Einer der global größten Kohlenstoffspeicher ist die organische Bodensubstanz (OBS), welche eine zentrale Quelle für die Pflanzennährstoffe Stickstoff (N) und Phosphor (P) darstellt. Bodenmikroorganismen sind die Hauptakteure beim Umsatz der OBS und damit ein zentrales Bindeglied zwischen Kohlenstoff- (C) und Nährstoffkreisläufen. Sie sind jedoch stark durch Phagen (also Viren, die Bakterien befallen) beeinflusst. In Ozeanen sterben täglich 20% der bakteriellen Zellen durch Phagen, was zu einem Umsatzpfad („viral shunt“) führt, der große Mengen organischer Substanz und damit assoziierter Nährstoffe aus bakterieller Biomasse freisetzt. Das erhöht die Produktivität der Ozeane und speichert C in bakteriellen Rückständen. Trotz ihrer hohen Abundanz in Böden wurden Phagen in der Bodenbiogeochemie kaum berücksichtigt. Meine Nachwuchsgruppe wird erstmals untersuchen wie die Biophysik des Mikrohabitats die Infektion durch Phagen und damit bakterielle Sterberaten steuert. Wir werden herausfinden, ob hierdurch ein vergleichbarer „viral shunt“ in Böden vorliegt und quantifizieren dessen Auswirkung auf Nährstoff- und CO2-Feisetzung sowie auch der Speicherung von C. Wir möchten gezielt über phänomenologische Beschreibungen hinausgehen und zugrundeliegende Mechanismen aufklären. Bodenmikrohabitate werden mit modernsten bildgebenden Verfahren zur Aufklärung mikroskaliger Strukturen charakterisiert: 3D Wasserverteilung im Habitat durch synchrotronbasierte Mikrotomographie, Verteilung der OBS mit Rasterelektronenmikroskopie und Mineralogie der Porenoberflächen mittels Raman-Mikrospektroskopie. Phagen aus Böden werden isoliert und ihre Phage-Habitat-Interaktionen erfasst, um so die Relevanz des Mikrohabitats für die Phagenausbreitung zu eruieren. Der Einfluss des Mikrohabitats auf die Infektionsrate und damit auf Stoffkreisläufe wird mittels der Kopplung molekularer Methoden mit Isotopenanwendungen untersucht werden, und zwar i) 18O-DNA Markierung (SIP) zur Erfassung der Phagenbildung sowie des bakteriellen Zellsterbens, ii) der Bestimmung der Abundanz relevanter funktioneller Gene und iii) der Quantifizierung der Mineralisationsraten durch Isotopenverdünnung. Der Einsatz isotopisch markierter Phagen (13C, 15N, 33P) wird die phageninduzierte Änderungen der Elementflüsse aufzeigen. Damit wird erstmal ein mechanistisches Verständnis erlangt, wie Bodenphagen in Interaktion mit ihrem Habitat biogeochemische Kreisläufe von globaler Bedeutung beeinflussen. Des Weiteren wird der Einfluss dynamischer Änderungen des Mikrohabitats auf Phagen untersucht sowie evolutionäre Anpassungen der Phagen an ihre Habitate. Detailliertes Prozessverständnis ist hier von höchster Relevanz um die Auswirkung anthropogener Aktivität oder des Klimawandels auf Bodenphagen vorherzusagen. Daher werden diese Erkenntnisse final in ein dynamisches Modell integriert, um erstmals die Vorhersage phageninduzierter Prozesse in Böden zu ermöglichen - für deren Einsatz in Landnutzung und Landwirtschaft.
