API src

Found 125 results.

Related terms

Bekanntmachung gem. § 5 UVPG - Ökologische Verbesserung der Berkel im Bereich der Kläranlageneinleitung und der Mersmannsbachaue in Billerbeck, Stat. km 107+620 bis 106+900 und Stat. km 108+550 bis 107+845

Zur Erreichung des guten ökologischen Potenzials (GÖP) im Sinne der Wasserrahmenrichtlinie soll die Berkel im Bereich der Kläranlage Billerbeck ökologisch umgestaltet werden, um eine Frachtreduzierung von Pges und NH4-N zu erreichen. Im nördlichen Planungsbereich soll das Gewässerprofil auf der neuen Lauflänge von rund 750 m mit Böschungsabflachungen und Sekundärauen aufgeweitet werden. Außerdem soll Totholz in Form von Stubben und Stämmen eingebaut werden. Die neu angelegten Sekundärauen werden zum Teil mit Rohrglanzgras bepflanzt. Vorwiegend am südlichen Ufer soll die Böschungs- und Sohlsicherung entfernt und im Bereich der geplanten Prallufer durch schlafende Sicherungen aus Weidensetzstangen ersetzt werden. Südlich der Kläranlage soll das Gewässer zudem neu trassiert werden. Am südlichen Ufer sollen hier abschnittsweise Gehölze der Hartholzaue gepflanzt werden. Die nicht beschatteten Bereiche der Sekundäraue sollen mit Rohrglanzgras bepflanzt werden. Auf einer Länge von rund 90 m soll der vorhandene Verlauf mit einer übererdeten Steinschüttung vom neuen Verlauf abgetrennt werden. Zwischen Sekundäraue und den angrenzenden Ackerflächen ist ein Uferrandstreifen von mind. 5 m Breite geplant. Im südlichen Planungsbereich sollen die beidseitig stehenden jungen Erlen entfernt werden, um die eigendynamische Entwicklung des Gewässers zu ermöglichen. Auch in diesem Abschnitt soll das Gewässerprofil durch die Anlage einer Sekundäraue deutlich aufgeweitet werden. Zudem soll die Sohle im Oberlauf des Planungsgebiets durch die Auftragung von Kies um 30 cm erhöht werden, um eine Geländestufe auszugleichen. Durch die Laufverlängerung von 720 m auf 860 m kann eine weitere im Planungsgebiet liegende Geländestufe ausgeglichen werden. Für die Anbindung an den Unterlauf soll eine Sohlgleite mit einer Neigung von 1:100 gebaut werden. Die entstehenden Flächen durch die Verfüllung des Altverlaufs sollen als Mähwiese, Röhricht oder Standweide genutzt werden. Im Zuge der Baumaßnahmen soll außerdem ein altes Brückenwiderlager sowie eine abgängige Brücke abgebrochen werden.

Rohstoffkonflikte nachhaltig vermeiden

Sowohl im Bereich energetischer als auch nicht-energetischer Rohstoffe stieg die Nachfrage in den vergangenen Jahrzehnten kontinuierlich an. Gerade in den letzten Jahren kam daher die Diskussion auf, ob nicht in absehbarer Zeit strukturelle Versorgungs- bzw. Verfügbarkeitsengpässe entstehen könnten. Dies wird sehr kontrovers diskutiert, wobei die Positionen vor allem im Bereich Erdöl sehr stark schwanken. Im folgenden Kapitel wird eine Analyse hinsichtlich der Versorgungssituation energetischer wie nicht-energetischer Rohstoffe vorgenommen. Diskutiert werden Erdöl, Erdgas, Kohle sowie Kernbrennstoffe einerseits und Eisen und Stahl, Chrom, Nickel, Kobalt, Aluminium, Magnesium, Kupfer, Platin und Platinmetalle, Industrieminerale, Borsalze, Phosphat sowie Zirkonium und Zirkoniumoixd andererseits. Veröffentlicht in Texte | 22/2011.

Microprobe measurements of PGM, pristine and secondary phases of samples of the Merensky Reef, Bushveld Complex, South Africa

