API src

Found 26 results.

Modellregion, Bio4MatPro-BoostLab 5-2: Acrylnitril aus erneuerbarer Quelle

Das Projekt "Modellregion, Bio4MatPro-BoostLab 5-2: Acrylnitril aus erneuerbarer Quelle" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: RWTH Aachen University, Institut für Textiltechnik, Lehrstuhl für Textilmaschinenbau.

BioElektroGas - Bioelektrochemische Produktion von hochreinem Biogas aus Abfallstoffen, Teil 1

Das Projekt "BioElektroGas - Bioelektrochemische Produktion von hochreinem Biogas aus Abfallstoffen, Teil 1" wird/wurde gefördert durch: Ministerium für Umwelt, Klima und Energiewirtschaft Baden-Württemberg. Es wird/wurde ausgeführt durch: Universität Hohenheim, Landesanstalt für Agrartechnik und Bioenergie (740).Ziel des Forschungsvorhabens ist die Entwicklung eines vollkommen neuen Verfahrens zur Erzeugung von gasförmigen Kraftstoffen aus organischen Abfallstoffen. Dazu werden erstmals fermentative Verfahren und bio-elektrische Systeme zu einem neuen Prozess kombiniert. In diesem Prozess werden die Abfallstoffe zunächst in einem 'dark fermentation reactor' fermentativ in organische Säuren umgewandelt und anschließend einer bio-elektrochemischen Konversion, bestehend aus einer Anoden- und einer Kathodenkammer zugeführt werden. An der Anode werden die gelösten organischen Säuren durch exoelektrogene Bakterien zu CO2, H+ und e- oxidiert. Während die Protonen durch eine PEM (proton exchange membrane) der Kathode zugeführt werden, geben die Bakterien die freiwerdenden Elektronen an die Anode ab, so dass diese über eine elektrische Verbindung an die Kathode weiter geleitet werden. Das gebildete CO2 wird ergänzend bedarfsgerecht der Kathode zugeführt. Die Einzelziele des Projektes sind wie folgt definiert: - Entwicklung und Erprobung eines geeigneten Anoden- und Kathodenmaterials und Optimierung der Elektrodenstruktur - Untersuchung der biologischen Diversität der Mikroorganismen an den Elektroden - Optimierung des fermentativ bioelektrochemischen Gesamtverfahrens unter technischen Aspekten im Labormaßstab. Im Berichtszeitraum wurden im Wesentlichen folgende Arbeiten durchgeführt: Ausgehend von Vorarbeiten zur Wasserstoffproduktion mit Edelstahlkathoden in dem für die Methanogenen geeigneten Kulturmedium, wurde iterativ ein auf die Anforderungen der Kathodenentwicklung hin optimiertes Reaktorkonzept entwickelt. Eine Hauptanforderung an den Reaktor ist dabei die integrierte CO2-Versorgung. Hinsichtlich der Entwicklung eines geeigneten Biofilm-Trägermaterials wurden vergleichende Untersuchungen mit Glasfasern und Nanofasern aus Polyacrylnitril (PAN) in einer Kultur von M. barkeri durchgeführt. Die PAN-Nanofasern wurden teilweise zusätzlich mit (3-Aminopropyl)triethoxysilan (ATPES) behandelt, um deren Oberfläche mit positiven Ladungen auszurüsten und so die Biofilmansiedlung zu verbessern. In verschiedenen Langzeitexperimenten mit bioelektrochemischen Systemen, die mit Perkolat als Substrat betrieben wurden, konnte gezeigt werden, dass die bereits im Perkolat bestehende Community an Organismen in der Lage ist, die enthaltenen organischen Säuren komplett zu oxidieren. Dabei konnten Stromstärken von bis zu 0,5 mA/cm2 Anodenfläche gemessen werden. Die durchgeführten Untersuchungen zum fermentativen Aufschluss der Abfallstoffe belegen, dass die gewählten Substrate sehr gut in organische Säuren überführt werden können. Es traten keinerlei Prozessstörungen auf. In HPLC-Untersuchungen konnten keine Alkohole und Zucker im Perkolat nachgewiesen werden. Die Untersuchung des Perkolats zeigte für pH-6,0 die höchsten Konzentrationen an organischen Säuren, besonders die Gehalte an Essigsäure und Buttersäure lagen im Vergleich deutlich über den Werten bei pH-5,5.