Rindenbruetende Borkenkaefer gehoeren zu den bedeutendsten biotischen Schadfaktoren, vor allem in Nadelwaeldern und an Ulmen. Neben der bisher noch notwendigen, unmittelbaren Bekaempfung der Kaeferbrut in Baeumen die als befallen erkannt wurden (teils physikalische, teils chemische Vernichtung der Brut), ist die Populationsverduennung mit biotechnischen Methoden unverzichtbar, um die Populationsdichte auf Werte zu druecken, die zur Ueberwaeltigung des Widerstands lebender Baeume nicht mehr ausreichen. Hierzu wurden frueher Fangbaeume, ab 1978 jedoch pheromonbekoederte Kunstfallen eingesetzt und zwar bis 1986 nur gegen den Buchdrucker (Ips typographus). Das Prinzip soll mit neuen, artspezifischen Pheromonen auch auf andere wichtige Arten ausgedehnt und optimiert werden. - Das wichtigste der noch nicht geloesten Teilprobleme ist der falleninduzierte Befall lebender Baeume, der eintritt, wenn wegen der Bestandsstruktur die an sich notwendigen Sicherheitsabstaende zwischen Falle und naechstem Baum nicht eingehalten werden koennen. Die Kontrolle der Borkenkaeferpopulationen hat mit dem immissionsbedingten Auftreten neuartiger Waldschaeden ('Waldsterben') eine besondere Aktualitaet gewonnen, weil die Kaefer das meist nur langsam fortschreitende Waldsterben erheblich beschleunigen und verschaerfen koennen.
Humanpathogene Bakterien, die Resistenzen gegen mehrere Antibiotikaklassen aufweisen, stellen ein Risiko für die öffentliche Gesundheit dar und werden als eine der größten globalen Herausforderungen des 21. Jahrhunderts betrachtet. Einige der Resistenzgene dieser Bakterien wurden im Boden, der ein großes Reservoir von Antibiotikaresistenzen darstellt, aufgespürt und könnten z.B. über das Grundwasser oder Wildtiere verbreitet werden. In diesem Projekt soll die Dynamik des Antibiotikaresistenzpools im Boden entlang eines breiten Spektrums von Landnutzungstypen und -intensitäten innerhalb der drei Biodiversitäts-Exploratorien untersucht werden. Um eine robuste Abschätzung von Landnutzungseffekten auf die Abundanz von Antibiotikaresistenzgenen zu erlangen, wird Boden-DNA von allen Grünland-EP Und Wald-VIP Plots mittels quantitativer Echtzeit-PCR analysiert. Landnutzungsinduzierte Veränderungen von Gemeinschaftsprofilen antibiotikaresistenter Bodenbakterien werden innerhalb eines Mikrokosmenexperimentes aufgedeckt. Dieses Experiment schließt die Quantifizierung und Erfassung der zeitlichen Dynamik bakterieller Gemeinschaften ein. Ein weiterer Schwerpunkt ist die Erfassung landnutzungsbedingter Variationen des Vorkommens von Plasmiden, da diese mobilen genetischen Elemente eine wesentliche Quelle für Antibiotikaresistenzgene sind und zu deren Verbreitung beitragen. Diesbezüglich wird die Abundanz von IncP-1 Plasmiden, die mehrere Antibiotikaresistenzen kodieren können und Gentransfer zwischen entfernt verwandten Bakterien erlauben, bestimmt. Die Gesamtdiversität Antibiotikaresistenz-vermittelnder zirkulärer Plasmide wird unter Verwendung einer long-read-Sequenzierungstechnologie abgeschätzt. Außerdem wird eine funktions-basierte Durchmusterung von zuvor konstruierten Bodenmetagenombanken vorgenommen. Dadurch werden Unterschiede der Vielfalt von Antibiotikaresistenzgenen und -mechanismen zwischen analysierten Landnutzungsintensitäten enthüllt. Kenntnisse über Antibiotikaresistenz in Böden, die unterschiedlichen Landnutzungstypen und -intensitäten ausgesetzt sind, werden dringend benötigt, um Konsequenzen anthropogener Aktivitäten bzgl. der Ausbreitung von multiresistenten Bakterien vorhersagen zu können. In diesem Projekt werden Auswirkungen von Landnutzung auf das Antibiotikaresistenz-Reservoir und -Transferpotential des Bodens untersucht. Zudem werden Korrelationen zwischen der Antibiotikaresistenz im Boden und abiotischen (z.B. Konzentrationen von Schwermetallen) sowie biotischen Faktoren (z.B. Abundanz pilzlicher Taxa) aufgedeckt.