Abstract

Markt für Nickel, Klasse 1

technologyComment of cobalt production (GLO): Cobalt, as a co-product of nickel and copper production, is obtained using a wide range of technologies. The initial life cycle stage covers the mining of the ore through underground or open cast methods. The ore is further processed in beneficiation to produce a concentrate and/or raffinate solution. Metal selection and further concentration is initiated in primary extraction, which may involve calcining, smelting, high pressure leaching, and other processes. The final product is obtained through further refining, which may involve processes such as re-leaching, selective solvent / solution extraction, selective precipitation, electrowinning, and other treatments. Transport is reported separately and consists of only the internal movements of materials / intermediates, and not the movement of final product. Due to its intrinsic value, cobalt has a high recycling rate. However, much of this recycling takes place downstream through the recycling of alloy scrap into new alloy, or goes into the cobalt chemical sector as an intermediate requiring additional refinement. Secondary production, ie production from the recycling of cobalt-containing wastes, is considered in this study in so far as it occurs as part of the participating companies’ production. This was shown to be of very limited significance (less than 1% of cobalt inputs). The secondary materials used for producing cobalt are modelled as entering the system free of environmental burden. technologyComment of platinum group metal mine operation, ore with high palladium content (RU): imageUrlTagReplace6250302f-4c86-4605-a56f-03197a7811f2 technologyComment of platinum group metal, extraction and refinery operations (ZA): The ores from the different ore bodies are processed in concentrators where a PGM concentrate is produced with a tailing by product. The PGM base metal concentrate product from the different concentrators processing the different ores are blended during the smelting phase to balance the sulphur content in the final matte product. Smelter operators also carry out toll smelting from third part concentrators. The smelter product is send to the Base metal refinery where the PGMs are separated from the Base Metals. Precious metal refinery is carried out on PGM concentrate from the Base metal refinery to split the PGMs into individual metal products. Water analyses measurements for Anglo Platinum obtained from literature (Slatter et.al, 2009). Mudd, G., 2010. Platinum group metals: a unique case study in the sustainability of mineral resources, in: The 4th International Platinum Conference, Platinum in Transition “Boom or Bust.” Water share between MC and EC from Mudd (2010). Mudd, G., 2010. Platinum group metals: a unique case study in the sustainability of mineral resources, in: The 4th International Platinum Conference, Platinum in Transition “Boom or Bust.” technologyComment of processing of nickel-rich materials (GLO): Based on typical current technology. technologyComment of smelting and refining of nickel concentrate, 16% Ni (GLO): Extrapolated from a typical technology for smelting and refining of nickel ore. MINING: 95% of sulphidic nickel ores are mined underground in depths between 200m and 1800m, the ore is transferred to the beneficiation. Widening of the tunnels is mainly done by blasting. The overburden – material, which does not contain PGM-bearing ore – is deposed off-site and is partially refilled into the tunnels. Emissions: The major emissions are due to mineral born pollutants in the effluents. The underground mining operations generate roughly 80 % of the dust emissions from open pit operations, since the major dust sources do not take place underground. Rain percolate through overburden and accounts to metal emissions to groundwater. Waste: Overburden is deposed close to the mine. Acid rock drainage occurs over a long period of time. BENEFICIATION: After mining, the ore is first ground. In a next step it is subjected to gravity concentration to separate the metallic particles from the PGM-bearing minerals. After this first concentration step, flotation is carried out to remove the gangue from the sulphidic minerals. For neutralisation lime is added. In the flotation several organic chemicals are used as collector, frother, activator, depressor and flocculant. Sometimes cyanide is used as depressant for pyrite. Tailings usually are led to tailing heaps or ponds. As a result, nickel concentrates containing 7 - 25% Ni are produced. Emissions: Ore handling and processing produce large amounts of dust, containing PM10 and several metals from the ore itself. Flotation produce effluents containing several organic agents used. Some of these chemicals evaporate and account for VOC emissions to air. Namely xanthates decompose hydrolytically to release carbon disulphide. Tailings effluent contains additional sulphuric acid from acid rock drainage. Waste: Tailings are deposed as piles and in ponds. Acid rock drainage occurs over a long period of time. METALLURGY AND REFINING: There are many different process possibilities to win the metal. The chosen process depends on the composition of the ore, the local costs of energy carrier and the local legislation. Basically two different types can be distinguished: the hydrometallurgical and the pyrometallurgical process, which paired up with the refining processes, make up five major production routes (See Tab.1). All this routes are covered, aggregated according to their market share in 1994. imageUrlTagReplace00ebef53-ae97-400f-a602-7405e896cb76 Pyrometallurgy. The pyrometallurgical treatment of nickel concentrates includes three types of unit operation: roasting, smelting, and converting. In the roasting step sulphur is driven off as sulphur dioxide and part of the iron is oxidised. In smelting, the roaster product is melted with a siliceous flux which combines with the oxidised iron to produce two immiscible phases, a liquid silicate slag which can be discarded, and a solution of molten sulphides which contains the metal values. In the converting operation on the sulphide melt, more sulphur is driven off as sulphur dioxide, and the remaining iron is oxidised and fluxed for removal as silicate slag, leaving a high-grade nickel – copper sulphide matte. In several