Das Projekt "Schwerpunktprogramm (SPP) 2248: Polymer-basierte Batterien; Priority Program (SPP) 2248: Polymer-based batteries, Elektrochemische Herstellung von funktionalen und elektrisch leitfähigen Polymeren als freistehende Kathoden für Lithium Schwefel Batterien: Synthese, Operando Analyse und Simulation" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Freiburg, Physikalisches Institut, Angewandte Theoretische Physik - Computergestützte Physik.In diesem Projekt wird eine elektrochemisch hergestellte Polymerkathode aus poly(4-(thiophen-3-yl) benzenethiol (PTBT) mit operando Methoden und theoretischen Modellierungen untersucht. Diese Kathode ist frei-stehend, elektrisch leitfähig, mechanisch flexibel und dient als Schwefelreservoir für Lithium/Schwefel Batterien. Im Besonderen, wird PTBT mittels Elektropolymerisation auf einen Nickelschaum aufgetragen. Dies ermöglicht eine Anwendung als hochporöse und binderfreie Kathode in Li-S Batterien. Schwefel kann mit dem Polymer PTBT durch inverse Vulkanisierung ein hochvernetztes Copolymer bilden P(S-PTBT), wobei der Schwefel chemisch an die Thiolgruppen von PTBT gebunden wird. Durch die Anwendung eines neuartigen, eigenentwickelten operando Setups, das mehr als drei verschiedene Messungen gleichzeitig erlaubt, während die Zelle geladen bzw. entladen wird, werden mechanistische Einsichten von wichtigen Reaktionsschritten ermöglicht z.B. der Prozess, der den Schwefel während der elektrochemischen Oxidation chemisch an die Polymerkette bindet. Für diese Untersuchungen werden UV/vis-, Raman- und Impedanzspektroskopie in Kombination mit entweder Röntgenbildgebung oder Kleinwinkelstreuung genutzt. Die Experimente werden in enger Zusammenarbeit mit intensiven Modellierungs- und Simulationsstudien auf elektronischer und molekularer Skala ausgewertet. Es werden sowohl die Stabilität als auch die elektronische/molekulare Struktur des an die Thiolgruppen des neutral und geladenen Polymers kovalent-gebundenen Schwefels untersucht. Hierzu werden moderne Austauschkorellationsfunktionale aus der Dichtefunktionaltheorie (DFT) benutzt. Um die Struktur-Performanz Beziehung der in diesem Projekt vorgeschlagenen Kathoden darzulegen, werden die Ergebnisse der operando Analyse herangezogen. Hierbei werden Resultate der UV/vis Spektroskopie direkt mit DFT-Berechnungen und DFT-optimierten, klassischen molekulardynamischen (MD) Simulationen verglichen. Kurzum, durch die Kombination von Synthese, operando Analyse und Simulation wird ein besseres mechanistisches Verständnis der Energiespeicherprozesse und Struktur-Eigenschafts-Beziehung in diesem System erwartet. Diese so gewonnenen Kenntnisse werden für eine kontinuierliche Verbesserung der Materialparameter verwendet. Somit wird eine Erhöhung der elektrochemischen Leistungsfähigkeit von Li-S Batterien der nächsten Generation erreicht.
Das Projekt "Schwerpunktprogramm (SPP) 2248: Polymer-basierte Batterien; Priority Program (SPP) 2248: Polymer-based batteries, Aluminium- und Magnesium-organische polymerbasierte Batterien (AMPERE)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Freiburg, Institut für Organische Chemie.Ziel des vorgeschlagenen Projekts ist die Entwicklung Aluminium- und Magnesium-organischer, polymerbasierter Batterien. Die Synthese redox-aktiver Polymere sowohl vom p- als auch vom n-Typ als Kathodenmaterialien ist geplant. Diese werden Phenothiazin bzw. Chinone als redox-aktive Einheiten enthalten. Aluminium- und Magnesium-basierte Elektrolyte sollen entwickelt werden, die kompatibel mit den organischen Redoxpolymeren sind und eine reversible Abscheidung bzw. Auflösung des Al/Mg auf der Anode ermöglichen. Die Redoxpolymere werden in Vollzellen gegen Aluminium und Magnesium als Anode getestet werden. Diese Zellen werden im Fall von p-Typ-Polymeren im 'Dual-Ion'-Modus und bei n-Typ-Polymeren im Kationen-'Rocking Chair'-Modus operieren. Mechanistische experimentelle und computergestützte Untersuchungen werden Einblicke in die Ionen-Insertionsprozesse der polymerbasierten Elektroden erlauben.
