Zielsetzung: Für die Energiewende werden zahlreiche Solarmodule produziert und installiert. Die jährliche Abfallmenge von Solarmodulen wird allein in Deutschland für das Jahr 2030 über 150.000 Tonnen (ca. 7,5 Millionen Solarmodule) betragen und steigt in den kommenden Jahren weiter exponentiell an. Gemäß Circusol, einem Konsortium aus 15 Institutionen, ist die Hälfte des Abfallstroms an Solarmodulen für den Wiedereinsatz verwendbar, also 2nd-Life fähig. Aktuell werden diese 2nd-Life fähigen Solarmodule jedoch nicht ausreichend geprüft, sodass sie dem Recycling zugeführt werden. Durch den Einsatz unseres automatisierten und intelligenten Prüfsystems können wir die Solarmodule vor einer frühzeitigen Entsorgung bewahren. Durch die Förderung der Better Sol GmbH durch das DBU Green Startup Programm haben wir die Möglichkeit innerhalb des 24-monatigen Förderzeitraums unseren Teststand zum automatisierten Testen von Solarmodulen zu entwickeln, aufzubauen und in Betrieb zu nehmen. So können wir erstmalig Testdaten generieren, mithilfe dessen der Machine Learning Algorithmus angelernt und optimiert werden kann. So können wir 2nd-Life Solarmodule mit garantierter Leistung und einer Leistungsprognose zurück in den Markt bringen und das volle Potenzial der Module ausschöpfen. Für den Vertrieb der Solarmodule soll ein Vertriebsprozess und eine Marketingstrategie aufgebaut werden. Dadurch steigt die Sichtbarkeit und die Aufklärung in der Gesellschaft hinsichtlich der Ressourcenverschwendung in der Solarindustrie. Durch die Verlängerung der Lebensdauer von Solarmodulen werden endliche und kritische Ressourcen, wie Silizium oder Silber gespart. Das vermeidet wiederrum CO2-Emissionen und Treibhausgase, da die Module bereits produziert wurden. Die prognostizierte Abfallmenge für 2030 entspricht 150.000 Tonnen an Solarmodulen. Für die Herstellung dieser Module werden 1,2 Millionen Tonnen CO2-Äquivalente emittiert. Durch die Wiederverwendung kann die Lebensdauer von 50 % der Module verlängert werden, dadurch würden anhand der Zahlen für 2030 ca. 0,6 Millionen Tonnen CO2-Äquivalente eingespart werden. Mit unseren geprüften, wiederverwendeten 2nd-Life Solarmodulen schaffen wir einen Zugang zu sauberer, bezahlbarer Energie, wodurch nachhaltige Städte und Gemeinden geschaffen werden. Durch unser Angebot fördern wir einen nachhaltigen Konsum und eine nachhaltige Erzeugung von Solarstrom. Gleichzeitig vermeiden wir die Verschwendung von Ressourcen.
Die ganzjährige Versorgung mit erneuerbarer thermischer Energie stellt eine zentrale Herausforderung der Energiewende dar. Die Gründe sind die saisonalen Zyklen des Energiebedarfs und die eingeschränkte Möglichkeit des Transports thermischer Energie. Das Projekt 'EEW' verfolgt das Ziel einer dezentralen, ganzheitlichen Sektorenkopplung auf Quartiersebene, die ganzjährig die Versorgung mit erneuerbarer Wärme sicherstellen kann. Die Grundlage für das Projekt bilden zwei vom Projektpartner GP Joule mitentwickelte Modellregionen - eine dominiert durch PV-Strom die andere durch Wind-Strom. Für diese Modellregionen wird der vom Projektpartner DLR entwickelte thermochemische Energiespeicher auf Basis von gebranntem Kalk und Wasser weiterentwickelt. Die Vorteile des Speichers liegen im denkbar günstigen und weltweit verfügbaren Speichermaterial 'Kalk' sowie in einer verlustfreien Speicherung. Die zentrale Herausforderung der Speichertechnologie liegt in der effizienten Reaktionsführung der Be- bzw. Entladungsreaktion die im Rahmen des Projekts auf Basis der Pflugscharmischer-Technologie des Projektpartners Lödige optimiert werden soll. Das Projektziel ist daher eine kostengünstige, ressourcenschonende und effizienten Speichertechnologie zur Kopplung des Strom- und Wärmesektors für die regenerative Wärmebereitstellung in der Nahwärmeversorgung von Wohnquartieren zu entwickeln. Das Projekt verfolgt dabei einen ganzheitlichen Lösungsansatz: Die Systemintegration, die experimentelle Hardwareentwicklung als auch die industrielle Skalierung und wirtschaftliche Verwertungsmöglichkeiten aus Hersteller- und Nutzersicht. Mit Abschluss des Projekts liegt ein Integrations- und Betriebskonzept für das Speichersystems in einem realen Nahwärmenetz vor und ist anhand belastbarer Betriebsdaten techno-ökonomisch bewertet. Damit kann im Anschluss an das Projekt die Technologie direkt im Feld demonstriert und von den Partnern wirtschaftlich verwertet werden.