FiMaLiS- Monolithische, faserbasierte Hybrid-Kathodenmaterialien für zyklusstabile Lithium-Schwefel-Hochleistungsbatterien mit großer spezifischer Oberfläche, Teilvorhaben: Maßgeschneiderte Elektrolyten auf Basis ionischer Flüssigkeiten für monolithische, faserbasierte Hybridkathodenmaterialien

Das Projekt "FiMaLiS- Monolithische, faserbasierte Hybrid-Kathodenmaterialien für zyklusstabile Lithium-Schwefel-Hochleistungsbatterien mit großer spezifischer Oberfläche, Teilvorhaben: Maßgeschneiderte Elektrolyten auf Basis ionischer Flüssigkeiten für monolithische, faserbasierte Hybridkathodenmaterialien" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: IoLiTec - Ionic Liquid Technologies GmbH.Im Projekt sollen Schwefel/Polyacrylnitril (SPAN)-Komposite untersucht werden. Der SPAN-Komposit soll als monolithischer-, Faser- sowie als Monolith/Faser-Hybrid-Komposit ausgestaltet sein und charakterisiert werden. Die erhaltenen Ergebnisse sollen mit der chemischen Struktur und Morphologie korreliert und für weitere Optimierungen herangezogen werden. Neben der Polymersynthese für das Monolith-Design und die Monolith-Synthese (Anpassung der Porosität), müssen dazu faserbasierte Hybrid-PAN-Materialien, die Infiltration der PAN-basierten Hybridmaterialien mit Schwefel, die Umwandlung in SPAN, die Charakterisierung der SPAN-Materialien, adressiert werden. Analysen werden Rasterelektronenmikroskopie, XRD-Analysen, Analysen zur Ausrichtung und Porosität, thermische Analyseverfahren sowie XPS-Verfahren beinhalten. Neuartige Copolymere auf PAN-Basis sowie PAN-basierte Polymermischungen werden entwickelt um Fasern mit unterschiedlichem Dehnungsverhältnis und Titer für monolithische faserbasierte Hybrid-SPAN-Materialien zu erhalten. Ionische Flüssigkeiten (ILs) sollen für den Einsatz als Elektrolyte in Li-S-Batterien entwickelt und hergestellt werden. Schließlich sollen elektrochemische Lade- und Entladetests, die mit realen Bedingungen vergleichbar sind, im Hinblick auf die Anwendung im Bereich Elektromobilität durchgeführt werden. Das Unternehmen entwickelt speziell konzipierte ionische Flüssigkeiten (ILs) für den Einsatz als Elektrolyte in Li-S-Batterien und stellt diese bereit. In Abhängigkeit von den Ergebnissen der am Institut für Polymerchemie und bei der Daimler AG durchgeführten elektrochemischen Untersuchungen wird IoLiTec neuartige ILs entwickeln, herstellen und liefern. Vorteil für das Unternehmen: auf Batterien ausgerichtete, forschungsorientierte Entwicklung neuartiger ILs, Informationsgewinn über die elektrochemische und chemische Leistungsfähigkeit der eigenen Ils.

FiMaLiS- Monolithische, faserbasierte Hybrid-Kathodenmaterialien für zyklusstabile Lithium-Schwefel-Hochleistungsbatterien mit großer spezifischer Oberfläche, Teilvorhaben: Charakterisierung der Ausgangsmaterialien und post mortem-Analyse