Das Projekt "Schwerpunktprogramm (SPP) 2248: Polymer-basierte Batterien; Priority Program (SPP) 2248: Polymer-based batteries, Entwicklung von Aktivmaterialien für organische Batterien basierend auf elektropolymerisierten Polymeren mit stabilen organischen Radikalen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Friedrich-Schiller-Universität Jena, Institut für Organische Chemie und Makromolekulare Chemie.Heutige Batterietechnologien basieren hauptsächlich auf Metallen wie Lithium, Blei, Kobalt oder Nickel. Deren begrenztes natürliches Vorkommen sowie Toxizität und die daraus resultierenden Entsorgungsprobleme schränken jedoch die langfristige Verwendung solcher Metalle ein. Als Alternative haben sich im Rahmen jüngster Forschungen polymere Verbindungen, also Kunststoffe, herausgestellt. In diesem Zusammenhang wurden insbesondere Polymere, die stabile organische Radikale enthalten, intensiv untersucht und zeigten vielversprechende Ladungsspeichereigenschaften, insbesondere eine überlegene Redoxkinetik. Solche Materialien leiden jedoch unter unzureichender elektrischer Leitfähigkeit, die die anwendbaren Lade- und Entladeraten begrenzt, wodurch die vorteilhaften Elektronentransfereigenschaften aufgehoben werden. Ein vielversprechender Ansatz zur Überwindung dieses Problems ist der Einbau von leitfähigen, d.h. konjugierten Polymeren. Diese Materialien bieten mehrere vorteilhafte Eigenschaften, die für eine organische Batterie ausgenutzt werden können: (i) Als Halbleiter zeigen sie elektrische Leitfähigkeit; (ii) sie können durch Elektropolymerisation hergestellt werden und bieten so eine effiziente Möglichkeit, direkt auf Elektrodenoberflächen abgeschieden zu werden; (iii) sie bieten intrinsische Ladungsspeicherfähigkeit. Allerdings zeigen Systeme, die auf der eigenen Speicherfähigkeit von konjugierten Polymeren basieren häufig driftende Lade- und Entladespannung, was deren Anwendungspotenzial erheblich einschränkt. In Kombination mit stabilen Redoxeinheiten, die die Ladungsspeicherung übernehmen, wie organische Radikale, können aber die elektrische Leitfähigkeit sowie die elektrochemische Verarbeitbarkeit zu vielversprechenden Batterieaktivmaterialien führen. Trotzdem wurden bisher nur wenige solche Beispiele in der Literatur vorgestellt. Daher soll im Rahmen dieses Projekts die Palette organischer Batteriematerialien durch die Kombination stabiler organischer Radikale mit elektropolymerisierbaren Einheiten erweitert werden, um Systeme herzustellen, die sowohl verbesserte elektrochemische Stabilität als auch elektrische Leitfähigkeit bieten.
