichen Gaswechsel und die Hydraulik quantifiziert werden, wobei iso- und anisohydrische Arten unterschiedlich auf Feinstaubablagerungen reagieren. Sowohl experimentelle Erhöhung als auch Verringerung der Feinstaubkonzentration werden als Versuchsansätze genutzt, gemeinsam mit aktuellen Gaswechsel-, optischen und Isotopen-Techniken. Die Ergebnisse sind bedeutsam für das Verständnis der Atmosphäre/Pflanze-Interaktion auf allen Skalen von der Schließzelle bis zum Pflanzenbestand.
Getreide im Allgemeinen und Reis im Besonderen sind die Hauptnahrungsquelle einer stetig wachsende Weltbevölkerung. Viele dieser Kulturen werden auf intensiv genutzten Feldern angebaut, denen regelmäßig Bodennährstoffe durch Düngung zugefügt werden müssen. Aufgrund der hohen Kosten und des Energiebedarfs, ist es notwendig zukünftig den Einsatz von Düngemittel zu beschränken und eine nachhaltigere Form der Landwirtschaft zu etablieren. Kulturpflanzen, die Nährstoffe effizienter als die derzeit verfügbaren Linien nutzen, können dazu beitragen, diese Ziele zu erreichen. Kalium (K+) ist der wichtigste kationische Nährstoff und sein Transport wurde intensiv an der Modellpflanze Arabidopsis untersucht. Über die Transportproteine, welche die K+ -Flüsse in Getreide bewirken, ist jedoch wenig bekannt. Unsere vorherige Studie hat wichtige Unterschiede in der Gewebelokalisierung und den Aktivierungsmechanismen von K+ -Effluxkanälen zwischen Reispflanzen und Arabidopsis gezeigt. Im vorgeschlagenen Projekt konzentrieren wir uns auf K+ -Effluxkanäle des Shaker-Typs und der HAK/KUP K+-Transporterfamilie, die den Kaliumtransport in Reispflanzen von der Wurzel zum Spross und innerhalb der Stoma-Komplexe der Blätter ermöglichen. Wir werden die Zelltypen identifizieren, welche die ausgewählten K+-Transportproteine exprimieren und Reispflanzen erzeugen, denen funktionelle Versionen dieser Proteine fehlen. Diese transgenen Linien werden bezüglich des Wachstums, Wasserverbrauchs und der Ertragsausbeute mit Wildtyp-Reispflanzen unter Gewächshaus- und Freilandbedingungen verglichen. Darüber hinaus werden wir die K+ -Effluxkanäle und -Transporter von Reis in Arabidopsis-Schließzellen und Xenopus-Oozyten exprimieren, um ihre biophysikalischen Eigenschaften wie Ionenselektivität und spannungsabhängige Aktivierung zu charakterisieren. Im Zentrum unserer Aufmerksamkeit steht die Rolle der ausgewählten K+-Kanäle und -Transporter im Xylem und bei der Stoma-Bewegung. Wir werden fluoreszenzmarkierte K+-Kanäle und Transporter verwenden, um zu untersuchen, ob die Transportproteine eine polare subzelluläre Lokalisation aufweisen. Zudem wird die Funktion dieser Transporter mit Einzelzellentechniken untersucht, bei denen ionenselektive Elektroden zum Einsatz kommen. Unsere Studie soll Einblicke zur spezifischen Rolle der K+ -Effluxkanälen und -Transportern auf zellulärer Ebene gewinnen und deren Bedeutung für das Wachstums der Reispflanzen unter Freilandbedingungen aufklären. Dieses Wissen wird für die Züchtung von Reissorten, die mit einem geringeren Bedarf an K+ -Dünger, bei gleichzeitiger Aufrechterhaltung eines guten Nährstoffgehaltes, von großer Bedeutung sein. Nutzpflanzen mit solchen optimierten Eigenschaften werden wichtig sein, um eine nachhaltige Landwirtschaft und unseren zukünftigen Nahrungsmittelbedarf sicherzustellen.