Methan (CH4) ist das zweitwichtigste Treibhausgas und trägt wesentlich zur globalen Erwärmung bei. Im Jahr 2021 wurden weltweit politische Anstrengungen beschlossen, um die stark angestiegenen Methanemissionen einzudämmen. Das Bodenmikrobiom ist die wichtigste terrestrische Methansenke und stark von der Landnutzung beeinflusst. Eine große Herausforderung für die Landwirtschaft ist die Anpassung der Landnutzungsintensität von Grünländern, um produktive und gleichzeitig nachhaltige Produktionssysteme zu gewährleisten. Zwei grundlegend unterschiedliche Gruppen von Mikroben sind für den CH4-Kreislauf entscheidend. Methanotrophe Bakterien wirken als biologische Senke, indem sie atmosphärisches CH4 oxidieren, während methanogene Archaea in anoxischen Zonen, Aggregaten und tieferen Bodenschichten Methan produzieren. Im Rahmen des vorangegangenen Projekts haben die Partner (1) die negativen Auswirkungen von hoher Landnutzungsintensität auf methanotrophe Bakterien in Grünlandböden und (2) die hohe saisonale Dynamik des Mikrobioms aufgezeigt, die entscheidet, ob Grünland eine Quelle oder eine Senke für CH4 ist. Im Rahmen des neuen Projektantrages MetGrass werden wir daher die Auswirkungen einer geringeren Intensität der Grünlandnutzung auf Methanotrophe und Methanogene untersuchen. Hierfür werden wir uns an den etablierten gemeinsamen Grünlandexperimenten REX und LUX beteiligen. Wir werden vier komplementäre Hypothesen testen, mit den übergeordneten Zielen, festzustellen, (1) wie die De-Intensivierung zu Veränderungen in der Artenzusammensetzung und Abundanz von Methanotrophen und Methanogenen führt, (2) wie dies mit veränderten Methanflüssen zusammenhängt und (3) wie schnell diese Veränderungen sind. In Arbeitspaket (AP) 1 werden wir die langfristigen Erholungseffekte der CH4-Senkenfunktion und der Methanotrophen in Grünlandböden nach einer De-Intensivierung untersuchen. WP2 untersucht die kurzfristigen Reaktionen von Methanotrophen und Methanogenen auf einzelne Bewirtschaftungsmaßnahmen (z. B. Düngung und Mahd). In WP3 wollen wir ein mikrobiombasiertes Vorhersagemodell für Methanflüsse in Grünlandböden entwickeln. WP4 wird den Kipp-Punkt der Methan-Senkenfunktion eines Grünlandbodens bei steigenden Düngungsraten identifizieren und dadurch ein mechanistisches Verständnis der zugrunde liegenden Mikrobiomdynamik liefern. Wir werden eine einzigartige Kombination methodischer Ansätze anwenden, die den interdisziplinären Charakter des MetGrass-Teams widerspiegelt. MetGrass wird in der Lage sein, (a) drängende Fragen zu den Auswirkungen einer De-Intensivierung der Landnutzung auf die funktionelle Vielfalt und Aktivität dieser wichtigen Bodenmikroorganismen in Grünländern zu beantworten und (b) die Grundlage für die Verbesserung der Grünlandbewirtschaftung im Hinblick auf eine nachhaltige Landnutzung zu liefern.