Das Projekt "FiMaLiS- Monolithische, faserbasierte Hybrid-Kathodenmaterialien für zyklusstabile Lithium-Schwefel-Hochleistungsbatterien mit großer spezifischer Oberfläche, Teilvorhaben: Charakterisierung der Ausgangsmaterialien und post mortem-Analyse" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Deutsche Institute für Textil- und Faserforschung Denkendorf (DITF) - Institut für Textilchemie und Chemiefasern (ITCF).Im Projekt sollen Schwefel/Polyacrylnitril (SPAN)-Komposite untersucht werden. Der SPAN-Komposit soll als monolithischer-, Faser- sowie als Monolith/Faser-Hybrid-Komposit ausgestaltet sein und charakterisiert werden. Die erhaltenen Ergebnisse sollen mit der chemischen Struktur und Morphologie korreliert und für weitere Optimierungen herangezogen werden. Neben der Polymersynthese für das Monolith-Design und die Monolith-Synthese (Anpassung der Porosität), müssen dazu faserbasierte Hybrid-PAN-Materialien, die Infiltration der PAN-basierten Hybridmaterialien mit Schwefel, die Umwandlung in SPAN, die Charakterisierung der SPAN-Materialien, adressiert werden. Analysen werden Rasterelektronen-mikroskopie, XRD-Analysen, Analysen zur Ausrichtung und Porosität, thermische Analyseverfahren sowie XPS-Verfahren beinhalten. Neuartige Copolymere auf PAN-Basis sowie PAN-basierte Polymermischungen werden entwickelt um Fasern mit unterschiedlichem Dehnungsverhältnis und Titer für monolithische faserbasierte Hybrid-SPAN-Materialien zu erhalten. lonische Flüssigkeiten (ILs) sollen für den Einsatz als Elektrolyte in Li-S-Batterien entwickelt und hergestellt werden. Schließlich sollen elektrochemische Lade- und Entladetests, die mit realen Bedingungen vergleichbar sind, im Hinblick auf die Anwendung im Bereich Elektromobilität durchgeführt werden. Das ITCF führt spezielle Analysen durch, die anderweitig nicht verfügbar sind. Hierzu gehören die Rasterelektronenmikroskopie (REM), die SAXS/WAXS-Analyse der Fasern zur Bestimmung des Kristallinitätsgrades, der Ausrichtung und der Porosität sowie die thermische Analyse (DSC-TGA- FT-IR-MS) für ein besseres Verständnis des Umwandlungsprozesses von PAN zu SPAN durch Analyse der bei der thermischen Umwandlung erzeugten Nebenprodukte. Außerdem führt das ITCF die sekundäre Faserverarbeitung zur Optimierung der Porosität und Kristallinität für eine optimale Schwefelimprägnierung und einen hohen endgültigen S-Gehalt (größer als 55 Gew.-%) durch.

FiMaLiS- Monolithische, faserbasierte Hybrid-Kathodenmaterialien für zyklusstabile Lithium-Schwefel-Hochleistungsbatterien mit großer spezifischer Oberfläche, Teilvorhaben: Synthese und elektrochemische Charakterisierung des Kathodenmaterials

Das Projekt "FiMaLiS- Monolithische, faserbasierte Hybrid-Kathodenmaterialien für zyklusstabile Lithium-Schwefel-Hochleistungsbatterien mit großer spezifischer Oberfläche, Teilvorhaben: Synthese und elektrochemische Charakterisierung des Kathodenmaterials" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Universität Stuttgart, Institut für Polymerchemie, Lehrstuhl für Makromolekulare Stoffe und Faserchemie.Im Projekt sollen Schwefel/Polyacrylnitril (SPAN)-Komposite untersucht werden. Der SPAN-Komposit soll als monolithischer-, Faser- sowie als Monolith/Faser-Hybrid-Komposit ausgestaltet sein und charakterisiert werden. Die erhaltenen Ergebnisse sollen mit der chemischen Struktur und Morphologie korreliert und für weitere Optimierungen herangezogen werden. Neben der Polymersynthese für das Monolith-Design und die Monolith-Synthese (Anpassung der Porosität), müssen dazu faserbasierte Hybrid-PAN-Materialien, die Infiltration der PAN-basierten Hybridmaterialien mit Schwefel, die Umwandlung in SPAN, die Charakterisierung der SPAN-Materialien, adressiert werden. Analysen werden Rasterelektronen-mikroskopie, XRD-Analysen, Analysen zur Ausrichtung und Porosität, thermische Analyseverfahren sowie XPS-Verfahren beinhalten. Neuartige Copolymere auf PAN-Basis sowie PAN-basierte Polymermischungen werden entwickelt um Fasern mit unterschiedlichem Dehnungsverhältnis und Titer für monolithische faserbasierte Hybrid-SPAN-Materialien zu erhalten. lonische Flüssigkeiten (ILs) sollen für den Einsatz als Elektrolyte in Li-S-Batterien entwickelt und hergestellt werden. Schließlich sollen elektrochemische Lade- und Entladetests, die mit realen Bedingungen vergleichbar sind, im Hinblick auf die Anwendung im Bereich Elektromobilität durchgeführt werden. Vier Doktoranden werden für die gesamte Polymersynthese, für das Monolith-Design und die Monolith-Synthese, für die Synthese der faserbasierten Hybrid-PAN-Materialien, die Infiltration der PAN-basierten Hybridmaterialien mit Schwefel, deren Umwandlung in SPAN, für die Optimierung des Schwefel-Gehalts, die Charakterisierung der SPAN-Materialien, den Bau der elektrochemischen (Halb-) Zellen bzw. der Batterien sowie für die gesamten elektrochemische Prüfungen, welche Langzeitmessungen bis zu 1500 Zyklen, die Entwicklung maßgeschneiderter Messprotokolle sowie Messungen des Innenwiderstandes umfassen, zuständig sein.

