Teilprojekt C05 hat zum Ziel, den wichtigen Eintragsweg für Kunststoffe, in Form von Mikroplastik, in die Umwelt aus technischen Anlagen (MP) mechanistisch aufzuklären. Gleichzeitig sollen neue Ansätze verfolgt werden, die zur Vermeidung bzw. Reduktion von MP aus Standardkunststoffen maßgeblich beitragen sollen. Zu diesem Zweck sollen Polyethylen, Polypropylen, Polystyrol, Nylon, Polyethylenterephthalat, Polyisopren und Polyvinylchlorid durch Beschleuniger (in situ) in ihren Oberflächeneigenschaften für die Biofilmbildung modifiziert und dadurch unter Prozessbedingungen biologisch angreifbar und abbaubar gemacht werden. So können auch Standardkunststoffe umweltverträglicher bezüglich der MP-Partikel Bildung werden. Damit geht TP C05 weit über die bislang üblichen eher deskriptiven Studien zu MP in technischen Anlagen und der Umwelt hinaus. Folgende zentrale Fragen sollen in TP C05 in Hinblick MP-Partikel in technischen Anlagen der Abfall- und Abwasserwirtschaft beantwortet werden: 1. Kommt es in den Anlagen zu spezifischen (biologischen) Abbau- und Degradationsvorgängen? 2. Wie hängen die zu beobachtenden Prozesse von MP-Charakteristika (Materialsorte, Zusammensetzung, Größe, Morphologie, Beschichtung) ab, ? 3. Lassen sich die Vorgänge ('Bioabbaubarkeit') durch gezielte Modifikation der Partikeloberfläche vor oder in den Anlagen beschleunigen? 4. Welche ökologischen Konsequenzen einer Ausbringung der (modifizierten) Partikel in die Umwelt und hier vor allem in den Boden lassen sich postulieren?
Ziel des Vorhabens ist die deutliche Verbesserung der Geräteausstattung des Verbundlabors zur Untersuchung des Umweltverhaltens von anthropogenen Stoffen in Gewässer-, Boden- und Vegetationskompartimenten. Ausgehend von aktuellen Forschungsprojekten steht das Umweltverhalten von Polymeren, insbesondere Mikroplastik im Fokus. Die neuen Geräte sollen von verschiedenen Akteuren genutzt wer-den, neben forschungsstarken Professuren, Nachwuchsforschende, wissenschaftliche Mitarbeitende und Promovierende, die in Projekten zu Mikroplastik, Bodenkunde, Wasserwesen und Vegetationstechnik tätig sind. Mit der Forschung zur Mikroplastik, der Entwicklung der Mikroplastikanalyse durch Elektroseparation in Verbindung mit der Differenzkalorimetrie und eines neuen Herstellverfahrens für Mikroplastikstandards und -referenzmaterialien hat die HTWD bereits ein Alleinstellungsmerkmal erreicht, was sich in Patenten und Publikationen widerspiegelt. Die Geräteauswahl ist primär auf die Weiterentwicklung der Mikroplastikforschung und ihrer Anwendungsbreite ausgerichtet, soll aber ebenso Projekte zur Untersuchung anderer anthropogener Stoffe und zum Umweltverhalten von Polymerwerkstoffen fördern. Die Mikroplastik-Verbundforschung der HTWD wurde ausgehend von fakultätsübergreifenden Lehrangeboten entwickelt und bildet den Kern des Verbundlabors, dessen Gründung die Hochschulleitung initial durch Sondermittel unterstützt hat. Mikrowellenaufschluss, Durchflusszentrifuge, TED-GC-MS, Durchflusszytometer und Thermowaage sollen nun vorhandene Lücken in der Probenvorbereitung und -aufbereitung schließen, neue Möglichkeiten für die Analytik bei hohem Probendurchsatz bieten und verbesserte Nachweisgrenzen für Mikro- und Nanoplastik ermöglichen. Der Ausbau stärkt die Umweltforschung im Bereich Materialforschung, Böden, Wasser und Vegetation, um das Verhalten anthropogener Stoffe in komplexen Umweltkompartimenten besser zu verstehen und die Auswirkungen menschlicher Eingriffe in die Umwelt sinnvoll zu gestalten. Die synergistische, fakultätsübergreifende Forschung zu Fragen der produktiven Land- und Gewässernutzung, der Energieproduktion, der Kontamination von Böden und Gewässern und der Rolle der Vegetation als anzeigendes, verbindendes und gestaltendes Element soll neue Erkenntnisse und Technologien für eine nachhaltige Entwicklung generieren. Eine moderne analytische Ausstattung ist dazu unerlässlich. Deren Beschaffung übersteigt die Möglichkeiten der Hochschule und kann nicht auf anderem Weg finanziert werden. Die HTWD kann durch die beantragte Ausstattung Alleinstellungsmerkmale weiterentwickeln und die Vorteile der fakultätsübergreifenden Kooperation demonstrieren. Offenheit zur interdisziplinären Zusammenarbeit ist ebenso gelebte Praxis wie die Berücksichtigung neuer Schwerpunkte und aktueller Trends, eine bevorzugte Förderung junger Wissenschaftler und Begleitung durch Maßnahmen für chancengerechte Forschung, um eine nachhaltige Zukunftsfähigkeit zu gewährleisten.