modern operations the roasting step has been eliminated, and the nickel sulphide concentrate is treated directly in the smelter. Hydrometallurgy: Several hydrometallurgical processes are in commercial operation for the treatment of nickel – copper mattes to produce separate nickel and copper products. In addition, the hydrometal-lurgical process developed by Sherritt Gordon in the early 1950s for the direct treatment of nickel sulphide concentrates, as an alternative to smelting, is still commercially viable and competitive, despite very significant improvements in the economics and energy efficiency of nickel smelting technology. In a typical hydrometallurgical process, the concentrate or matte is first leached in a sulphate or chloride solution to dissolve nickel, cobalt, and some of the copper, while the sulphide is oxidised to insoluble elemental sulphur or soluble sulphate. Frequently, leaching is carried out in a two-stage countercurrent system so that the matte can be used to partially purify the solution, for example, by precipitating copper by cementation. In this way a nickel – copper matte can be treated in a two-stage leach process to produce a copper-free nickel sulphate or nickel chloride solution, and a leach residue enriched in copper. Refining: In many applications, high-purity nickel is essential and Class I nickel products, which include electrolytic cathode, carbonyl powder, and hydrogen-reduced powder, are made by a variety of refining processes. The carbonyl refining process uses the property of nickel to form volatile nickel-carbonyl compounds from which elemental nickel subsides to form granules. Electrolytic nickel refineries treat cast raw nickel anodes in a electrolyte. Under current the anode dissolves and pure nickel deposits on the cathode. This electrorefining process is obsolete because of high energy demand and the necessity of building the crude nickel anode by reduction with coke. It is still practised in Russia. Most refineries recover electrolytic nickel by direct electrowinning from purified solutions produced by the leaching of nickel or nickel – copper mattes. Some companies recover refined nickel powder from purified ammoniacal solution by reduction with hydrogen. Emissions: In all of the metallurgical steps, sulphur dioxide is emitted to air. Recovery of sulphur dioxide is only economic for high concentrated off-gas. Given that In the beneficiation step, considerable amounts of lime are added to the ore for pH-stabilisation, lime forms later flux in the metallurgical step, and decomposes into CO2 to form calcite. Dust carry over from the roasting, smelting and converting processes. Particulate emissions to the air consist of metals and thus are often returned to the leaching process after treatment. Chlorine is used in some leaching stages and is produced during the subsequent electrolysis of chloride solution. The chlorine evolved is collected and re-used in the leach stage. The presence of chlorine in wastewater can lead to the formation of organic chlorine compounds (AOX) if solvents etc. are also present in a mixed wastewater. VOCs can be emitted from the solvent extraction stages. A variety of solvents are used an they contain various complexing agents to form complexes with the desired metal that are soluble in the organic layer. Metals and their compounds and substances in suspension are the main pollutants emitted to water. The metals concerned are Cu, Ni, Co, As and Cr. Other significant substances are chlorides and sulphates. Wastewater from wet gas cleaning (if used) of the different metallurgical stages are the most important sources. The leaching stages are usually operated on a closed circuit and drainage systems, and are therefore regarded as minor sources. In the refining step, the combustion of sulphur leads to emissions of SO2. Nitrogen oxides are produced in significant amounts during acid digestion using nitric acid. Chlorine and HCl can be formed during a number of digestion, electrolytic and purification processes. Chlorine is used extensively in the Miller process and in the dissolution stages using hydrochloric acid and chlorine mixtrues respectively. Dust and metals are generally emitted from incinerators and furnaces. VOC can be emitted from solvent extraction processes, while organic compounds, namely dioxins, can be emitted from smelting stages resulting from the poor combustion of oil and plastic in the feed material. All these emissions are subject to abatement technologies and controlling. Large quantities of effluents contain amounts of metals and organic substances. Waste: Regarding the metallurgical step, several co-products, residues and wastes, which are listed in the European Waste Catalogue, are generated. Some of the process specific residues can be reused or recovered in preliminary process steps (e. g. dross, filter dust) or construction (e. g. cleaned slag). Residues also arise from the treatment of liquid effluents, the main residue being gypsum waste and metal hydroxides from the wastewater neutralisation plant. These residuals have to be disposed, usually in lined ponds. In the refining step, quantities of solid residuals are also generated, which are mostly recycled within the process or sent to other specialists to recover any precious metals. Final residues generally comprise hydroxide filter cakes (ironhydroxide, 60% water, cat I industrial waste). References: Kerfoot D. G. E. (1997) Nickel. In: Ullmann's encyclopedia of industrial chemis-try (ed. Anonymous). 5th edition on CD-ROM Edition. Wiley & Sons, London. technologyComment of smelting and refining of nickel concentrate, 7% Ni (CN): The nickel concentrate (6.78% beneficiated - product of the mining and beneficiation processes) undergoes drying, melting in flash furnace and converting to produce high nickel matte. The nickel matte undergoes grinding-floating separation and is refined through anode plate casting and electrolysis in order to produce electrolytic nickel 99.98% pure. Deng, S. Y., & Gong, X. Z. (2018). Life Cycle Assessment of Nickel Production in China. Materials Science Forum, 913, 1004-1010. doi:10.4028/www.scientific.net/MSF.913.1004 technologyComment of treatment of metal part of electronics scrap, in copper, anode, by electrolytic refining (SE, RoW): Production of cathode copper by electrolytic refining.