Saisonale Muster des Wachstums und der Blüte sind entscheidend für eine erfolgreiche Obstproduktion und den Ertrag. Während des Herbstes und zu Beginn des Winters ruhen Knospen und Spitzen der Obstbäume als Reaktion auf niedrige Temperaturen und kurze Tage. Diese Ruhephase wird durch längere Kälteeinwirkung überwunden, so dass das Wachstum im Frühjahr wieder aufgenommen werden kann. Umwelteinflüsse wie die Winter- und Frühlingstemperaturen, die diese Zyklen steuern, werden durch den Klimawandel verändert, der Ertrag wird bedroht. Neue Baumsorten zu züchten, wird aber durch unser mangelndes Wissen über die molekularen und genetischen Mechanismen, die diesen wirtschaftlich wichtigen Umweltreaktionen zugrunde liegen, behindert. Das FruitFlow-Projekt bringt ein internationales Konsortium von 5 akademischen und 3 kommerziellen Partnern zusammen, um diese Fragen für 2 wichtige mehrjährige Nutzpflanzen anzugehen: Apfel und Pfirsich. Wir werden neue Technologien zur Vorhersage und Verbesserung der Blumen- und Obstproduktion entwickeln. Planung: 1.Sammlung von Daten über das saisonale Verhalten verschiedener Panels von Äpfeln und Pfirsichen. Die klimatischen Bedingungen an den Anbaustätten werden täglich erfasst. Regelmäßige Aufnahme von Luftbildern mit unbemannten Luftfahrzeugen und Messungen mit Nah-Infrarot-Spektroskopie an Blättern und Knospen. Vorhersage des Verhaltens der Sorten in verschiedenen Umgebungen durch Verwendung computergestützter Modellierungsansätze. 2.Identifikation der genetischen Variation, die die Dormanz bei Apfel- und Pfirsichsorten beeinflusst. 3.Analyse des chemischen Gehalts der Apfel- und Pfirsichknospen, um kleine Moleküle zu identifizieren, deren Aussehen mit verschiedenen Stadien des Ruhezyklusses korreliert. Anschließend werden Proteine identifiziert, die mit diesen Molekülen interagieren. 4.Test der Funktionen von Proteinen, die als mit kleinen Molekülen oder aus den genetischen Studien interagierend identifiziert wurden, in transgenen Pflanzen. Aufgrund der Schwierigkeit, transgene Apfel- und Pfirsichpflanzen zu erzeugen und ihrer langen Entwicklungszeit werden diese Experimente mit Pflanzenmodellen wie Pappelbäumen und dem mehrjährigen Staudenmodell Arabis alpina durchgeführt. Für diese beiden Arten wurden schnelle Transformationsmethoden entwickelt. Die Funktion von Apfel- und Pfirsichgenen wird bei diesen Modellarten durch Gain-und Loss of Function-Ansätze getestet. 5.Es werden Chemikalien, die sich in verschiedenen Stadien des Dormanz-Prozesses akkumulieren, auf ihre Fähigkeit getestet, den Knospenaufbruch oder die Blüte von Apfel und Pfirsich durch direkte Anwendung zu stimulieren. Somit wird FruitFlow zur Lösung eines wichtigen aktuellen Problems in der europäischen Landwirtschaft beitragen, indem es ein internationales, multidisziplinäres Konsortium zusammenbringt, um grundlegendes Wissen über die Knospenruhe und den Knospenaufbruch bei Obstbäumen zu erarbeiten und seine Bedeutung unter Feldbedingungen zu testen.