Das Projekt "Schwerpunktprogramm (SPP) 2248: Polymer-basierte Batterien; Priority Program (SPP) 2248: Polymer-based batteries, Koordinationsfonds" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Friedrich-Schiller-Universität Jena, Institut für Organische Chemie und Makromolekulare Chemie.Das Schwerpunktprogramm 'Polymer-basierte Batterien' (SPP 2248) widmet sich Batterien auf Polymerbasis, bei denen (organische) redoxaktive Polymere als aktive Materialien für die jeweilige Kathode oder Anode verwendet werden. Bei 'all-polymer'-Batterien basieren beide Elektroden auf Polymermaterialien. Diese Batterien sind interessante Systeme aufgrund ihrer vielversprechenden Eigenschaften, zu denen schnelles Laden, die Möglichkeit zur Herstellung flexibler Elektroden, die Abwesenheit von Schwermetallen sowie der geringe Energiebedarf für die Materialsynthese und die Herstellung von Batterien gehören. Die wissenschaftlichen Projekte befassen sich mit der Modellierung zur Identifizierung vielversprechender neuer Materialien, dem Verständnis der auftretenden (Redox-) Prozesse sowie möglicher Nebenreaktionen, dem Design und der Synthese redoxaktiver Polymere, der Entwicklung neuartiger Elektrolyte sowie der detaillierte Charakterisierung (auch in situ und in Operando-Techniken). Die zentralen Aktivitäten des Schwerpunktprogramms, die in diesem Projekt behandelt werden, fördern den wissenschaftlichen Austausch zwischen allen Projekten und Teilnehmern des SPP, beispielsweise bei verschiedenen Netzwerkveranstaltungen des Schwerpunktprogramms. Ein wichtiges Ziel des Schwerpunktprogramms ist auch die Förderung des wissenschaftlichen Nachwuchses, insbesondere von Wissenschaftlerinnen. Daher werden Doktoranden sowie die jungen PIs, die bereits an Projekten der SPP beteiligt sind, durch Anschubfinanzierungs- und Mentoringprogramme unterstützt. Dieses Projekt wird auch genutzt, um die (internationale) Sichtbarkeit des Schwerpunktprogramms zu fördern. Darüber hinaus werden in diesem zentralen Projekt Standardmaterialien und -elektroden bereitgestellt, die sowohl für Charakterisierungsprojekte als auch für Benchmark-Systeme verwendet werden.
Das Projekt "Schwerpunktprogramm (SPP) 2248: Polymer-basierte Batterien; Priority Program (SPP) 2248: Polymer-based batteries, Polyimidazole als Redox-aktive Elektroden für stark eutektische Elektrolyte in Polymer-Battierien" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Ulm, Institut für Elektrochemie.In diesem Projekt werden wir Elektroden auf Basis von Polyimidazol mit stark eutektischen Lösungsmitteln als Elektrolyte kombinieren, um biokompatible und biologisch abbaubare Polymerbatterien mit hoher Leistung herzustellen. Polyimidazol kann aus natürlich vorkommenden Rohstoffen hergestellt werden. Im Gegensatz zu anderen konjugierten Redox-Polymeren ist die Ladung im Polyimidazol an isolierten dimeren Einheiten lokalisiert. Diese Besonderheit ermöglicht ein überlegenes und stabiles Verhalten beim Laden und Entladen. Stark eutektische Elektrolyte können ebenfalls aus natürlichen Ressourcen gewonnen werden. Viele stark eutektische Elektrolyten weisen darüber hinaus auch eine geringe Zytotoxizität auf. Um eine hohe Ladungsspeicherleistung zu erzielen, werden die Polyimidazol-Elektroden in Bezug auf Molekularstruktur, Oberfläche und Kompatibilität mit den stark eutektischen Elektrolyten optimiert. Hierzu werden die jeweiligen Phänomene an den Elektroden (bzw. den Grenzschichten) sukzessive elektrochemisch charakterisiert. Schließlich werden darüber hinaus die Biokompatibilität und -abbaubarkeit der verschiedenen Materialien unter Kompostierungsbedingungen untersucht.