FiMaLiS- Monolithische, faserbasierte Hybrid-Kathodenmaterialien für zyklusstabile Lithium-Schwefel-Hochleistungsbatterien mit großer spezifischer Oberfläche, Teilvorhaben: Materialsynthese, PAN-Fasern / -Blends

Das Projekt "FiMaLiS- Monolithische, faserbasierte Hybrid-Kathodenmaterialien für zyklusstabile Lithium-Schwefel-Hochleistungsbatterien mit großer spezifischer Oberfläche, Teilvorhaben: Materialsynthese, PAN-Fasern / -Blends" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Dralon GmbH.Im Projekt sollen Schwefel/Polyacrylnitril (SPAN)-Komposite untersucht werden. Der SPAN-Komposit soll als monolithischer-, Faser- sowie als Monolith/Faser-Hybrid-Komposit ausgestaltet sein und charakterisiert werden. Die erhaltenen Ergebnisse sollen mit der chemischen Struktur und Morphologie korreliert und für weitere Optimierungen herangezogen werden. Neben der Polymersynthese für das Monolith-Design und die Monolith-Synthese (Anpassung der Porosität), müssen dazu faserbasierte Hybrid-PAN-Materialien, die Infiltration der PAN-basierten Hybridmaterialien mit Schwefel, die Umwandlung in SPAN, die Charakterisierung der SPAN-Materialien, adressiert werden. Analysen werden Rasterelektronenmikroskopie, XRD-Analysen, Analysen zur Orientierung und Porosität, thermische Analyseverfahren sowie XPS-Verfahren beinhalten. Neuartige Copolymere auf PAN-Basis sowie PAN-basierte Polymermischungen werden entwickelt, um Fasern mit unterschiedlichem Dehnungsverhältnis und Titer für monolithische faserbasierte Hybrid-SPAN-Materialien zu erhalten. Ionische Flüssigkeiten (ILs) sollen für den Einsatz als Elektrolyte in Li-S-Akkumulatoren entwickelt und hergestellt werden. Schließlich sollen elektrochemische Lade- und Entladetests, die mit realen Bedingungen vergleichbar sind, im Hinblick auf die Anwendung im Bereich Elektromobilität durchgeführt werden. Die Dralon GmbH entwickelt und produziert neuartige Copolymere auf PAN-Basis sowie PAN-basierte Polymermischungen und wandelt diese in Fasern mit unterschiedlichem Dehnungsverhältnis und Titer zur Verwendung in monolithischen faserbasierten Hybrid-SPAN-Materialien um. Die Fasern werden am ITCF Denkendorf analysiert und weiterverarbeitet (verstreckt). Die Entwicklung bei Dralon wird dabei wesentlich durch die Ergebnisse des Instituts für Polymerchemie bei der Umwandlung der PAN-basierten Fasern in SPAN-Fasern beeinflusst.

FiMaLiS- Monolithische, faserbasierte Hybrid-Kathodenmaterialien für zyklusstabile Lithium-Schwefel-Hochleistungsbatterien mit großer spezifischer Oberfläche, Teilvorhaben: Anwendung und Evaluation von LiS-Zellen im automobilen Bereich