Eisen (Fe), Zink (Zn) und Selen (Se) sind wichtige Mineralstoffe für den Menschen. Weltweit leiden über 1,2 Milliarden Menschen an Fe, Zn und/oder Se Unterversorgung. Mais (Zea mays L.) ist global betrachtet die meistproduzierte Getreideart. Menschen, deren Hauptnahrungsquelle Mais darstellt, gehören zu denjenigen, die am stärksten von einem dieser Mineralstoffmängel bedroht sind. Zugleich wird prognostiziert, dass die durch den Klimawandel verursachte Zunahme an Trockenheitsperioden zu einem Rückgang der Erträge sowie der Mikronährstoffgehalte in Maispflanzen führen wird. Die Züchtung von Maissorten mit einer stabileren Aufnahme von Fe, Zn und Se aus dem Boden und einer effizienten Translokation dieser Nährstoffe in essbares Gewebe bei Wasserknappheit stellt eine vielversprechende Strategie dar, die humane Mais-basierte Mikronährstoffversorgung zu sichern oder sogar zu steigern. Entsprechend ist das Hauptziel dieses Projektes physiologische, molekulare und genetische Faktoren zu identifizieren und zu verstehen, die die Fe-, Zn- und Se-Akkumulation unter Wassermangel steuern und folglich zur Züchtung von Mais mit höherem Mikronährstoffgehalten beitragen. Die synergistischen Arbeitspakete kombinieren modernste Multi-Omics-Techniken aus den Bereichen Ionomik, Genomik und Transkriptomik mit high-end Röntgen-gestützter räumlicher Elementverteilungskartierung, um die räumlich-zeitliche Dynamik der Nährstoffaufnahme und -translokation in ausgewählten, agronomisch relevanten, natürlichen Maislinien sowie in Maislinien, welche in Merkmalen, die die Nährstofflogistik potentiell beeinflussen, mutiert sind, zu verstehen. Ein Fokus liegt insbesondere auf der Rolle der exo- und endodermalen Barrieren, deren Bedeutung für die Mikronährstoffaufnahme in Mais noch nicht erforscht ist. Ein weiteres Ziel ist die Charakterisierung der raumzeitlichen Expression von Transportproteinen kodierender Gene in Wurzeln, Blättern und Blütenständen in Abhängigkeit der Fe-, Zn-, Se- und Wasserversorgung in verschiedenen Maisgenotypen und deren quantitativer Beitrag zum Zellimport und -export, dem Radialtransport und der Xylem- und Phloembeladung von Fe-, Zn- und Se. Zudem wird ein Forward-Ionomik Screening einer Mais-MAGIC-Population, die unterschiedliche Wassermangel-Toleranzen aufweist, durchgeführt. Dies wird mit einer Assoziationskartierung kombiniert, um genetische Loci und zugrundeliegende Gene zu identifizieren, die die Unterschiede in der Fe-, Zn- und Se-Akkumulation in Spross und Korn unter Gewächshaus- und Freilandbedingungen steuern. Die erzielten Ergebnisse des Projektes werden zu einem besseren Verständnis der gekoppelten und individuellen Aufnahme- und Akkumulationsprozesse von Fe, Zn und Se in Mais beitragen, und damit zur Züchtung von Maislinien, die im Kontext eines sich wandelnden Klimas dennoch hohe Gehalte an, für Mensch und Tier, essentiellen Mikronährstoffen aufweisen.
Die Quantifizierung von Auswirkungen steigender Temperaturen auf die Ernteerträge wird im Kontext des globalen Klimawandels und der Ernährungssicherheit immer wichtiger. Gegenwärtig wird das Verständnis der Wachstumsreaktion von Nutzpflanzen auf erhöhte Temperaturen auf der Basis von Experimenten in Kammern und unter kontrollierten Umgebungen abgeleitet, in denen sich Luft- und Blatttemperatur meist wenig unterscheiden. Unter natürlichen Produktionsbedingungen können Luft- und Blatttemperatur in Abhängigkeit vom Wasserstatus der Pflanzen und den atmosphärischen Bedingungen jedoch leicht um mehr als +/- 5°C voneinander abweichen. Es gibt daher nur wenige Hinweise darauf, welche Temperaturen kritische Wachstums- und Entwicklungsprozesse antreiben, was zu großen Unsicherheiten in der zu erwartenden Reaktion der Pflanzen auf zukünftige Klimabedingungen führt. Die vorgeschlagene Studie setzt eine Kombination aus Feldversuchen, Modellverbesserungen und modellgestützten Hypothesentests ein, um besser zu verstehen, welche Temperatur (Kultur, Luft, Boden) die Entwicklungsraten der Kulturpflanzen und deren Ertragsbildung beeinflussen.