Markt für Kupfer, Kathode

technologyComment of aluminium alloy production, AlLi (CA-QC, RoW): No comment present technologyComment of aluminium alloy production, Metallic Matrix Composite (CA-QC, RoW): No comment present technologyComment of cobalt production (GLO): Cobalt, as a co-product of nickel and copper production, is obtained using a wide range of technologies. The initial life cycle stage covers the mining of the ore through underground or open cast methods. The ore is further processed in beneficiation to produce a concentrate and/or raffinate solution. Metal selection and further concentration is initiated in primary extraction, which may involve calcining, smelting, high pressure leaching, and other processes. The final product is obtained through further refining, which may involve processes such as re-leaching, selective solvent / solution extraction, selective precipitation, electrowinning, and other treatments. Transport is reported separately and consists of only the internal movements of materials / intermediates, and not the movement of final product. Due to its intrinsic value, cobalt has a high recycling rate. However, much of this recycling takes place downstream through the recycling of alloy scrap into new alloy, or goes into the cobalt chemical sector as an intermediate requiring additional refinement. Secondary production, ie production from the recycling of cobalt-containing wastes, is considered in this study in so far as it occurs as part of the participating companies’ production. This was shown to be of very limited significance (less than 1% of cobalt inputs). The secondary materials used for producing cobalt are modelled as entering the system free of environmental burden. technologyComment of copper production, cathode, solvent extraction and electrowinning process (GLO): Oxide ores and supergene sulphide ores (i.e. ores not containing iron) can be recovered most easily by hydro-metallurgical techniques, such as SX-EW. The general steps of mining and refining are identical to those of copper mine operation and primary copper production, respectively. The difference lies in that the beneficiation and smelting stages are by-passed and substituted with a leaching stage followed by cementation or electro-winning. technologyComment of electrorefining of copper, anode (GLO): Based on typical current technology. technologyComment of gold mine operation and refining (SE): OPEN PIT MINING: The ore is mined in four steps: drilling, blasting, loading and hauling. In the case of a surface mine, a pattern of holes is drilled in the pit and filled with explosives. The explosives are detonated in order to break up the ground so large shovels or front-end loaders can load it into haul trucks. ORE AND WASTE HAULAGE: The haul trucks transport the ore to various areas for processing. The grade and type of ore determine the processing method used. Higher-grade ores are taken to a mill. Lower grade ores are taken to leach pads. Some ores may be stockpiled for later processing. HEAP LEACHING: The ore is crushed or placed directly on lined leach pads where a dilute cyanide solution is applied to the surface of the heap. The solution percolates down through the ore, where it leaches the gold and flows to a central collection location. The solution is recovered in this closed system. The pregnant leach solution is fed to electrowinning cells and undergoes the same steps as described below from Electro-winning. ORE PROCESSING: Milling: The ore is fed into a series of grinding mills where steel balls grind the ore to a fine slurry or powder. Oxidization and leaching: Some types of ore require further processing before gold is recovered. In this case, the slurry is pressure-oxidized in an autoclave before going to the leaching tanks or a dry powder is fed through a roaster in which it is oxidized using heat before being sent to the leaching tanks as a slurry. The slurry is thickened and runs through a series of leaching tanks. The gold in the slurry adheres to carbon in the tanks. Stripping: The carbon is then moved into a stripping vessel where the gold is removed from the carbon by pumping a hot caustic solution through the carbon. The carbon is later recycled. Electro-winning: The gold-bearing solution is pumped through electro-winning cells or through a zinc precipitation circuit where the gold is recovered from the solution. Smelting: The gold is then melted in a furnace at about 1’064°C and poured into moulds, creating doré bars. Doré bars are unrefined gold bullion bars containing between 60% and 95% gold. References: Newmont (2004) How gold is mined. Newmont. Retrieved from http://www.newmont.com/en/gold/howmined/index.asp technologyComment of platinum group metal mine operation, ore with high palladium content (RU): imageUrlTagReplace6250302f-4c86-4605-a56f-03197a7811f2 technologyComment of platinum group metal, extraction and refinery operations (ZA): The ores from the different ore bodies are processed in