In Projekt C01 wird die Entstehung von sekundärem Mikroplastik aus makroskopischen Kunststoffformkörpern und der weitere Zerfall durch Einwirkung von UV-Strahlung, Wasser und mechanischen Kräften untersucht. Dazu werden verschiedene Kunststoffe in reiner und additivierter Form durch beschleunigte Bewitterungsprozesse gealtert und hinsichtlich ihrer mechanischen Eigenschaften und molekularen Struktur charakterisiert. So verbinden wir Rissbildung und -fortschritt mit Molekulargewicht, Kettenbruch bzw. Endgruppen der Makromolekülketten sowie Additivkonzentration bzw. -migration. Hierzu wird eine breite Palette verschiedener Techniken von mechanischen Analysen über Massenspektrometrie bis hin zur Festkörper-NMR-Spektroskopie genutzt. Durch Korrelation dieser Ergebnisse, die von mikroskopischen bis hin zu makroskopischen Längenskalen reichen, wird ein vertieftes Verständnis der Mechanismen und der zeitlichen Abläufe des Abbaus von Kunststoffen in der Natur erreicht.
Bioabbaubare Polymere können eine elegante Lösung für das Mikroplastik-Problem darstellen. Für den Verpackungsbereich sind diese Polymere aber oftmals zu spröde und zu permeabel für Gase. Außerdem ist deren Abbau in relevanten Habitaten und unter realen natürlichen Bedingungen häufig zu langsam. Das langfristige Ziel dieses Forschungsprojektes ist es daher, zunächst ein umfassendes Verständnis des Abbauverhaltens konventioneller und maßgeschneiderter bioabbaubarer Polymere und Tonmineral-Nanokomposite in limnischen und terrestrischen Systemen zu erarbeiten. Dies wird uns dann in die Lage versetzen, Materialien zu entwickeln, die kein persistentes Mikroplastik generieren und gleichzeitig die technischen Anforderungen für Lebensmittelverpackungen erfüllen.
In diesem Projekt wird eine elektrochemisch hergestellte Polymerkathode aus poly(4-(thiophen-3-yl) benzenethiol (PTBT) mit operando Methoden und theoretischen Modellierungen untersucht. Diese Kathode ist frei-stehend, elektrisch leitfähig, mechanisch flexibel und dient als Schwefelreservoir für Lithium/Schwefel Batterien. Im Besonderen, wird PTBT mittels Elektropolymerisation auf einen Nickelschaum aufgetragen. Dies ermöglicht eine Anwendung als hochporöse und binderfreie Kathode in Li-S Batterien. Schwefel kann mit dem Polymer PTBT durch inverse Vulkanisierung ein hochvernetztes Copolymer bilden P(S-PTBT), wobei der Schwefel chemisch an die Thiolgruppen von PTBT gebunden wird. Durch die Anwendung eines neuartigen, eigenentwickelten operando Setups, das mehr als drei verschiedene Messungen gleichzeitig erlaubt, während die Zelle geladen bzw. entladen wird, werden mechanistische Einsichten von wichtigen Reaktionsschritten ermöglicht z.B. der Prozess, der den Schwefel während der elektrochemischen Oxidation chemisch an die Polymerkette bindet. Für diese Untersuchungen werden UV/vis-, Raman- und Impedanzspektroskopie in Kombination mit entweder Röntgenbildgebung oder Kleinwinkelstreuung genutzt. Die Experimente werden in enger Zusammenarbeit mit intensiven Modellierungs- und Simulationsstudien auf elektronischer und molekularer Skala ausgewertet. Es werden sowohl die Stabilität als auch die elektronische/molekulare Struktur des an die Thiolgruppen des neutral und geladenen Polymers kovalent-gebundenen Schwefels untersucht. Hierzu werden moderne Austauschkorellationsfunktionale aus der Dichtefunktionaltheorie (DFT) benutzt. Um die Struktur-Performanz Beziehung der in diesem Projekt vorgeschlagenen Kathoden darzulegen, werden die Ergebnisse der operando Analyse herangezogen. Hierbei werden Resultate der UV/vis Spektroskopie direkt mit DFT-Berechnungen und DFT-optimierten, klassischen molekulardynamischen (MD) Simulationen verglichen. Kurzum, durch die Kombination von Synthese, operando Analyse und Simulation wird ein besseres mechanistisches Verständnis der Energiespeicherprozesse und Struktur-Eigenschafts-Beziehung in diesem System erwartet. Diese so gewonnenen Kenntnisse werden für eine kontinuierliche Verbesserung der Materialparameter verwendet. Somit wird eine Erhöhung der elektrochemischen Leistungsfähigkeit von Li-S Batterien der nächsten Generation erreicht.