Das Projekt "Schwerpunktprogramm (SPP) 2248: Polymer-basierte Batterien; Priority Program (SPP) 2248: Polymer-based batteries, Entwicklung von Polymerelektrolyten komplementär zu Modellsystemen für Batterien auf Polymerbasis" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Friedrich-Schiller-Universität Jena, Institut für Organische Chemie und Makromolekulare Chemie.Ziel dieses gemeinsamen Projektes von IPF Dresden und FSU Jena ist die Entwicklung neuartiger Polymerelektrolyte, komplementär zu relevanten Modell-Aktivmaterialien, für polymerbasierte Batterien. Die zu entwickelnden Elektrolyte werden mit polymerchemischen Mitteln hinsichtlich Ionentransport, Morphologie, thermischer und elektrochemischer Stabilität und Kompatibilität mit den Elektroden (z.B. Aktivmaterial und Leitadditiv) maßgeschneidert. Neben der Erforschung prinzipieller Transportmechanismen, soll das Projekt einen Beitrag zum besseren Verständnis des Einflusses von Elektrolytstruktur und der Grenzflächen zu den Elektroden auf die Zellleistung und, als Hauptziel, neue Erkenntnisse über den Zusammenhang von chemischer und morphologischer Struktur der Zellkomponenten und Batterieverhalten liefern. Dafür werden zuerst polymere Ionenleitersysteme für Einzelionen synthetisiert, die für Aktivmaterialen, die einen Anionentransport erfordern, geeignet sind. Der zweite Ansatz zielt darauf, auch Systeme mit einer Umkehr des Ladungstransports zu untersuchen, hierfür werden Aktivmaterialien mit geladenen Spezies ausgerüstet. Weiterhin werden Triblock-Copolymere entwickelt, die alle für eine molekulare Batterie notwendigen Komponenten enthalten.
Das Projekt "Schwerpunktprogramm (SPP) 2248: Polymer-basierte Batterien; Priority Program (SPP) 2248: Polymer-based batteries, Entwicklung neuer redoxaktiver Polymere auf Basis von Benzimidazol, Benzoxazol und Benzothiazol - ein kombinierter theoretischer und experimenteller Screening-Ansatz" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Justus-Liebig-Universität Gießen, Physikalisch-Chemisches Institut.Batterien auf Polymerbasis haben in den letzten Jahren aufgrund ihrer interessanten Eigenschaften großes Forschungsinteresse auf sich gezogen. Zu ihren Vorzügen zählen ihr geringes Gewicht, die Möglichkeit, auf kritische Metalle zu verzichten, die Nutzung verfügbarer Elemente und ihre bessere Nachhaltigkeit bei Herstellung und Wiederverwertung. In den vergangenen Jahren wurden verschiedene redoxaktive Polymere untersucht, was zu vielen Strukturmotiven führte, die als potenzielle Elektrodenmaterialien identifiziert wurden. Derzeit sind allerdings nur begrenzt verschiedene Anodenmaterialien verfügbar. In diesem Zusammenhang werden in diesem Gemeinschaftsprojekt der FSU Jena und der JLU Giessen neue redoxaktive Polymere entwickelt, die auf drei Strukturmotiven basieren: Benzimidazole, Benzoxazole und Benzothiazole, die alle pyridyl-substituiert sind. Die resultierenden (elektrochemischen) Eigenschaften können durch die Substituenten und das Heteroatom im Fünfring (-NH-, NR-, -O-, -S-) eingestellt werden. Ein kombinierter theoretischer (JLU) und experimenteller (FSU) Screening-Ansatz wird verwendet, um die vielversprechendsten aktiven Materialien zu identifizieren. Zunächst werden geeignete Redox-Einheiten durch Berechnung und theoretisches Screening verschiedener Modellverbindungen mittels DFT untersucht. Darüber hinaus werden Redox-Einheiten mit vielversprechenden Eigenschaften synthetisiert und ihre elektrochemischen Eigenschaften untersucht. Basierend auf diesem ersten Screening werden geeignete Einheiten für die Integration in Polymere ausgewählt. Der zweite Schritt des Projekts ist die Modellierung der Polymere sowie ihre Synthese und die Untersuchung ihrer elektrochemischen Eigenschaften. Die Polymermaterialien mit den besten Eigenschaften werden für die Herstellung von Elektroden verwendet werden. Diese Elektroden werden in (Halb) Zelltests getestet.