concentrators where a PGM concentrate is produced with a tailing by product. The PGM base metal concentrate product from the different concentrators processing the different ores are blended during the smelting phase to balance the sulphur content in the final matte product. Smelter operators also carry out toll smelting from third part concentrators. The smelter product is send to the Base metal refinery where the PGMs are separated from the Base Metals. Precious metal refinery is carried out on PGM concentrate from the Base metal refinery to split the PGMs into individual metal products. Water analyses measurements for Anglo Platinum obtained from literature (Slatter et.al, 2009). Mudd, G., 2010. Platinum group metals: a unique case study in the sustainability of mineral resources, in: The 4th International Platinum Conference, Platinum in Transition “Boom or Bust.” Water share between MC and EC from Mudd (2010). Mudd, G., 2010. Platinum group metals: a unique case study in the sustainability of mineral resources, in: The 4th International Platinum Conference, Platinum in Transition “Boom or Bust.” technologyComment of primary zinc production from concentrate (RoW): The technological representativeness of this dataset is considered to be high as smelting methods for zinc are consistent in all regions. Refined zinc produced pyro-metallurgically represents less than 5% of global zinc production and less than 2% of this dataset. Electrometallurgical Smelting The main unit processes for electrometallurgical zinc smelting are roasting, leaching, purification, electrolysis, and melting. In both electrometallurgical and pyro-metallurgical zinc production routes, the first step is to remove the sulfur from the concentrate. Roasting or sintering achieves this. The concentrate is heated in a furnace with operating temperature above 900 °C (exothermic, autogenous process) to convert the zinc sulfide to calcine (zinc oxide). Simultaneously, sulfur reacts with oxygen to produce sulfur dioxide, which is subsequently converted to sulfuric acid in acid plants, usually located with zinc-smelting facilities. During the leaching process, the calcine is dissolved in dilute sulfuric acid solution (re-circulated back from the electrolysis cells) to produce aqueous zinc sulfate solution. The iron impurities dissolve as well and are precipitated out as jarosite or goethite in the presence of calcine and possibly ammonia. Jarosite and goethite are usually disposed of in tailing ponds. Adding zinc dust to the zinc sulfate solution facilitates purification. The purification of leachate leads to precipitation of cadmium, copper, and cobalt as metals. In electrolysis, the purified solution is electrolyzed between lead alloy anodes and aluminum cathodes. The high-purity zinc deposited on aluminum cathodes is stripped off, dried, melted, and cast into SHG zinc ingots (99.99 % zinc). Pyro-metallurgical Smelting The pyro-metallurgical smelting process is based on the reduction of zinc and lead oxides into metal with carbon in an imperial smelting furnace. The sinter, along with pre-heated coke, is charged from the top of the furnace and injected from below with pre-heated air. This ensures that temperature in the center of the furnace remains in the range of 1000-1500 °C. The coke is converted to carbon monoxide, and zinc and lead oxides are reduced to metallic zinc and lead. The liquid lead bullion is collected at the bottom of the furnace along with other metal impurities (copper, silver, and gold). Zinc in vapor form is collected from the top of the furnace along with other gases. Zinc vapor is then condensed into liquid zinc. The lead and cadmium impurities in zinc bullion are removed through a distillation process. The imperial smelting process is an energy-intensive process and produces zinc of lower purity than the electrometallurgical process. technologyComment of treatment of copper cake (GLO): 'The ore is pre-treated, reduced and refined according to the country specific mix of process alternatives: reverberatory furnace 23.7%; flash smelting furnaces 60.7%; other 6.2%.; SX-EW 9.4%. An overall abatement for sulphur dioxide of 45.4% was estimated.' as cited in original dataset. technologyComment of treatment of copper scrap by electrolytic refining (RoW): In three different stages different types of copper scrap and 10% of the feed of blister copper are refined to copper cathodes. Waste water is led to a communal treatment plant. technologyComment of treatment of copper scrap by electrolytic refining (RER): Secondary copper consists of various types of scrap. Prompt scrap is directly reused in foundries and is not further processed. Old scrap has to be treated in a secondary copper smelter, where a variety of metal values are recuperated. Depending on the chemical composition, the raw materials of a secondary copper smelter are processed in different types of furnaces, including: - blast furnaces (up to 30% of Cu in the average charge), - converters (about 