Die ganzjährige Versorgung mit erneuerbarer thermischer Energie stellt eine zentrale Herausforderung der Energiewende dar. Die Gründe sind die saisonalen Zyklen des Energiebedarfs und die eingeschränkte Möglichkeit des Transports thermischer Energie. Das Projekt 'EEW' verfolgt das Ziel einer dezentralen, ganzheitlichen Sektorenkopplung auf Quartiersebene, die ganzjährig die Versorgung mit erneuerbarer Wärme sicherstellen kann. Die Grundlage für das Projekt bilden zwei vom Projektpartner GP Joule mitentwickelte Modellregionen - eine dominiert durch PV-Strom die andere durch Wind-Strom. Für diese Modellregionen wird der vom Projektpartner DLR entwickelte thermochemische Energiespeicher auf Basis von gebranntem Kalk und Wasser weiterentwickelt. Die Vorteile des Speichers liegen im denkbar günstigen und weltweit verfügbaren Speichermaterial 'Kalk' sowie in einer verlustfreien Speicherung. Die zentrale Herausforderung der Speichertechnologie liegt in der effizienten Reaktionsführung der Be- bzw. Entladungsreaktion die im Rahmen des Projekts auf Basis der Pflugscharmischer-Technologie des Projektpartners Lödige optimiert werden soll. Das Projektziel ist daher eine kostengünstige, ressourcenschonende und effizienten Speichertechnologie zur Kopplung des Strom- und Wärmesektors für die regenerative Wärmebereitstellung in der Nahwärmeversorgung von Wohnquartieren zu entwickeln. Das Projekt verfolgt dabei einen ganzheitlichen Lösungsansatz: Die Systemintegration, die experimentelle Hardwareentwicklung als auch die industrielle Skalierung und wirtschaftliche Verwertungsmöglichkeiten aus Hersteller- und Nutzersicht. Mit Abschluss des Projekts liegt ein Integrations- und Betriebskonzept für das Speichersystems in einem realen Nahwärmenetz vor und ist anhand belastbarer Betriebsdaten techno-ökonomisch bewertet. Damit kann im Anschluss an das Projekt die Technologie direkt im Feld demonstriert und von den Partnern wirtschaftlich verwertet werden.