Das Projekt "FiMaLiS- Monolithische, faserbasierte Hybrid-Kathodenmaterialien für zyklusstabile Lithium-Schwefel-Hochleistungsbatterien mit großer spezifischer Oberfläche, Teilvorhaben: Anwendung und Evaluation von LiS-Zellen im automobilen Bereich" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Mercedes-Benz Group AG.Im Projekt sollen Schwefel/Polyacrylnitril (SPAN)-Komposite untersucht werden. Der SPAN-Komposit soll als monolithischer-, Faser- sowie als Monolith/Faser-Hybrid-Komposit ausgestaltet sein und charakterisiert werden. Die erhaltenen Ergebnisse sollen mit der chemischen Struktur und Morphologie korreliert und für weitere Optimierungen herangezogen werden. Neben der Polymersynthese für das Monolith-Design und die Monolith-Synthese (Anpassung der Porosität), müssen dazu faserbasierte Hybrid-PAN-Materialien, die Infiltration der PAN-basierten Hybridmaterialien mit Schwefel, die Umwandlung in SPAN, die Charakterisierung der SPAN-Materialien, adressiert werden. Analysen werden Rasterelektronenmikroskopie, XRD-Analysen, Analysen zur Ausrichtung und Porosität, thermische Analyseverfahren sowie XPS-Verfahren beinhalten. Neuartige Copolymere auf PAN-Basis sowie PAN-basierte Polymermischungen werden entwickelt um Fasern mit unterschiedlichem Dehnungsverhältnis und Titer für monolithische faserbasierte Hybrid-SPAN-Materialien zu erhalten. lonische Flüssigkeiten sollen für den Einsatz als Elektrolyte in Li-S-Batterien entwickelt und hergestellt werden. Schließlich sollen elektrochemische Lade und Entladetests, die mit realen Bedingungen vergleichbar sind, im Hinblick auf die Anwendung im Bereich Elektromobilität durchgeführt werden. Das Unternehmen führt die zusätzlichen elektrochemischen Tests im Hinblick auf die Anwendung im Bereich Elektromobilität durch. Hierzu gehören spezielle Ladungs- und Entladungstests, die mit realen Bedingungen vergleichbar sind. Die spezielle Charakterisierung der SPAN-basierten Kathodenseite (und der Lithium- oder Silizium-Anodenseite) anhand von XPS-Verfahren erfolgt ebenfalls, um den Alterungsmechanismus zu untersuchen, zu verstehen und zu verbessern.

Teil 1^BioElektroGas - Bioelektrochemische Produktion von hochreinem Biogas aus Abfallstoffen^Teil 2, Teil 3

Das Projekt "Teil 1^BioElektroGas - Bioelektrochemische Produktion von hochreinem Biogas aus Abfallstoffen^Teil 2, Teil 3" wird/wurde gefördert durch: Ministerium für Umwelt, Klima und Energiewirtschaft Baden-Württemberg. Es wird/wurde ausgeführt durch: Albert-Ludwigs-Universität Freiburg, Institut für Mikrosystemtechnik.Ziel des Forschungsvorhabens ist die Entwicklung eines vollkommen neuen Verfahrens zur Erzeugung von gasförmigen Kraftstoffen aus organischen Abfallstoffen. Dazu werden erstmals fermentative Verfahren und bio-elektrische Systeme zu einem neuen Prozess kombiniert. In diesem Prozess werden die Abfallstoffe zunächst in einem 'dark fermentation reactor' fermentativ in organische Säuren umgewandelt und anschließend einer bio-elektrochemischen Konversion, bestehend aus einer Anoden- und einer Kathodenkammer zugeführt werden. An der Anode werden die gelösten organischen Säuren durch exoelektrogene Bakterien zu CO2, H+ und e- oxidiert. Während die Protonen durch eine PEM (proton exchange membrane) der Kathode zugeführt werden, geben die Bakterien die freiwerdenden Elektronen an die Anode ab, so dass diese über eine elektrische Verbindung an die Kathode weiter geleitet werden. Das gebildete CO2 wird ergänzend bedarfsgerecht der Kathode zugeführt. Die Einzelziele des Projektes sind wie folgt definiert: - Entwicklung und Erprobung eines geeigneten Anoden- und Kathodenmaterials und Optimierung der Elektrodenstruktur - Untersuchung der biologischen Diversität der Mikroorganismen an den Elektroden - Optimierung des fermentativ bioelektrochemischen Gesamtverfahrens unter technischen Aspekten im Labormaßstab. Im Berichtszeitraum wurden im Wesentlichen folgende Arbeiten durchgeführt: Ausgehend von Vorarbeiten zur Wasserstoffproduktion mit Edelstahlkathoden in dem für die Methanogenen geeigneten Kulturmedium, wurde iterativ ein auf die Anforderungen der Kathodenentwicklung hin optimiertes Reaktorkonzept entwickelt. Eine Hauptanforderung an den Reaktor ist dabei die integrierte CO2-Versorgung. Hinsichtlich der Entwicklung eines geeigneten Biofilm-Trägermaterials wurden vergleichende Untersuchungen mit Glasfasern und Nanofasern aus Polyacrylnitril (PAN) in einer Kultur von M. barkeri durchgeführt. Die PAN-Nanofasern wurden teilweise zusätzlich mit (3-Aminopropyl)triethoxysilan (ATPES) behandelt, um deren Oberfläche mit positiven Ladungen auszurüsten und so die Biofilmansiedlung zu verbessern. In verschiedenen Langzeitexperimenten mit bioelektrochemischen Systemen, die mit Perkolat als Substrat betrieben wurden, konnte gezeigt werden, dass die bereits im Perkolat bestehende Community an Organismen in der Lage ist, die enthaltenen organischen Säuren komplett zu oxidieren. Dabei konnten Stromstärken von bis zu 0,5 mA/cm2 Anodenfläche gemessen werden. Die durchgeführten Untersuchungen zum fermentativen Aufschluss der Abfallstoffe belegen, dass die gewählten Substrate sehr gut in organische Säuren überführt werden können. Es traten keinerlei Prozessstörungen auf. In HPLC-Untersuchungen konnten keine Alkohole und Zucker im Perkolat nachgewiesen werden. Die Untersuchung des Perkolats zeigte für pH-6,0 die höchsten Konzentrationen an organischen Säuren, besonders die Gehalte an Essigsäure und Buttersäure lagen im Vergleich deutlich über den Werten bei pH-5,5.