75% Cu), and - anode furnaces (about 95% Cu). A scheme of the process considered is given in Fig 1. The blast furnace metal (“black copper”) is treated in a converter; then, the converter metal is refined in an anode furnace. In each step additional raw material with corresponding copper content is added. In the blast furnace, a mixture of raw materials, iron scrap, limestone and sand as well as coke is charged at the top. Air that can be enriched with oxygen is blown through the tuyeres. The coke is burnt and the charge materials are smelted under reducing conditions. Black copper and slag are discharged from tapholes. The converters used in primary copper smelting, working on mattes containing iron sulphide, generate surplus heat and additions of scrap copper are often used to control the temperature. The converter provides a convenient and cheap form of scrap treatment, but often with only moderately efficient gas cleaning. Alternatively, hydrometallurgical treatment of scrap, using ammonia leaching, yields to solutions which can be reduced by hydrogen to obtain copper powder. Alternatively, these solutions can be treated by solvent extraction to produce feed to a copper-winning cell. Converter copper is charged together with copper raw materials in anode furnace operation. For smelting the charge, oil or coal dust is used, mainly in reverberatory furnaces. After smelting, air is blown on the bath to oxidise the remaining impurities. Leaded brasses, containing as much as 3% of lead, are widely used in various applications and recycling of their scrap waste is an important activity. Such scrap contains usually much swarf and turnings coated with lubricant and cutting oils. Copper-containing cables and motors contain plastic or rubber insulants, varnishes, and lacquers. In such cases, scrap needs pre-treatment to remove these non-metallic materials. The smaller sizes of scrap can be pre-treated thermally in a rotary kiln provided with an after-burner to consume smoke and oil vapours (so-called Intal process). Emissions and waste: Elevated levels of halogenated organic compounds may arise, such as TCDD. Slags are usually used in construction. Waste water is led to a communal treatment plant. References: EEA, 1999. imageUrlTagReplacef2b602ec-dc47-48e3-88a7-ab8ec727bd33 technologyComment of treatment of metal part of electronics scrap, in copper, anode, by electrolytic refining (SE, RoW): Production of cathode copper by electrolytic refining. technologyComment of treatment of non-Fe-Co-metals, from used Li-ion battery, hydrometallurgical processing (GLO): The technique SX-EW is used mainly for oxide ores and supergene sulphide ores (i.e. ores not containing iron). It is assumed to be used for the treatment of the non-Fe-Co-metals fraction. The process includes a leaching stage followed by cementation or electro-winning. A general description of the process steps is given below. In the dump leaching step, copper is recovered from large quantities (millions of tonnes) of strip oxide ores with a very low grade. Dilute sulphuric acid is trickled through the material. Once the process starts it continues naturally if water and air are circulated through the heap. The time required is typically measured in years. Sulphur dioxide is emitted during such operations. Soluble copper is then recovered from drainage tunnels and ponds. Copper recovery rates vary from 30% to 70%. Cconsiderable amounts of sulphuric acid and leaching agents emit into water and air. No figures are currently available on the dimension of such emissions. After the solvent-solvent extraction, considerable amounts of leaching residues remain, which consist of undissolved minerals and the remainders of leaching chemicals. In the solution cleaning step occur precipitation of impurities and filtration or selective enrichment of copper by solvent extraction or ion exchange. The solvent extraction process comprises two steps: selective extraction of copper from an aqueous leach solution into an organic phase (extraction circuit) and the re-extraction or stripping of the copper into dilute sulphuric acid to give a solution suitable for electro winning (stripping circuit). In the separation step occurs precipitation of copper metal or copper compounds such as Cu2O, CuS, CuCl, CuI, CuCN, or CuSO4 • 5 H2O (crystallisation) Waste: Like in the pyrometallurgical step, considerable quantities of solid residuals are generated, which are mostly recycled within the process or sent to other specialists to recover any precious metals. Final residues generally comprise hydroxide filter cakes (iron hydroxide, 60% water, cat I industrial waste). technologyComment of treatment of non-Fe-Co-metals, from used Li-ion battery, pyrometallurgical processing (GLO): Based on technology that treats anode slime by pressure leaching and top blown rotary converter. technologyComment of treatment of used cable (GLO): Shredder, followed by a modern grinding machine with current separation technology