Die ganzjährige Versorgung mit erneuerbarer thermischer Energie stellt eine zentrale Herausforderung der Energiewende dar. Die Gründe sind die saisonalen Zyklen des Energiebedarfs und die eingeschränkte Möglichkeit des Transports thermischer Energie. Das Projekt 'EEW' verfolgt das Ziel einer dezentralen, ganzheitlichen Sektorenkopplung auf Quartiersebene, die ganzjährig die Versorgung mit erneuerbarer Wärme sicherstellen kann. Die Grundlage für das Projekt bilden zwei vom Projektpartner GP Joule mitentwickelte Modellregionen - eine dominiert durch PV-Strom die andere durch Wind-Strom. Für diese Modellregionen wird der vom Projektpartner DLR entwickelte thermochemische Energiespeicher auf Basis von gebranntem Kalk und Wasser weiterentwickelt. Die Vorteile des Speichers liegen im denkbar günstigen und weltweit verfügbaren Speichermaterial 'Kalk' sowie in einer verlustfreien Speicherung. Die zentrale Herausforderung der Speichertechnologie liegt in der effizienten Reaktionsführung der Be- bzw. Entladungsreaktion die im Rahmen des Projekts auf Basis der Pflugscharmischer-Technologie des Projektpartners Lödige optimiert werden soll. Das Projektziel ist daher eine kostengünstige, ressourcenschonende und effizienten Speichertechnologie zur Kopplung des Strom- und Wärmesektors für die regenerative Wärmebereitstellung in der Nahwärmeversorgung von Wohnquartieren zu entwickeln. Das Projekt verfolgt dabei einen ganzheitlichen Lösungsansatz: Die Systemintegration, die experimentelle Hardwareentwicklung als auch die industrielle Skalierung und wirtschaftliche Verwertungsmöglichkeiten aus Hersteller- und Nutzersicht. Mit Abschluss des Projekts liegt ein Integrations- und Betriebskonzept für das Speichersystems in einem realen Nahwärmenetz vor und ist anhand belastbarer Betriebsdaten techno-ökonomisch bewertet. Damit kann im Anschluss an das Projekt die Technologie direkt im Feld demonstriert und von den Partnern wirtschaftlich verwertet werden.
Die ganzjährige Versorgung mit erneuerbarer thermischer Energie stellt eine zentrale Herausforderung der Energiewende dar. Die Gründe sind die saisonalen Zyklen des Energiebedarfs und die eingeschränkte Möglichkeit des Transports thermischer Energie. Das Projekt 'EEW' verfolgt das Ziel einer dezentralen, ganzheitlichen Sektorenkopplung auf Quartiersebene, die ganzjährig die Versorgung mit erneuerbarer Wärme sicherstellen kann. Die Grundlage für das Projekt bilden zwei vom Projektpartner GP Joule mitentwickelte Modellregionen - eine dominiert durch PV-Strom die andere durch Wind-Strom. Für diese Modellregionen wird der vom Projektpartner DLR entwickelte thermochemische Energiespeicher auf Basis von gebranntem Kalk und Wasser weiterentwickelt. Die Vorteile des Speichers liegen im denkbar günstigen und weltweit verfügbaren Speichermaterial 'Kalk' sowie in einer verlustfreien Speicherung. Die zentrale Herausforderung der Speichertechnologie liegt in der effizienten Reaktionsführung der Be- bzw. Entladungsreaktion die im Rahmen des Projekts auf Basis der Pflugscharmischer-Technologie des Projektpartners Lödige optimiert werden soll. Das Projektziel ist daher eine kostengünstige, ressourcenschonende und effizienten Speichertechnologie zur Kopplung des Strom- und Wärmesektors für die regenerative Wärmebereitstellung in der Nahwärmeversorgung von Wohnquartieren zu entwickeln. Das Projekt verfolgt dabei einen ganzheitlichen Lösungsansatz: Die Systemintegration, die experimentelle Hardwareentwicklung als auch die industrielle Skalierung und wirtschaftliche Verwertungsmöglichkeiten aus Hersteller- und Nutzersicht. Mit Abschluss des Projekts liegt ein Integrations- und Betriebskonzept für das Speichersystems in einem realen Nahwärmenetz vor und ist anhand belastbarer Betriebsdaten techno-ökonomisch bewertet. Damit kann im Anschluss an das Projekt die Technologie direkt im Feld demonstriert und von den Partnern wirtschaftlich verwertet werden.
Die Karte zeigt die Summe der installierten elektrischen Leistung der Photovoltaikanlagen für die Planungsregionen (Plan.-Reg.) in Bayern - unterteilt nach Gebäude- und Freiflächenanlagen.