Vor dem Hintergrund des globalen Wandels stehen die Ökosysteme weltweit vor großen Herausforderungen. In Europa haben die jüngsten Dürren zu einem verheerenden Waldsterben geführt, das auf direkte und indirekte Auswirkungen der Trockenheit zurückzuführen ist. Hydraulische Umverteilung (HR) - der passive Transport von Wasser zwischen verschiedenen Bodentiefen über das Wurzelsystem der Pflanzen - ist ein Prozess, der potentiell Auswirkungen auf die Fähigkeit der Ökosysteme, Dürren abzuschwächen, haben kann. „Hydraulic Lift“ (HL) ist die häufigste Form von HR, bei der sich das Wasser aufgrund des Wasserpotenzialgefälles zwischen dem feuchteren Boden in der Tiefe und dem trockenen Boden an der Oberfläche während der Nacht passiv in die trockene Bodenregion bewegt und so möglicherweise eine wichtige Wasserquelle für die Pflanzen darstellt. Mehr als zwei Jahrzehnte Forschung über HR haben gezeigt, dass es sich dabei um einen Prozess mit globaler Bedeutung für Ökosysteme handelt. Trotz dieser Bedeutung sind konsistente Datensätze zu HR auf räumlichen Skalen größer als der Baumskala, und evidenzbasierte Modellierungsansätze äußerst selten. Infolgedessen sind wir derzeit nicht in der Lage, genau vorherzusagen, ob und unter welchen Bedingungen HR eine wichtige Komponente für die Resilienz von Wäldern und anderen Ökosystemen unter den prognostizierten klimatischen Veränderungen sein wird. In diesem Projekt werden wir zum ersten Mal einen räumlich und zeitlich hochaufgelösten Datensatz über HR sammeln. Mit diesem Datensatz wollen wir die Relevanz von HR auf der Feldskala untersuchen, die Heterogenität von HR bewerten und ermitteln, welche Pflanzengruppen von HR profitieren. Wir etablieren hierfür ein Monitoringsystem, das speziell für die Identifikation, Monitoring und Quantifizierung von HR entwickelt wurde. Dieses System kombiniert Methoden basierend auf der in situ-Messung stabiler Wasserisotope, ökohydrologischen Ansätzen und isotopischen Markierexperimenten in einem Laubmischwald in Niedersachsen. Der Datensatz wird anschließend zur Parametrisierung und Kalibrierung des isotopengestützten Boden-Vegetations-Atmosphären-Transfermodells (SVAT) MuSICA verwendet. Das kalibrierte Modell wird anschließend genutzt, um die Bedeutung von HR für die Resilienz des untersuchten Laubmischwald-Ökosystems unter verschiedenen Szenarien vorherzusagen. Die Ergebnisse dieses Projekts werden dazu beitragen, die Rolle von HR für Waldökosysteme jetzt und unter den prognostizierten zukünftigen Klimabedingungen zu verstehen. Es wird dazu beitragen, die potenzielle Pufferwirkung von HR bei Dürren und extremen Bedingungen zu bewerten, was für die Waldbewirtschaftung im Hinblick auf die Entwicklung widerstandsfähiger Waldökosysteme der Zukunft essentiell sein kann. Darüber hinaus könnte der vorgeschlagene methodische Rahmen möglicherweise zu einem Standardverfahren für die Bewertung von HR auf größeren räumlichen Skalen werden.
Apfel (Malus domestica) ist einer der wichtigsten angebauten Früchte weltweit. In Baumschulen werden Pflanzen häufig neu gepflanzt (2-3 Jahre), was zu einer verminderten Ernteproduktivität führt, die auch als Apfelnachbaukrankheit (ARD) bezeichnet wird. ARD kann definiert werden als "eine schädlich, gestörte physiologische und morphologische Reaktion von Apfelpflanzen auf Böden, die aufgrund früherer Apfelkulturen Veränderungen in ihrem (Mikro-) Biom ausgesetzt waren". Früher wurden Bodenbegasungsmittel zur Bekämpfung von ARD verwendet. Bei diesen Mitteln sind Anwendungsschwierigkeiten, hohe Kosten und Gefahren für die Umwelt und die menschliche Gesundheit als problematisch anzusehen. Daher wäre die Züchtung und/oder Selektion weniger empfindlicher Genotypen eine nachhaltigere Lösung für ARD. Die Entwicklung von ARD-assoziierten Markern beruht jedoch auf einem besseren Verständnis der molekularen Reaktionen in planta, um die Ätiologie der Krankheit zu entschlüsseln. Kürzlich wurde gezeigt, dass