Teil 1^BioElektroGas - Bioelektrochemische Produktion von hochreinem Biogas aus Abfallstoffen, Teil 2

Das Projekt "Teil 1^BioElektroGas - Bioelektrochemische Produktion von hochreinem Biogas aus Abfallstoffen, Teil 2" wird/wurde gefördert durch: Ministerium für Umwelt, Klima und Energiewirtschaft Baden-Württemberg. Es wird/wurde ausgeführt durch: Karlsruher Institut für Technologie (KIT), Institut für Angewandte Biowissenschaften, Abteilung Angewandte Mikrobiologie.Ziel des Forschungsvorhabens ist die Entwicklung eines vollkommen neuen Verfahrens zur Erzeugung von gasförmigen Kraftstoffen aus organischen Abfallstoffen. Dazu werden erstmals fermentative Verfahren und bio-elektrische Systeme zu einem neuen Prozess kombiniert. In diesem Prozess werden die Abfallstoffe zunächst in einem 'dark fermentation reactor' fermentativ in organische Säuren umgewandelt und anschließend einer bio-elektrochemischen Konversion, bestehend aus einer Anoden- und einer Kathodenkammer zugeführt werden. An der Anode werden die gelösten organischen Säuren durch exoelektrogene Bakterien zu CO2, H+ und e- oxidiert. Während die Protonen durch eine PEM (proton exchange membrane) der Kathode zugeführt werden, geben die Bakterien die freiwerdenden Elektronen an die Anode ab, so dass diese über eine elektrische Verbindung an die Kathode weiter geleitet werden. Das gebildete CO2 wird ergänzend bedarfsgerecht der Kathode zugeführt. Die Einzelziele des Projektes sind wie folgt definiert: - Entwicklung und Erprobung eines geeigneten Anoden- und Kathodenmaterials und Optimierung der Elektrodenstruktur - Untersuchung der biologischen Diversität der Mikroorganismen an den Elektroden - Optimierung des fermentativ bioelektrochemischen Gesamtverfahrens unter technischen Aspekten im Labormaßstab. Im Berichtszeitraum wurden im Wesentlichen folgende Arbeiten durchgeführt: Ausgehend von Vorarbeiten zur Wasserstoffproduktion mit Edelstahlkathoden in dem für die Methanogenen geeigneten Kulturmedium, wurde iterativ ein auf die Anforderungen der Kathodenentwicklung hin optimiertes Reaktorkonzept entwickelt. Eine Hauptanforderung an den Reaktor ist dabei die integrierte CO2-Versorgung. Hinsichtlich der Entwicklung eines geeigneten Biofilm-Trägermaterials wurden vergleichende Untersuchungen mit Glasfasern und Nanofasern aus Polyacrylnitril (PAN) in einer Kultur von M. barkeri durchgeführt. Die PAN-Nanofasern wurden teilweise zusätzlich mit (3-Aminopropyl)triethoxysilan (ATPES) behandelt, um deren Oberfläche mit positiven Ladungen auszurüsten und so die Biofilmansiedlung zu verbessern. In verschiedenen Langzeitexperimenten mit bioelektrochemischen Systemen, die mit Perkolat als Substrat betrieben wurden, konnte gezeigt werden, dass die bereits im Perkolat bestehende Community an Organismen in der Lage ist, die enthaltenen organischen Säuren komplett zu oxidieren. Dabei konnten Stromstärken von bis zu 0,5 mA/cm2 Anodenfläche gemessen werden. Die durchgeführten Untersuchungen zum fermentativen Aufschluss der Abfallstoffe belegen, dass die gewählten Substrate sehr gut in organische Säuren überführt werden können. Es traten keinerlei Prozessstörungen auf. In HPLC-Untersuchungen konnten keine Alkohole und Zucker im Perkolat nachgewiesen werden. Die Untersuchung des Perkolats zeigte für pH-6,0 die höchsten Konzentrationen an organischen Säuren, besonders die Gehalte an Essigsäure und Buttersäure lagen im Vergleich deutlich über den Werten bei pH-5,5.