Gehobene Erlaubnis: Einleit v gereinigtem Abwasser aus d Kläranlage Weilerbach

Änderung gehobene Erlaubnis der Verbandsgemeinde Weilerbach für die Einleitung von gereinigtem Abwasser aus der Kläranlage Weilerbach, hinsichtlich Herabsetzung Überwachungswert Pges

Platinum group placer minerals in ancient gold artifacts - Geochemistry and osmium isotopes of inclusions in Early Bronze Age gold from Ur/Mesopotamia

One of the most significant characteristics of the gold artifacts from the Early Dynastic Royal Tombs of Ur, Mesopotamia are numerous inclusions consisting of the platinum group elements (PGE) osmium-iridium-ruthenium. In nature, minerals of PGE (PGM) are enriched along with gold and other heavy minerals in placer deposits. During metallurgical gold extraction from placer material and subsequent production of artifacts, PGMs were incorporated in the gold artifacts due to their refractoriness almost unmodified. In order to evaluate their potential for provenance studies of gold, the PGE inclusions were analyzed for their chemical and Os-isotope compositions. They contain highly variable concentrations of Os (26-70 wt.%), Ir (14-62 wt.%) and Ru (0.4-45 wt.%). 187Os/188Os isotope ratios vary between 0.118 und 0.178. Due to the high Ru content of the alloys, the chemical composition point to a geological context of ophiolite complexes. Os isotope ratios are a powerful tool to narrow down the potential ore sources for the gold. However, the interpretation of calculated model ages is difficult due to the unknown genesis of the parental magma. Calculated ages (290-610 Ma) for measured 187Os/188Os of 0.125 using different reference values could indicate placers close to Paleozoic ophiolites like Samti (Takhar) in Northern Afghanistan and Zarshouran (Western Azerbaijan) in Iran, but need to be confirmed by additional measurements of their Os isotope signature in the future. Other archaeological relevant sources of PGM and gold could be excluded by direct comparison of their Os isotope data: 1.) old Neoproterozoic ophiolites from the Eastern Desert type (750Ń800 Ma), Egypt, 2.) young Mesozoic ophiolites from the Samail complex (96 Ma) in Oman. Thus, in combination with other tracers the Os isotope ratio is a valuable source for provenance studies. Quelle: http://www.sciencedirect.com

Impacts of climate change on mining, related environmental risks and raw material supply

Das im Auftrag des Umweltbundesamtes (UBA) durchgeführte Projekt "Auswirkungen des Klimawandels auf die ökologische Kritikalität des deutschen Rohstoffbedarfs" (KlimRess) ist eines der ersten Forschungsprojekte zu den möglichen Auswirkungen des Klimawandels auf den Bergbau. Das Projektteam bestand aus adelphi, dem ifeu (Institut für Energie- und Umweltforschung Heidelberg) und dem Sustainable Minerals Institute der University of Queensland. Ziel des Projekts war es, zu untersuchen, wie sich der Klimawandel potenziell auf Umweltrisiken des Bergbaus sowie auf Rohstofflieferketten auswirkt. Der vorliegende Abschlussbericht fasst die Forschungsergebnisse des Projekts zusammen. Der Abschlussbericht stellt Erkenntnisse aus fünf qualitativen Fallstudien, die die Auswirkungen des Klimawandels in fünf Ländern und für neun Rohstoffe untersuchen, dar und beantwortet die folgenden Forschungsfragen: Wie werden die Umweltrisiken des Bergbaus durch den Klimawandel beeinflusst? Wie sind die Rohstofflieferketten betroffen? Darüber hinaus präsentiert der Bericht die Ergebnisse einer quantitativen Klimawandelvulnerabilitätsanalyse für Produktionsländer und Reserven von Bauxit, Eisenerz, Kokskohle, Kupfer, Lithium, Platinmetallen, Wolfram und Zinn und beantwortet folgende Fragen: Welche rohstoffproduzierenden Länder sind vergleichsweise stärker vom Klimawandel betroffen als andere? Welche Rückschlüsse lassen sich auf die globale Primärproduktion bestimmter Rohstoffe und ihre Klimawandelvulnerabilität ziehen? Wie könnten sich diese Risiken in Zukunft verändern? Quelle: Forschungsbeicht

Änderung der integrierten Genehmigung des Kraftwerkes Turów zur Errichtung und zum Betrieb eines neuen 450 MW Blockes im Kraftwerk Turów in Bogatynia, Republik Polen