Das Projekt "Schwerpunktprogramm (SPP) 2248: Polymer-basierte Batterien; Priority Program (SPP) 2248: Polymer-based batteries, Charakterisierung von Fabrikation-Mikrostruktur-Eigenschafts-Beziehungen für polymerbasierte Batteriematerialien durch die Kombination von tomographischer 3D-Bildgebung mit Modellierung und Simulation" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Hamburg, Professur für Angewandte Mathematik.Die 3D-Morphologie von Batterieelektroden hat einen wesentlichen Einfluss auf ihre elektrochemischen Eigenschaften. Dabei muss sowohl die ionische als auch die elektrische Leitfähigkeit in der gesamten Elektrode sichergestellt sein. Die Bestimmung geeigneter hierarchischer Elektrodenstrukturen im Mikro- und Nanometerbereich ist somit unerlässlich für die Verbesserung der elektrochemischen Performanz von polymerbasierten Batterien. Hierfür sind detaillierte Kenntnisse der 3D-Morphologie experimentell hergestellter Elektroden und ihrer funktionellen Eigenschaften erforderlich. Das Ziel dieses Projektes ist es, besser zu verstehen, wie polymerbasierte Batterieelektroden strukturiert werden müssen, um 3D-Morphologien zu erhalten, die zu einer hohen elektrochemischen Performanz und Degradationsstabilität führen. Hierfür werden neuwertige und zyklisch gealterte Standard-Elektroden untersucht, die von der AG Schubert der Uni Jena zur Verfügung gestellt werden. Die 3D-Morphologie dieser Elektroden wird zunächst von der AG Manke mittels tomographischer Bildgebungstechniken wie FIB/SEM Tomographie und Synchrotron-Tomographie rekonstruiert. Des Weiteren wird die AG Manke tomographische Operando-Messungen durchführen, um Strukturänderungen während der Zyklisierung zu analysieren. Die AG Schmidt wird mit statistischer Bildanalyse Korrelationen zwischen Fabrikationsparametern und transportrelevanten Kenngrößen der 3D-Morphologien von neuwertigen und gealterten Elektroden untersuchen und quantitativ bewerten, während die AG Carraro ortsaufgelöste numerische Simulationen des Ladungstransports durchführt und ein elektrochemisches Multiskalen-Modell entwickelt, um zu untersuchen, wie die 3D-Morphologie der Elektroden die in ihr ablaufenden elektrochemischen Prozesse beeinflusst. Neben den experimentell hergestellten Elektroden der AG Schubert werden simulierte Elektrodenstrukturen untersucht. Hierfür entwickelt die AG Schmidt einen stochastischen Geometrie-Generator, mit dem sie eine große Vielfalt von virtuellen Elektrodenstrukturen in 3D erzeugt. Dadurch wird die systematische Untersuchung der 3D-Morphologie von polymerbasierten Batterieelektroden mittels Computersimulation ermöglicht. Insbesondere führt die 3D Simulation von Elektrodenstrukturen zu empirisch hergeleiteten Formeln, die transportrelevante Kenngrößen der 3D-Morphologie durch Fabrikationsparameter ausdrücken, also zu sogenannten Fabrikation-Mikrostruktur-Beziehungen. Die Kombination von stochastischer Struktursimulation mit der numerischen Simulation elektrochemischer Prozesse der AG Carraro führt außerdem zu Formeln, durch die elektrochemische Kenngrößen mittels morphologischer Kenngrößen ausgedrückt werden, d.h. zu Mikrostruktur-Eigenschafts-Beziehungen. Insgesamt werden so durch die Kombination von 3D Bildgebung mit modellbasierter 3D Simulation Strukturierungsempfehlungen generiert, die das Design von polymerbasierten Batterieelektroden mit optimierter elektrochemischer Performanz unterstützen.