<p>Steckersolargeräte gewinnen zunehmend an Bedeutung</p><p>Steckersolargeräte, umgangssprachlich Balkonkraftwerke, werden immer beliebter. Durch sie kann man vergleichsweise preiswert und leicht Solarstrom erzeugen und selber nutzen. In einer aktuellen Studie wurde untersucht, wie hoch das Marktvolumen dieser Anlagen tatsächlich ist, wie viel Strom bereitgestellt wird und in welchem Umfang dieser PV-Strom selbst verbraucht oder ins Netz eingespeist wird.</p><p>Im Abschlussbericht des aktuellen Sachverständigengutachtens<a href="https://www.umweltbundesamt.de/publikationen/steckersolargeraete">„Steckersolargeräte – Statistische Untersuchungen zu Anzahl, installierter Leistung und Selbstverbrauch“</a>analysiert das Zentrum für Sonnenenergie und Wasserstoffforschung Baden-Württemberg (ZSW) den statistischen Status Quo der Steckersolargeräte in Deutschland.</p><p>Eine Literaturrecherche, eine Marktumfrage sowie ein Fachgespräch mit Branchenakteuren dienten als Grundlage für eine Hochrechnung des Gesamtbestands und die Festlegung von Annahmen zur korrespondierenden Segmentierung des Zubaus in den vergangenen Jahren. Auf dieser Basis wurde die PV-Stromerzeugung dieser Anlagen, unterschieden in Selbstverbrauch und Netzeinspeisung, ermittelt.</p><p>Die Ergebnisse zeigen: Steckersolargeräte gewinnen zunehmend an Bedeutung in Deutschland. Im Jahr 2024 wurde eine Nettostromerzeugung von rund 1,7 <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=TWh#alphabar">TWh</a> ermittelt. Davon entfielen 1,1 TWh auf Vorort selbst verbrauchten und 0,6 TWh in das Netz eingespeisten Strom.</p><p>Der Ertrag der Steckersolargeräte war bisher nicht in den Statistiken zur Stromerzeugung aus erneuerbaren Energien enthalten. Die Arbeitsgruppe Erneuerbare Energien – Statistik (AGEE-Stat), deren Geschäftsstelle im Fachgebiet V 1.8 des Umweltbundesamt angesiedelt ist und die im Auftrag des Bundesministerium für Wirtschaft und Energie (BMWE) die offiziellen Daten zur Entwicklung der erneuerbaren Energien der Bundesrepublik bereitstellt, wird die Erkenntnisse dieses Gutachtens in Kürze bei der nächsten Aktualisierung ihrer Zeitreihen zur Entwicklung der erneuerbaren Energien in Deutschland, welche voraussichtlich im Oktober veröffentlicht werden, berücksichtigen.</p>
Diese Schulen gehen beim Klimaschutz voran! Projekttage, Mülltrennung, ökologische Vielfalt im Schulhof, Umweltfahrten, Klima-Workshops und mehr: Die Berliner Schulen beweisen, wie vielfältig und kreativ das Engagement in Sachen Nachhaltigkeit und Klimaschutz aussehen kann. Übersicht der Berliner Lernorte, die sich im besonderen Maße aktiv im Umwelt- und Klimaschutz engagieren. Bild: Rawpixel/Depositphotos.com Grundschule am Buschgraben Die Grundschule am Buschgraben fördert einen umweltfreundlichen Schulweg, pflegt einen eigenen Schulgarten und bietet Nisthilfen für Vögel und Insekten an. Grundschule am Buschgraben Weitere Informationen Bild: Artur Verkhovetskiy / Depositphotos.com OSZ Lotis Das OSZ Lotis ist Umweltschule in Europa. Die Auszeichnung hat das Oberstufententrum für seine vielen Projekte zu den Themen Umwelt- und Klimaschutz bekommen. OSZ Lotis Weitere Informationen Bild: Ingo Bartussek - fotolia.com Kolibri-Grundschule Strom vom Dach, Gemüse aus dem Hochbeet, Honig von den Schulbienen: Die Kolibri-Grundschule setzt auf nachhaltige Eigenproduktion. Kolibri-Grundschule Weitere Informationen Bild: romrodinka/Depositphotos.com Reinhardswald-Grundschule An der Kreuzberger Grundschule erhalten die Kinder einen spielerischen und inklusiven Einblick in die vielfältigen Möglichkeiten des Klimaschutzes. Reinhardswald-Grundschule Weitere Informationen Bild: belchonock/Depositphotos.com Schadow-Gymnasium Am Schadow-Gymnasium sind