Heutige Batterietechnologien basieren hauptsächlich auf Metallen wie Lithium, Blei, Kobalt oder Nickel. Deren begrenztes natürliches Vorkommen sowie Toxizität und die daraus resultierenden Entsorgungsprobleme schränken jedoch die langfristige Verwendung solcher Metalle ein. Als Alternative haben sich im Rahmen jüngster Forschungen polymere Verbindungen, also Kunststoffe, herausgestellt. In diesem Zusammenhang wurden insbesondere Polymere, die stabile organische Radikale enthalten, intensiv untersucht und zeigten vielversprechende Ladungsspeichereigenschaften, insbesondere eine überlegene Redoxkinetik. Solche Materialien leiden jedoch unter unzureichender elektrischer Leitfähigkeit, die die anwendbaren Lade- und Entladeraten begrenzt, wodurch die vorteilhaften Elektronentransfereigenschaften aufgehoben werden. Ein vielversprechender Ansatz zur Überwindung dieses Problems ist der Einbau von leitfähigen, d.h. konjugierten Polymeren. Diese Materialien bieten mehrere vorteilhafte Eigenschaften, die für eine organische Batterie ausgenutzt werden können: (i) Als Halbleiter zeigen sie elektrische Leitfähigkeit; (ii) sie können durch Elektropolymerisation hergestellt werden und bieten so eine effiziente Möglichkeit, direkt auf Elektrodenoberflächen abgeschieden zu werden; (iii) sie bieten intrinsische Ladungsspeicherfähigkeit. Allerdings zeigen Systeme, die auf der eigenen Speicherfähigkeit von konjugierten Polymeren basieren häufig driftende Lade- und Entladespannung, was deren Anwendungspotenzial erheblich einschränkt. In Kombination mit stabilen Redoxeinheiten, die die Ladungsspeicherung übernehmen, wie organische Radikale, können aber die elektrische Leitfähigkeit sowie die elektrochemische Verarbeitbarkeit zu vielversprechenden Batterieaktivmaterialien führen. Trotzdem wurden bisher nur wenige solche Beispiele in der Literatur vorgestellt. Daher soll im Rahmen dieses Projekts die Palette organischer Batteriematerialien durch die Kombination stabiler organischer Radikale mit elektropolymerisierbaren Einheiten erweitert werden, um Systeme herzustellen, die sowohl verbesserte elektrochemische Stabilität als auch elektrische Leitfähigkeit bieten.
Das Schwerpunktprogramm 'Polymer-basierte Batterien' (SPP 2248) widmet sich Batterien auf Polymerbasis, bei denen (organische) redoxaktive Polymere als aktive Materialien für die jeweilige Kathode oder Anode verwendet werden. Bei 'all-polymer'-Batterien basieren beide Elektroden auf Polymermaterialien. Diese Batterien sind interessante Systeme aufgrund ihrer vielversprechenden Eigenschaften, zu denen schnelles Laden, die Möglichkeit zur Herstellung flexibler Elektroden, die Abwesenheit von Schwermetallen sowie der geringe Energiebedarf für die Materialsynthese und die Herstellung von Batterien gehören. Die wissenschaftlichen Projekte befassen sich mit der Modellierung zur Identifizierung vielversprechender neuer Materialien, dem Verständnis der auftretenden (Redox-) Prozesse sowie möglicher Nebenreaktionen, dem Design und der Synthese redoxaktiver Polymere, der Entwicklung neuartiger Elektrolyte sowie der detaillierte Charakterisierung (auch in situ und in Operando-Techniken). Die zentralen Aktivitäten des Schwerpunktprogramms, die in diesem Projekt behandelt werden, fördern den wissenschaftlichen Austausch zwischen allen Projekten und Teilnehmern des SPP, beispielsweise bei verschiedenen Netzwerkveranstaltungen des Schwerpunktprogramms. Ein wichtiges Ziel des Schwerpunktprogramms ist auch die Förderung des wissenschaftlichen Nachwuchses, insbesondere von Wissenschaftlerinnen. Daher werden Doktoranden sowie die jungen PIs, die bereits an Projekten der SPP beteiligt sind, durch Anschubfinanzierungs- und Mentoringprogramme unterstützt. Dieses Projekt wird auch genutzt, um die (internationale) Sichtbarkeit des Schwerpunktprogramms zu fördern. Darüber hinaus werden in diesem zentralen Projekt Standardmaterialien und -elektroden bereitgestellt, die sowohl für Charakterisierungsprojekte als auch für Benchmark-Systeme verwendet werden.