Das Projekt "Schwerpunktprogramm (SPP) 2248: Polymer-basierte Batterien; Priority Program (SPP) 2248: Polymer-based batteries, Einblicke in die Dotierungsmechanismen von Polymerelektrolyt / redoxaktiven organischen Radikal Polymer lamellaren Verbundwerkstoffen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung (IEK), IEK-12: Helmholtz-Institut Münster (HI MS) Ionenleiter für Energiespeicher.Organische Radikalbatterien sind aufgrund ihrer hohen Leistungsdichte besonders vielversprechend. Aus grundlegende Sicht müssen eine günstige Ladungstransferkinetik und ein schneller Ladungstransport gleichzeitig ermöglicht werden. Darüber hinaus erfordert die Ladungsspeicherung eine aliovalente Dotierung, um die Ladungsneutralität zu gewährleisten. Die zugrunde liegenden Mechanismen auf atomarer Ebene sind jedoch nicht gut verstanden. Dies gilt insbesondere für die 'trockenen' Gel- oder 'festen' Polymer-MehrschichtElektrolyte, die aufgrund ihrer hohen elektrochemischen Stabilität derzeit die bevorzugten Materialien sind. In einem systematischen Ansatz wird eine Familie von Mehrschichtpolymersystemen vorbereitet und in Bezug auf PolyTEMPO, ein etabliertes Redoxpolymersystem für Flüssigelektrolyte, untersucht. Die Modellsysteme bestehen aus einer Lithium-Metall-Anode, einer hochlithiumionenleitenden Polymerelektrolytschicht und gemischt leitenden Polymerverbunden, einschließlich Elektronenleiter, Redox-Polymer und einem hoch anionenleitenden Polymer. Der Syntheseteil umfasst die Herstellung und Verarbeitung der Polymermaterialien zu lamellaren Verbundwerkstoffen sowie eine umfassende elektrochemische Charakterisierung.Details der Radikal-Transfermechanismen und der auftretenden Ionenspezies werden anhand von c.w. und gepulsten EPR-Methoden aufgeklärt, wobei spektrale Merkmale von reinen und zyklischen Materialien (post-mortem) verglichen und bestimmt werden, einschließlich der Anwendung von PELDOR/DEER zur Aufklärung der Abstände und wahrscheinlichen Verteilungen der beim Zellbetrieb gebildeten Radikalspezies, trotz schwieriger hoher lokaler Radikalkonzentrationen. Wenn möglich, soll mittels ENDOR / HYSCORE die radikalen Arten mit den Materialien weiter charakterisiert werden. In-operando EPR wird an ausgewählten Proben durchgeführt, um die Entwicklung der radikalen Spezies anhand ihres Fingerabdrucksignals zu verfolgen und Einblicke in molekulare Details der Ladungsübertragungsprozesse zu geben. Weitere Einblicke in die mechanistischen Details des elektronischen und ionischen Ladungstransports werden durch die rechnerische Modellierung relevanter Prozesse vom elementaren Elektronentransfer bis zum Ionentransport über die Grenzflächen innerhalb des Schichtverbundes ermöglicht. Ab initio-Methoden werden zur Charakterisierung der elektronischen Eigenschaften der redoxaktiven Polymere eingesetzt, während die weitreichenden Ionentransport- und Dotierungsmechanismen der organischen Kathode auf der Grundlage klassischer molekulardynamischer Simulationen entschlüsselt werden. Zusammenfassend lässt sich sagen, dass all diese Bemühungen neben einem tieferen grundlegenden Verständnis als Leitfaden für die Identifizierung vielversprechender redoxaktiver Materialien und die Gestaltung von Grenzflächen innerhalb der Mehrschichtstrukturen dienen werden, um so die zukünftige Entwicklung leistungsfähiger fester organischer Elektrolyte zu fördern.