Klimathemen selbstverständlicher Teil des Unterrichts und bei Projektwochen. Im Schulgarten lernen die Schülerinnen und Schüler, wie wichtig eine intakte Natur ist. Schadow-Gymnasium Weitere Informationen Bild: Georg-Schlesinger-Schule Georg-Schlesinger-Schule Die Reinickendorfer Georg-Schlesinger-Schule setzt auf Solarstrom aus Eigenproduktion und die Vermittlung von Fachwissen um ihren Beitrag zum Klimaschutz zu leisten. Georg-Schlesinger-Schule Weitere Informationen Bild: Lydia Goos Max-Delbrück-Gymnasium Tiny Forest, Schulbienen und Projekte: Die Schülerinnen und Schüler des Max-Delbrück-Gymnasiums engagieren sich in vielen Bereichen für den Umwelt- und Klimaschutz. Max-Delbrück-Gymnasium Weitere Informationen Bild: davit85/Depositphotos.com Wetzlar-Schule Die Schülerinnen und Schüler der Wetzlar-Schule werden im Schulgarten, am Teich und im Unterricht für Umwelt- und Klimathemen sensibilisiert. Der Strom kommt fast vollständig aus der eigenen Solaranlage. Wetzlar-Schule Weitere Informationen Bild: oksun70 / depositphotos.com Schule am Regenweiher Die Neuköllner Grundschule leistet mit ihrer Bienen-AG, viel Grün auf dem Schulgelände und der schuleigenen Solaranlage einen Beitrag zum Umwelt- und Klimaschutz. Schule am Regenweiher Weitere Informationen Bild: pressmaster/Depositphotos.com Nürtingen-Grundschule Auf dem Schulacker, im grünen Klassenzimmer, im Untericht und Hort erkunden die Schülerinnen und Schüler der Nürtingen-Grundschule die Zusammenhänge zwischen eigenem Tun und dem Wandel der Umwelt. Nürtingen-Grundschule Weitere Informationen Bild: silverjohn/depositphotos.com Modersohn-Grundschule Durch die Teilnahme an einem Pilotprojekt lernen die Schülerinnen und Schüler der Modersohn-Grundschule den bewussten Umgang mit Trinkwasser. Aktiv für den Umweltschutz setzen sie sich außerdem in einem ganz besonderen Kurs ein. Modersohn-Grundschule Weitere Informationen Bild: dpa Anna-Seghers-Schule Die Anna-Seghers-Schule beteiligt sich an einem Pilotprojekt zu Energiesparpotenzialen. Dafür arbeitet die Adlershofer Gemeinschaftsschule eng mit dem Bezirk Treptow-Köpenick zusammen. Anna-Seghers-Schule Weitere Informationen Bild: Rawpixel/Depositphotos.com Jane-Goodall-Grundschule Die Jane-Goodall-Grundschule verknüpft ihr naturwissenschaftliches Profil mit Projekten und Exkursionen zum Thema Umwelt- und Klimaschutz. Jane-Goodall-Grundschule Weitere Informationen Bild: Rawpixel/Depositphotos.com Bouché-Schule Schulgarten, Abfalltrennung, zu Fuß zur Schule: Die Bouché-Schule in Alt-Treptow engagiert sich schon lange und in vielen Bereichen für mehr Klimaschutz und Nachhaltigkeit. Bouché-Schule Weitere Informationen Bild: Goodluz/Depositphotos.com Schweizerhof Grundschule Die Schweizerhof Grundschule in Zehlendorf treibt ihre Umwelt- und Klimaschutzprojekte vor allem im Rahmen des Frei Day voran. Viel passiert ist aber auch an den Projekttagen. Schweizerhof Grundschule Weitere Informationen Bild: Ludwig-Hoffmann-Grundschule Ludwig-Hoffmann-Grundschule Die Ludwig-Hoffmann-Grundschule leistet mit speziellen Projekttagen, dem Schulgarten und einer eigenen Solaranlage einen wichtigen Beitrag zum Klimaschutz. Ludwig-Hoffmann-Grundschule Weitere Informationen Bild: Rawpixel/Depositphotos.com Carl-Sonnenschein-Grundschule Umweltbildung, Schulgarten und Solaranlage: Die Carl-Sonnenschein-Grundschule tut schon jetzt eine Menge für den Klimaschutz - und hat noch viel vor. Sie will Klimaschule werden. Carl-Sonnenschein-Grundschule Weitere Informationen Bild: motortion/Depositphotos.com Grundschule an der Bäke Die Grundschule an der Bäke wurde für ihre BNE-Projekte bereits mehrfach als Umweltschule in Europa ausgezeichnet. Aktiv werden die jungen Klimaschützer:innen auch außerhalb des