BiPAN - Biokatalytische Synthese von Acrylnitril aus nachwachsenden Rohstoffen, Teilvorhaben 1: Polymerisierung

Das Projekt "BiPAN - Biokatalytische Synthese von Acrylnitril aus nachwachsenden Rohstoffen, Teilvorhaben 1: Polymerisierung" wird/wurde gefördert durch: Bundesministerium für Ernährung und Landwirtschaft. Es wird/wurde ausgeführt durch: Dralon GmbH.Biokatalytisch hergestelltes Acrylnitril ist von großem industriellem Interesse um den 'CO2-Footprint' der Polyacrylnitril- (PAN) Faserherstellung zu verbessern. Um dies zu ermöglichen soll die Hauptkomponente für die Herstellung von PAN Fasern, das Acrylnitril (ACN), komplett aus nachwachsenden Rohstoffen synthetisiert werden. Das Ziel dieses Projektes ist es zu untersuchen, ob nachwachsende Rohstoffe als Ausgangsbasis für wettbewerbsfähige biokatalytisch hergestellte Polyacrylnitril (PAN)-Fasern /-Precursoren dienen können und 'grüne Alternativen' zu Erdöl basierten Produktionsrouten zu identifizieren. Dafür soll Acrylnitril (ACN) über mehrere Stufen aus Biomasse hergestellt werden. Ausgangsstoff ist Bioethanol aus Biomasse. Dieses wird in mehreren Syntheseschritten zum Acrylnitril umgewandelt. Dafür werden etablierte klassisch-chemische mit einem neuen biokatalytischen Reaktionsweg kombiniert. Diese Route würde somit die Herstellung von biobasiertem Acrylnitril ermöglichen. Die Enzymicals AG wird dabei den biokatalytischen Syntheseschritt etablieren, maßstabsvergrößern, demonstrieren und charakterisieren (Teilvorhaben: Etablierung der Syntheseroute). Die Dralon GmbH wird die Polymerisierung des biokatalytisch hergestellten Acrylnitrils untersuchen. Dieses Polyacrylnitril wird dann zu Fasern versponnen, um so dessen Eignung zur Herstellung biobasierten PAN-Fasern bewerten. (Teilvorhaben: Polymerisierung). Die Entwicklung eines innovativen Verfahrens in welchem Glucose als nachwachsender Rohstoff umgesetzt wird, positioniert das Gesamtprojekt als Forschungs-, Entwicklungs- und Pilotprojekt im Bereich der Nutzung nachwachsender Rohstoffe .Dieses Projekt wird bis März 2019 durch die Fachagentur für Nachwachsende Rohstoffe gefördert, FKZ 22020315 und 22013616.

1 2 3