API src

Found 2129 results.

Related terms

Analytische Untersuchungen zur Sorption organischer Mikroverunreinigungen an synthetischen Polymeren Belastung der Binnengewässer durch Mikroplastik (Dissertation)

Im Rahmen der Forschungsarbeit wird die Belastung von Flüssen durch Kunststoffe und die Anlagerung von Schadstoffen an diese synthetischen Polymere untersucht. Fragestellungen sind: Welche Auswirkungen hat die Verschmutzung durch synthetische Polymere (Plastik) auf die Binnengewässer. Welche Rolle spielen dabei sich ebenfalls im Wasser befindende Schadstoffe? Reichern sich diese möglicherweise an den Polymeren an und lösen sich in Organismen wieder ab? Besonderes Augenmerk wird auf mikroskopisch kleine Kunststoffpartikel (Mikroplastik) gelegt.

Entwicklung von Lithium-Schwefel-Bipolarbatterien, Teilvorhaben: Entwicklung einer polymeren Durchleiterfolie

Im Vorhaben ‚BiPoLiS‘ soll als neuartiger Ansatz die Technologie der Lithium-Schwefel-Batterien mit der Architektur der Bipolarbatterien zusammengeführt werden, um die Vorzüge beider Technologien zu kombinieren. Ziel ist es, die Machbarkeit des innovativen Ansatzes nachzuweisen, um damit künftig den Bau von Batteriespeichern mit höherer gravimetrischer Energiedichte zu sehr geringen Herstellungskosten zu ermöglichen. Inhaltlich werden dafür konzeptionell Randbedingungen und testbare Einheiten definiert. Darauf aufbauend werden die Technologien zur Herstellung dieses Typs elektrischer Energiespeicher erforscht und adaptiert. Parallel werden Anpassungen an den Komponenten (Elektrodensystem, Durchleiterfolien) vorgenommen, um die Langzeitstabilität sicherzustellen. Zum Nachweis der Machbarkeit werden anschließend Testmuster aufgebaut und charakterisiert.

Transport und Verbleib von Mikroplastik in Süßwassersedimenten

Mikroplastik (MP, Plastikteile kleiner als 5 mm) werden als neu aufkommende Schadstoffe betrachtet und neuste Studien belegen die potentielle Gefahr von MP für die menschliche Gesundheit und die Umwelt. Die Forschung hat sich bisher mehrheitlich auf die Untersuchung von MP in der marinen Umgebung konzentriert. Allerdings konnte MP auch vermehrt Süßwasser und -sedimenten weltweit nachgewiesen werden. Als Primärpartikel oder Sekundärprodukte aus dem Abbau von Makroplastik kann MP entweder direkt toxisch wirken oder als Überträger von sorbierten Schadstoffen fungieren. Neuste Studien belegen außerdem, dass MP in die menschliche Nahrungskette eindringen kann. Weiterhin können die dem MP beigefügten endokrinen Disruptoren wie Bisphenol A (BPA) and Nonylphenol (NP) während der Transportprozesse an das Süßwasser abgegeben werden. Dabei können Flussbettsedimente potentielle Hotspots für die Akkumulation von MP und deren Additive darstellen.Das Hauptziel dieses Projektes ist, die Akkumulation und den Transport von MP in Süßwasser und -sedimenten näher zu untersuchen. Dabei soll den folgenden beiden grundsätzlichen Fragen nachgegangen werden:(i) Welche Prozesse kontrollieren Transport und Akkumulation von MP verschiedener Größe, Dichte und Zusammensetzung und wie bilden sich sogenannte Mikroplastik-Hotspots in der hyporheischen Zone?(ii) Wie können Transport und Akkumulation von MP sowie die Freisetzung von Additiven wie BPA und NP unter variablen Umweltbedingungen beschrieben und vorhergesagt werden? Zwei Arbeitspakete (WP) sollen helfen, diese Fragen zu beantworten:WP1 befasst sich mit den Auswirkungen der grundlegenden Eigenschaften von MP wie Größe, Form, Zusammensetzung, Dichte, Auftrieb auf deren Transport und untersucht systematisch, wie verschiedene Arten von MP in der hyporheischen Zone (hier Flussbettsedimente) unter diversen hydrodynamischen und morphologischen Bedingungen akkumulieren. Dafür sollen Versuche in künstlichen Abflusskanälen (artificial flumes) durchgeführt werden. In diesen Versuchen werden repräsentative hydrodynamische und morphologische Bedingungen geschaffen, um eine Spannbreite an primären und sekundären MP zu testen, ihr Transportverhalten zu beschrieben und die Freisetzung von Additiven näher zu untersuchen. MP wird mit verschiedensten Methoden charakterisiert, z.B. mit single particle ICP-MS zur Bestimmung der Größe oder FT-IR zur Bestimmung des vorherrschenden Polymers. Während der Flume-Experimente werden die Eigenschaften der Sedimente, des Porenwassers und der Biofilme, sowie die Konzentration an BPA und NP gemessen und später analysiert, um die Reaktivität der Akkumulationshotspots zu bestimmen.WP2 beinhaltet die Entwicklung und Anwendung eines Models, um MP-Transport sowie die Freisetzung von Additiven in der hyporheischen Zone vorherzusagen. Da Modelle, die momentan im Bereich Stofftransport verwendet werden nicht für MP ausgelegt sind, soll die Lattice-Boltzmann Methode als neuer Modellansatz verfolgt werden.