Schulgeländes. Grundschule an der Bäke Weitere Informationen Bild: halfpoint/Depositphotos.com Berlin Bilingual School Die Berlin Bilingual School sensibilisiert ihre Schülerinnen und Schüler mit einer Rubbish Awareness Week und einer Öko-Woche für Umweltthemen. Auch die Schulgebäude selbst leisten einen Beitrag zum Klimaschutz. Berlin Bilingual School Weitere Informationen Bild: Kepler-Schule Neukölln Kepler-Schule Neukölln Die Neuköllner Kepler-Schule legt mit ihren Wahlpflichtkursen und Arbeitsgemeinschaften einen Schwerpunkt auf das Thema nachhaltige Entwicklung. Kepler-Schule Neukölln Weitere Informationen Bild: Syda_Productions/Depositphotos.com Maßnahmen: Aktiver Klimaschutz an Schulen Wie sieht der Klimaschutz an Schulen konkret aus? Diese Maßnahmen haben die Schulen bereits durchgeführt und weitere stehen vor der Umsetzung. Weitere Informationen Bild: Berliner Energieagentur / Dietmar Gust Wettbewerb: Berliner Klima Schulen Der Wettbewerb richtet sich an Berliner Schülerinnen und Schüler aller Altersgruppen und Schulformen und würdigt herausragende Klimaschutzaktivitäten. Weitere Informationen
Die Karte zeigt die Summe der installierten elektrischen Leistung der Photovoltaikanlagen für die Regierungsbezirke in Bayern - unterteilt nach Gebäude- und Freiflächenanlagen. Summe der installierten Leistungen der Photovoltaikanlagen je Regierungsbezirk in Bayern - getrennt nach Dach- und Freiflächen.
In June 2010, the DLR Group of Systems Analysis started an investigation about innovative financing of Concentrating Solar Power Plants (CSP) in countries of the Middle East and North Africa. We found a possible strategy for the market introduction of concentrating solar power (CSP) plants in the Middle East and North Africa (MENA) that will not require considerable subsidization and will not constitute a significant burden for electricity consumers in the region. In the first section, the paper explains the need of MENA countries for sustainable supply of electricity and calculates the cost of electricity for a model case country. In the second part, the cost development of concentrating solar power plants is calculated on the basis of expectations for the expansion of CSP on a global level. After that, the challenges for the market introduction of CSP in MENA are explained. Finally, we present a strategy for the market introduction of CSP in MENA, removing the main barriers for financing and starting market introduction in the peak load and the medium load segment of power supply. The paper explains why long-term power purchase agreements (PPA) for CSP should be calculated on the basis of avoided costs, starting in the peak load segment. Such PPA are not yet available, the paper aims to convince policy makers to introduce them. The attached power point file shows some examples of time series of load and supply by CSP in the different load segments and shows the graphs used in the report. The attached Excel Sheet gives the time series of load and supply by CSP for the different load segments for a total reference year.
Origin | Count |
---|---|
Bund | 591 |
Kommune | 3 |
Land | 104 |
Zivilgesellschaft | 2 |
Type | Count |
---|---|
Daten und Messstellen | 2 |
Ereignis | 17 |
Förderprogramm | 478 |
Gesetzestext | 1 |
Lehrmaterial | 1 |
Text | 118 |
Umweltprüfung | 6 |
unbekannt | 57 |
License | Count |
---|---|
geschlossen | 154 |
offen | 518 |
unbekannt | 8 |
Language | Count |
---|---|
Deutsch | 644 |
Englisch | 105 |
Resource type | Count |
---|---|
Archiv | 9 |
Datei | 27 |
Dokument | 79 |
Keine | 355 |
Webdienst | 14 |
Webseite | 269 |
Topic | Count |
---|---|
Boden | 299 |
Lebewesen und Lebensräume | 332 |
Luft | 314 |
Mensch und Umwelt | 680 |
Wasser | 178 |
Weitere | 654 |