Das Projekt "Schwerpunktprogramm (SPP) 2248: Polymer-basierte Batterien; Priority Program (SPP) 2248: Polymer-based batteries, Aufklärung von Degradationsmechanismen in Polymer-basierten Dual-Ionen-Batterien und Entwicklung von Strategien zur Leistungsoptimierung" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Westfälische Wilhelms-Universität Münster, MEET Batterieforschungszentrum.Polymer-basierte Batterien gelten als aussichtsreiche Kandidaten für eine nachhaltige Energiespeicherung, was u.a. motiviert wird durch einen reduzierten Energieverbrauch bei der Herstellung, eine einfachere Recyclingfähigkeit sowie die Verwendung leicht zugänglicher Materialien und dem Austausch kritischer Metalle. Aktuell leiden Polymer-basierte Batterien jedoch unter diversen Herausforderungen hinsichtlich ihrer elektrochemischen Performanz, insbesondere einer geringen Energiedichte oder nicht ausreichender Zyklenstabilität. Zudem fehlt aktuell noch ein grundlegendes Verständnis bzgl. der Kapazitätsverluste der Zellen sowie der auftretenden Alterungsmechanismen an den Elektroden/Elektrolyt-Grenzflächen. In diesem Projekt soll ein Spezialtyp einer Polymer-basierten Batterie systematisch untersucht werden, eine sogenannte Polymer-basierte Dual-Ionen-Batterie (DIB), welche organische Materialien des n- und p-Typs zur simultanen Speicherung von Kationen und Anionen verwendet. Das DIB-System unterscheidet sich von klassischen Polymer-Batterien basierend auf dem Kationen- oder Anionen-'Rocking-Chair'-Prinzip, da hier nicht nur eine Ionensorte, sondern sowohl Kationen als auch Anionen beteiligt sind. Dieses Speicherprinzip bietet verschiedene Vorteile, wie u.a. eine hohe Variabilität möglicher Kation-Anion-Paare sowie typischerweise eine hohe Zellspannung, die durch geeignete Polymermaterialien erreicht werden kann. Zur Entwicklung Polymer-basierter DIB-Systeme mit verbesserter Energiedichte und Stabilität werden in diesem Projekt verschiedene Strategien adressiert: (I) Design neuartiger Polymermaterialien mit höherem Arbeitspotential für die positive Elektrode ('Spannungstuning'), (II) Entwicklung von Hybridsystemen wie Graphit / Polymer mit hoher Zellspannung, (III) Entwicklung von 'All-Polymer'-DIB-Systemen, mit verschiedenen Konzepten wie der Entwicklung ambipolarer Polymersysteme sowie sogenannter 'Reverse-All-Polymer-DIB-Systeme'. Die verschiedenen Polymer-DIB-Systeme sollen hinsichtlich ihrer elektrochemischen Performanz umfassend untersucht werden, wobei der Einfluss der Elektrolytformulierung und der gebildeten 'Interphasen' auf die reversible Kapazität und Stabilität während der Lade-/Entladezyklisierung im Vordergrund der Untersuchungen stehen. Zu diesem Zweck werden verschiedene ex-situ und in-situ Analysen durchgeführt, um wichtige und umfassende Einblicke in die mechanistischen Eigenschaften der Kationen- bzw. Anionen-Speicherung, die Stabilität der Polymermaterialien und die Rolle der 'Interphasen' zu erhalten. Es wird erwartet, dass die in diesem Projekt gewonnenen grundlegenden Erkenntnisse für die Entwicklung verbesserter polymerer Aktivmaterialien und optimierter Elektrolyte für Polymer-basierte DIB-Zellen mit hoher Energiedichte und Zyklenstabilität von großer Bedeutung sind.
Origin | Count |
---|---|
Bund | 17 |
Type | Count |
---|---|
Förderprogramm | 17 |
License | Count |
---|---|
offen | 17 |
Language | Count |
---|---|
Deutsch | 17 |
Englisch | 15 |
Resource type | Count |
---|---|
Webseite | 17 |
Topic | Count |
---|---|
Boden | 5 |
Lebewesen & Lebensräume | 10 |
Luft | 10 |
Mensch & Umwelt | 17 |
Wasser | 5 |
Weitere | 17 |