Entwicklung keramikähnlicher Leiterisolationen für den Einsatz in hochausgenutzten, ressourceneffizienten elektrischen Maschinen und Antrieben, Teilvorhaben: Skalierung der elektrochemischen Oxidation zur Herstellung von Isolationsschichen auf Leiterkomponenten elektrischer Maschinen

Ressortforschungsplan 2023, Mikroplastik in der Außenluft: Erfassung, Quantifizierung, Identifizierung und Quellen von luftgetragenem Mikroplastik

Mikroplastik (Partikel im µm Bereich) entsteht durch verschiedenste Prozesse, insbesondere jedoch durch Abrieb und Erosion von Plastik. Dabei ist ein Eintrag über den Wasser- und Bodenpfad mittlerweile unbestritten. Jedoch weiterhin ungeklärt ist der tatsächliche Eintrag über den Luftpfad. Zwar belegen Studien das Vorkommen von Mikroplastik an weitentfernten Orten und lassen auch den Schluss eines zumindest teilweisen Transportes über die Luft zu, aber wie hoch dieser Beitrag tatsächlich ist bleibt zurzeit ungeklärt. Darüber hinaus spielt die Identifikation der Polymere und somit die Erfassung der Quellbeiträge eine entscheidende Rolle. Ziel des Projektes ist es den luftgetragenen Eintrag von Mikroplastik und deren Quellen an Hintergrundstationen des Luftmessnetzes zu bestimmen. Dafür sollen an ausgewählten Messstationen des Luftmessnetzes des Umweltbundesamts (UBA) plastikfreie Niederschlagssammler sowie Vorrichtungen zur Feinstaubprobenahme installiert und über den Projektzeitraum repräsentativ PM10 Feinstaub- und Niederschlagsproben gesammelt und deren chemische Zusammensetzung analysiert werden. Zusätzlich sind Analysen von Niederschlagsproben zu Vergleichszwecken vorzusehen. In der Studie soll zudem die Ergebnisse statistisch (deskriptiv und beurteilend) ausgewertet und eine mögliche Quellenidentifikation über die Inhaltsstoffe erarbeitet werden.

Multiskalige Operando-Analyse von Lithium/Schwefel-Zellen auf Polymerelektrolytbasis, FestPoLiS - Multiskalige Operando-Analyse von Lithium/Schwefel-Zellen auf Polymerelektrolytbasis

Leichtmetallhydrid-Polymer-Kompositmaterialien - Wasserstoffspeicherung unter 100 °C, Teilvorhaben: Nanoporöse Nanopartikel und Additive/Katalysatoren

Membranverfahren zur Abtrennung von Kohlendioxid und Wasserstoff aus Industriegasen, Teilvorhaben: Keramische Membranen für die Gastrennung