Die PGE Bergbau und Konventionelle Energetik AG (PGE Górnictwo i Energetyka Konwencjonalna S.A., nachfolgend PGE genannt), Abteilung Kraftwerk Turów, Mlodych Energetyków-Straße, Bogatynia, Republik Polen, plant und baut am Standort des Kraftwerks Turów einen neuen Kraftwerksblock mit einer elektrischen Nettoleistung von 450 MW (elektrische Bruttoleistung 496 MW) an Stelle der stillgelegten alten Kraftwerksblöcke 8, 9 und 10 zur Verstromung von Braunkohle. Die Änderung der Genehmigung ist mit dem geplanten Bau des Energieblocks einschließlich des Kohlestaubkessels mit einer Leistung von 1275 mg Dampf/h und mit einer thermischen Nennleistung von 1020 MW verknüpft. Für das Vorhaben wurde zwischen 2009 und 2013 ein grenzüberschreitendes Verfahren mit Beteiligung der Bundesrepublik Deutschland zur Umweltverträglichkeitsprüfung durchgeführt, das mit dem Bescheid über Umweltauflagen des Bürgermeisters der Stadt Bogatynia vom 18. Oktober 2013 (GZ.: BZI.IOP.6220.18.2013), der durch ortsübliche Bekanntmachung und in den örtlichen Tageszeitungen sowie im Sächsischen Amtsblatt veröffentlicht wurde, abgeschlossen wurde. Danach wurde für das Vorhaben ein Genehmigungsverfahren nach polnischem Recht durchgeführt. Zwischenzeitlich hat der Marschall der Woiwodschaft Niederschlesien für das Kraftwerk Turów weitere Genehmigungen und Änderungsbescheide erlassen: Bescheid Nr. PZ 220/2014 vom 29. August 2014, Bescheid Nr. PZ 220.1/2014 vom 5. Dezember 2014, Bescheid Nr. PZ 220.2/2015 vom 28. September 2015 sowie Bescheid Nr. PZ 220.3/2017 vom 28. April 2017. Der Antrag und die Antragsunterlagen sowie die im Rahmen dieses Änderungsgenehmigungsverfahrens den deutschen Behörden vorgelegten Änderungsgenehmigungsbescheide wurden im August 2017 durch öffentliche Auslegung bekannt gemacht. Das Verfahren, das zum Erlass des Bescheides vom 28. April 2017 geführt hat, ist vom polnischen Umweltministerium an die erstinstanzliche Behörde, das Marschallamt der Woiwodschaft Niederschlesien, zurückverwiesen worden. Eine Überarbeitung der Antragsunterlagen und eine erneute Antragsprüfung wird wegen der im August 2017 von der europäischen Union veröffentlichten BVT-Schlussfolgerungen zu den besten verfügbaren Techniken (BVT) gemäß der Richtlinie 2010/75/EU des Europäischen Parlaments und des Rates für Großfeuerungsanlagen vom polnischen Umweltministerium für erforderlich gehalten. Der Betreiber der Anlage, PGE, hat daraufhin ergänzende Antragsunterlagen erarbeiten lassen, die die Anforderungen, die sich aus den BVT-Schlussfolgerungen ergeben, für die Anlage berücksichtigen sollen und damit die Umweltauswirkungen des Vorhabens im Vergleich zu den bisher geplanten Maßnahmen weiter senken sollen. Außerdem beschränkte der Betreiber der Anlage, PGE, den Umfang des Antrags zu den Details über den Block 7 (ausschließlich der Blöcke 1-6) und änderte den Umfang des Antrags bezüglich der Wasser-und Abwasserbewirtschaftung. Durch den polnischen Generaldirektor für Umweltschutz wurden der deutschen Seite die geänderten und ergänzenden Antragsunterlagen vom Januar 2020 für den Antrag der PGE vom Oktober 2015 auf Änderung der integrierten Genehmigung für die Anlage Kraftwerk Turów in Bogatynia (Antragsverfasser EKOPOLIN Sp. zo.o., Wrocław und für die Immissionsprognose EKOMETRIA, Gdańsk) übersandt mit der Bitte, die Öffentlichkeitsbeteiligung in den voraussichtlich betroffenen Gebieten der Bundesrepublik Deutschland durchzuführen. Die der deutschen Seite von der Republik Polen übermittelten geänderten und ergänzenden Antragsunterlagen werden ebenfalls auf der Internetseite der Landesdirektion Sachsen öffentlich bekannt gemacht (www.lds.sachsen.de/bekanntmachungen, weitere Informationen zur öffentlichen Auslegung siehe Bekanntmachung.)

Kläranlage Buchbach

Der Markt Buchbach betreibt auf Flur-Nr. 1225/1, Gem. Walkersaich, seit 1989 eine Kläranlage. Änderungen erfolgten zuletzt in den Jahren 2012 und 2017. Die für die beantragte Ausbaugröße zugrunde gelegte BSB5-Fracht (roh) im Zulauf der Kläranlage beträgt 180 kg/d (entsprechend 3.000 EW60). Als Überwachungswerte bei der Einleitung in den Einstettinger Bach werden festgelegt: Von der nicht abgesetzten, homogenisierten qualifizierten Stichprobe: Konzentration (mg/l) Chemischer Sauerstoffbedarf (CSB) 40 Biochemischer Sauerstoffbedarf (BSB5) 20 Stickstoff gesamt (Nges) als Summe von Ammo- nium-, Nitrit- und Nitrat-Stickstoff vom 01. Mai bis 31. Oktober 13 Phosphor gesamt (Pges) 2

1 2 3 4 511 12 13