Phytoalexinbiosynthesegene nach sieben Tagen Kultur auf ARD-Boden im Vergleich zu desinfiziertem ARD-Boden stark hochreguliert sind. Es zeigte sich, dass sich die Phytoalexine im Wurzelsystem in sehr hohen Konzentrationen anhäufen, was zu einer möglichen Phytotoxizität führt. ABC-Transporter, die an der Translokation und Exsudation von Phytoalexinen beteiligt sind, zeigten keine Regulation, was zu der Annahme führte, dass Phytoalexine unter ARD-Bedingungen nicht in den Boden ausgeschieden werden und sich daher in sehr hohen Konzentrationen in den Wurzeln anreichern. Zusätzlich kann der vakuoläre Transport behindert werden, was zu einer fehlenden Entgiftung der akkumulierten Substanzen führt. Ein möglicher Grund für die möglicherweise eingeschränkte Exsudation von Phytoalexinen oder von Sequestrierung in Vakuolen über ABC-Transporter könnte die Entstehung toxischer Zyanidkonzentrationen in ARD-betroffenen Pflanzen sein, was zu weniger ATP-Verfügbarkeit für ABC-Transporter führt. Ziel des Projektes ist es, die Rolle von ARD-induzierten Phytoalexinen bei ARD und molekulare Reaktionen in ARD-betroffenen Pflanzen aufzuklären. Der Fokus wird darauf liegen, ihre Rolle bei ARD unter Berücksichtigung weiterer interagierender Gene/Proteine abzuleiten. Die Toxizität und Lokalisation der Verbindungen werden ebenso analysiert wie Entgiftungsmechanismen, z.B. Transport aus dem Zytoplasma. Darüber hinaus werden weitere toxische Nebenprodukte im Cyanidstoffwechsel sowie die Energieversorgung näher untersucht, um einen detaillierten Überblick über die molekularen Mechanismen bei ARD zu erhalten. Fluoreszenz-in-situ-Hybridisierung, Mikroskopie, Genexpressionsstudien und metabolische Analysen werden eingesetzt, um dieses Ziel zu erreichen. Vergleiche zwischen einem sensitiven und einem weniger sensitiven Genotyp sollen Erkenntnisse für die frühe Vorhersage von ARD-Schweregraden in Böden liefern und dabei helfen ARD-tolerante Apfelpflanzen auszuwählen.
Um mit fluktuierenden Verfügbarkeiten unterschiedlicher Stickstoff (N)-Verfügbarkeiten im Boden zurecht zu kommen, haben Pflanzen unterschiedliche Transportsysteme für die Aufnahme von Nitrat und Ammonium entwickelt. Um einer Belastung des Metabolismus bei ungleicher Aufnahme dieser beiden entgegen gesetzt geladenen N-Formen zu entgegnen, müssen die Kapazitäten von Ammonium- und Nitrattransportsystemen eng koordiniert werden. Bei geringen Aussenkonzentrationen wird die Wurzelaufnahme von Ammonium über hochaffine AMT1-artige und von Nitrat über hochaffine NRT2-artige und niederaffine NRT1-artige Membrantransporter vermittelt. Dabei vermittelt der Transceptor NRT1.1 nicht nur den Transport sondern auch das ‚Sensing‘ von Nitrat, indem er das Expressionsniveau von NRT2- und AMT1-Transportergenen reguliert. Unsere bisherigen Experimente in Arabidopsis zeigen, dass eine amt-Vierfachmutante mit defekter Ammoniumaufnahme auf Nitrat oder Ammoniumnitrat besser wächst als der Wildtyp, während Influx- und Genexpressionsstudien auf regulatorische Komponenten deuten, die nicht durch die Sensingfunktion von NRT1.1 allein erklärt werden können. Daher ist das übergreifende Ziel dieses Antrags die regulatorischen Mechanismen zu untersuchen, die das Ammonium-zu-Nitrat Verhältnis bei der N-Aufnahme über die Wurzel steuern. Dazu wird i) die spezifische Rolle des Ammoniumtransporters AMT1.5 in der hochaffinen Ammoniumaufnahme in Anwesenheit von Nitrat aufgeklärt; ii) die regulatorische Funktion von N-Form-abhängigen pH-Wert-Veränderungen in der NRT1.1-abhängigen und -unabhängigen Regulation von NRT2- und AMT1-Genen ergründet; und iii) transkriptionale Regulatoren von NRTs und AMTs identifiziert und charakterisiert, die das Aufnahmeverhältnis von Ammonium zu Nitrat modulieren. Die erwarteten Ergebnisse sollen erklären, wie Pflanzen ein unausgewogenes Aufnahmeverhältnis der beiden N-Formen erkennen und Erkenntnisse liefern, wie die pflanzliche N-Ernährung verbessert werden kann.