In MemKoWI ist geplant, Membranverfahren für die Abtrennung von CO2 und H2 in Industrien zu untersuchen, in denen sie bisher nicht etabliert sind. Das Potenzial, dass sie sich hier als skalierbare und durch die Möglichkeiten verschiedene keramische und polymere Membranmaterialien zu innovativen Kombinationen Lösungen zu verschalten, flexible und anpassbare Technologie, erweist ist sehr groß. Allerdings ist ebenfalls mit erheblichen Risiken zu rechnen. Im Vergleich zu den bisher untersuchten Einsätzen von Membranverfahren zur CO2-Abtrennung aus Kohlekraftwerksrauchgasen, zeichnen sich die in MemKoWI adressierten Gase durch andere Zusammensetzungen aus. Somit kann die Einsetzbarkeit der Verfahren zwar durch Berechnungen abgeschätzt, deren stabiler Einsatz aber nur im Versuch im Betriebsumfeld nachgewiesen werden. Potenzielle Anwender können so von den Vorteilen der Membranverfahren überzeugt werden. In MemKoWI ist der Einsatz von drei Testanlagen geplant. Eine der Anlagen ist bereits vorhanden und soll modifiziert werden, während die beiden anderen Anlagen neu zu bauen sind. Die hiermit verbundenen Kosten sind weder aus der Grundfinanzierung der beteiligten Forschungsinstitutionen noch aus den F&E-Budgets der beteiligten Unternehmen zu finanzieren. Weiterhin stellt die Einbindung der Anlagen in Industriestandorte einen erheblichen, anderweitig nicht finanzierbaren Aufwand dar. Die für die Membranherstellung verwendeten Rohmaterialien müssen in hinreichender Menge beschafft, verarbeitet und in Membranmodule verbaut werden. Auch die Ausgaben hierfür übersteigen die F&E-Budgets. Das für die Durchführung der geplanten Arbeiten notwendige Personal kann nur zum Teil aus der Grundfinanzierung gestellt werden. Projektpersonal muss, gerade auch im Hinblick auf die Erstellung wissenschaftlicher Arbeiten, eingestellt werden und der Personalaufwand für die Betreuung der Testanlagen abgedeckt werden.

Recycling von Kunststoffabfaellen

Chemischer Abbau von Thermoplasten und Duromeren durch Hydrolyse u.a. Verfahren. Aufarbeitung der Abbauprodkute. Recycling durch Einsatz als Rohstoffe bei der Herstellung der Kunststoffe.

Elektrochemische Valorisierung furanreicher Prozessströme aus dem hydrothermalen Aufschluss landwirtschaftlicher Reststoffe

Das Ziel des Verbundvorhabens ELEVATOR besteht in der Etablierung eines effizienten, gekoppelten elektrochemischen Prozesses für die Herstellung von biobasierter Furandicarbonsäure (FDCA) und biobasiertem Dimethylfuran (DMF) aus 5-Hydroxymethylfuran (HMF), das aus landwirtschaftlichen Reststoffen gewonnen wird. Der hochinnovative Charakter von ELEVATOR liegt dabei insbesondere in a) der kombinierten Nutzung der anodischen und kathodischen Halbzellreaktion (Oxidation und Reduktion) zur parallelen Synthese hochwertiger Produkte in einer einzigen elektrochemischen Zelle ('200% Zelle') und b) in der Verwendung eines industriell relevanten Eduktstroms aus dem hydrothermalen Aufschluss von lignozellulosehaltiger Biomasse. Der biogene Rohstoff wird dabei nicht aufwendig vorgereinigt. Der elektrochemische Prozess wird im Vorhaben bis TRL 4 entwickelt und zur Herstellung von Mustermengen der Produkte betrieben. Hierzu wird auch ein Verfahren zur Aufreinigung der Produkte FDCA und DMF etabliert. Das Ziel des Teilvorhabens 'Grundlagenuntersuchungen zur Elektrosynthese und zum Downstream Processing' von Fraunhofer IGB besteht in der grundlegenden Entwicklung der elektrochemischen Halbzellreaktionen, nämlich der Oxidation von DMF zu FDCA und der Reduktion von HMF zu DMF. Dabei sollen Materialien identifiziert werden, die eine effiziente und selektive Umsetzung von HMF erlauben und gleichzeitig ungewollte Nebenreaktionen minimieren. Die Halbzellreaktionen werden in einer elektrochemischen Zelle integriert und im Labor zu einem Gesamtprozess entwickelt, der für mindestens 100 h stabil betrieben werden kann und hohe Produktausbeuten ermöglicht. Weiterhin wird von Fraunhofer IGB in ELEVATOR ein Verfahren zur Abtrennung und Aufreinigung der Produkte FDCA und DMF etabliert. Dabei wird FDCA bis zu einer Qualität aufgereinigt, die die Verwendung des Produktes in der Herstellung von Polymeren erlaubt.

1 2 3 4 5211 212 213