Ziel des vorgeschlagenen Projekts ist die Entwicklung Aluminium- und Magnesium-organischer, polymerbasierter Batterien. Die Synthese redox-aktiver Polymere sowohl vom p- als auch vom n-Typ als Kathodenmaterialien ist geplant. Diese werden Phenothiazin bzw. Chinone als redox-aktive Einheiten enthalten. Aluminium- und Magnesium-basierte Elektrolyte sollen entwickelt werden, die kompatibel mit den organischen Redoxpolymeren sind und eine reversible Abscheidung bzw. Auflösung des Al/Mg auf der Anode ermöglichen. Die Redoxpolymere werden in Vollzellen gegen Aluminium und Magnesium als Anode getestet werden. Diese Zellen werden im Fall von p-Typ-Polymeren im 'Dual-Ion'-Modus und bei n-Typ-Polymeren im Kationen-'Rocking Chair'-Modus operieren. Mechanistische experimentelle und computergestützte Untersuchungen werden Einblicke in die Ionen-Insertionsprozesse der polymerbasierten Elektroden erlauben.
Batterien auf Polymerbasis haben in den letzten Jahren aufgrund ihrer interessanten Eigenschaften großes Forschungsinteresse auf sich gezogen. Zu ihren Vorzügen zählen ihr geringes Gewicht, die Möglichkeit, auf kritische Metalle zu verzichten, die Nutzung verfügbarer Elemente und ihre bessere Nachhaltigkeit bei Herstellung und Wiederverwertung. In den vergangenen Jahren wurden verschiedene redoxaktive Polymere untersucht, was zu vielen Strukturmotiven führte, die als potenzielle Elektrodenmaterialien identifiziert wurden. Derzeit sind allerdings nur begrenzt verschiedene Anodenmaterialien verfügbar. In diesem Zusammenhang werden in diesem Gemeinschaftsprojekt der FSU Jena und der JLU Giessen neue redoxaktive Polymere entwickelt, die auf drei Strukturmotiven basieren: Benzimidazole, Benzoxazole und Benzothiazole, die alle pyridyl-substituiert sind. Die resultierenden (elektrochemischen) Eigenschaften können durch die Substituenten und das Heteroatom im Fünfring (-NH-, NR-, -O-, -S-) eingestellt werden. Ein kombinierter theoretischer (JLU) und experimenteller (FSU) Screening-Ansatz wird verwendet, um die vielversprechendsten aktiven Materialien zu identifizieren. Zunächst werden geeignete Redox-Einheiten durch Berechnung und theoretisches Screening verschiedener Modellverbindungen mittels DFT untersucht. Darüber hinaus werden Redox-Einheiten mit vielversprechenden Eigenschaften synthetisiert und ihre elektrochemischen Eigenschaften untersucht. Basierend auf diesem ersten Screening werden geeignete Einheiten für die Integration in Polymere ausgewählt. Der zweite Schritt des Projekts ist die Modellierung der Polymere sowie ihre Synthese und die Untersuchung ihrer elektrochemischen Eigenschaften. Die Polymermaterialien mit den besten Eigenschaften werden für die Herstellung von Elektroden verwendet werden. Diese Elektroden werden in (Halb) Zelltests getestet.
Origin | Count |
---|---|
Bund | 18 |
Type | Count |
---|---|
Förderprogramm | 18 |
License | Count |
---|---|
offen | 18 |
Language | Count |
---|---|
Deutsch | 18 |
Englisch | 16 |
Resource type | Count |
---|---|
Webseite | 18 |
Topic | Count |
---|---|
Boden | 6 |
Lebewesen und Lebensräume | 10 |
Luft | 11 |
Mensch und Umwelt | 18 |
Wasser | 6 |
Weitere | 18 |