Das im Boden vorkommende Bakterium Agrobacterium tumefaciens infiziert eine Vielzahl von Pflanzenarten und verursacht die Wurzelhalsgallenkrankheit. Es überträgt bakterielle DNA zusammen mit Effektorproteinen in Wirtszellen. Diese T-DNA (Transfer-DNA) wird stabil in das Pflanzengenom integriert, und die Expression der darin kodierten Onkogene führt zu Zellproliferation und Tumorbildung. Die Fähigkeit, DNA in das Wirtsgenom zu übertragen, hat A. tumefaciens zu einem der wichtigsten Werkzeuge in der pflanzlichen Gentechnik gemacht. Allerdings sind viele Pflanzenarten weiterhin schwierig zu transformieren, und es ist unklar, woran das liegt. Dies ist auch eine Folge unseres unzureichenden Wissens über die molekularen Voraussetzungen auf Seiten der Wirtszellen. In einer Reihe unabhängiger Experimente haben wir beobachtet, dass eine veränderte Sphingolipidzusammensetzung von Arabidopsispflanzen die Agrobakterien-Transformationseffizienz signifikant beeinflusst. Pflanzliche Sphingolipide wie Glucosylceramide und Glucosylinositolphosphorylceramide (GIPCs) sind vorwiegend in Nanodomänen der Plasmamembran lokalisiert. Frühere Studien in Arabidopsis haben gezeigt, dass Sphingolipide die Funktion von membranständigen Rezeptoren und Calciumkanälen beeinflussen können, welche für verschiedene Signaltransduktionsprozesse wichtig sind. Sphingolipide könnten daher in verschiedenen Phasen der Agrobacterium-Transformation eine Funktion haben, z. B. durch Beeinflussung membranständiger Rezeptoren, die Abwehrreaktionen auslösen, oder durch die Interaktion mit bakteriellen Proteinen des Typ-IV-Sekretionssystems während des T-DNA-Transfers durch die Plasmamembran. Dieses Projekt zielt daher darauf ab, diejenigen pflanzlichen Sphingolipid-Spezies zu identifizieren, die die Agrobacterium-Transformationseffizienz beeinflussen, und die Funktion dieser Lipide während der verschiedenen Transformationsstadien zu charakterisieren. Um die Auswirkungen verschiedener Sphingolipidprofile auf die Transformationseffizienz zu ermitteln, setzen wir einen etablierten in vivo Transformationseffizienztest ein. In diesem werden wir unsere Sammlung von Arabidopsis-Mutantenlinien mit veränderter Sphingolipidzusammensetzung, sowie eine Reihe von pharmakologischen und Temperatur-Behandlungen testen. Zur Identifizierung der relevanten Sphingolipide setzen wir Hochdruck-Flüssigkeitschromatographie und anschließende Massenspektrometrie (UPLC-MS/MS) ein. Anschliessend werden wir analysieren, in welcher Phase der Transformation diese Lipide beteiligt sind. Dazu werden wir im in vivo System Wachstum, Anheftung und die Expression von Virulenzgenen der Bakterien testen und parallel dazu die Abwehrreaktion der Pflanze und die subzelluläre Lipidzusammensetzung analysieren. Wir erwarten, dass die Charakterisierung dieser Sphingolipid-abhängigen Prozesse in der Wirtszelle unser Verständnis der Mechanismen der Pflanzentransformation durch Agrobakterien entscheidend verbessern wird.
| Origin | Count |
|---|---|
| Bund | 27 |
| Wissenschaft | 1 |
| Type | Count |
|---|---|
| Förderprogramm | 27 |
| Repositorium | 1 |
| License | Count |
|---|---|
| offen | 27 |
| unbekannt | 1 |
| Language | Count |
|---|---|
| Deutsch | 26 |
| Englisch | 27 |
| Resource type | Count |
|---|---|
| Keine | 2 |
| Webseite | 26 |
| Topic | Count |
|---|---|
| Boden | 18 |
| Lebewesen und Lebensräume | 25 |
| Luft | 13 |
| Mensch und Umwelt | 28 |
| Wasser | 12 |
| Weitere | 28 |