Böden beherbergen die komplexesten Lebensgemeinschaften der Erde und sind lebenswichtige Ressourcen, die der Menschheit wichtige Ökosystemleistungen und Ernährungssicherheit bieten. Aufgrund der Komplexität der Böden und der immensen organismischen Vielfalt wurden bisher für keinen Boden eindeutige Zusammenhänge zwischen der Zusammensetzung des Mikrobioms (sowohl taxonomisch als auch funktionell), der mikrobiellen Physiologie und den Energieflüssen hergestellt. Tatsächlich gab es keine einzige Methode, um die Diversität, Abundanz und Gemeinschaftszusammensetzung der Bodenmikrobiota und der Bodenfauna mit hoher taxonomischer Auflösung zu bewerten. Die Doppel-RNA-Metatranskriptomik ermöglicht nun solche ganzheitlichen Zählungen über phylogenetische Domänen und trophische Ebenen hinweg auf der Grundlage von rRNA und mRNA. Dies hat das Potenzial, mechanistische Verbindungen zwischen trophischen Interaktionen im Mikrobiom und Energie- und Kohlenstoffflüssen entlang der bakteriellen und pilzlichen Energiekanäle herzustellen. MYXED-UP 2 sieht die Untersuchung einer vernachlässigten Gruppe von Mikroorganismen im Nahrungsnetz des Bodens vor: die räuberischen Bakterien. Wir wollen die Rolle der räuberischen Myxobakterien im Nahrungsnetz des Bodens und ihre Fähigkeit, das Mikrobiom sowie die Energie- und Stoffflüsse zu modulieren, explizit identifizieren. Zu diesem Zweck haben wir uns zu einem interdisziplinären Konsortium aus insgesamt fünf Arbeitsgruppen aus den Bereichen Bodenbiologie, Biogeochemie, Mikrobiologie und Modellierung zusammengetan, das sich dieser Herausforderung durch eine einzigartige Kombination von Fachwissen und zentralen Laborexperimenten stellen wird. In Experimenten mit natürlichen mikrobiellen Konsortien werden wir die Auswirkungen von Nematoden und Myxobakterien auf die Struktur des Mikrobioms und die Energie- und Stoffflüsse untersuchen. Die hochintegrierten Experimente werden reichhaltige und heterogene Datensätze liefern, die letztlich in die Modellierung des mikrobiellen Wachstums und des Umsatzes spezifischer funktioneller Gilden in den Mikrokosmen einfließen werden. Im Rahmen der gemeinsamen Forschung wird MYXED-UP2 mit Hilfe der quantitativen Metatranskriptomik einen umfassenden Einblick in Mikrobiome geben, der Verbindungen zwischen Mikrobiom-Mitgliedern und Thermodynamik herstellen wird. In Arbeitspaket 2 wollen wir die Auswirkungen der “Death pathways” (räuberische Myxobakterien vs. Bakteriophagen) auf die Zusammensetzung der bakteriellen und pilzlichen Nekromasse verstehen.
Low-lying coral reef islands harbour a distinct, yet highly threatened biological and cultural diversity that is increasingly exposed to climate change impacts. The combination of low elevation, small size, sensitivity to changes in boundary conditions (sea level, waves and currents, locally generated sediment supply) and at some locations high population densities, is why low-lying reef islands (LRIs) are considered among the most vulnerable environments on Earth to climate change. To date, their global distribution and influence of climatic, oceanographic, and geologic setting are only poorly documented or restricted to smaller scales. Here, I present the first detailed global analysis of LRIs utilising freely available global datasets to produce a global reef island database (GRID) and associated intrinsic and extrinsic characteristics that can be used within a coastal vulnerability index (CVI). All datasets used to create the GRID were released between 30 November 2015 and 3 August 2023, while the current version of the GRID database was completed in November 2024. When developing the GRID, LRIs are defined as landmasses <30 km² located on or within 1 km of coral reef and with an elevation of <16 m. Development of the GRID required: 1) the creation of a global shoreline vector file containing the geographic distribution of LRIs and 2) the development of a comprehensive global database of LRIs including eight intrinsic and ten extrinsic variables extracted from global datasets. Intrinsic variables include: 1) human populations, 2) island area, 3) island perimeter, 4) mean elevation, 5) island circularity/shape, 6) underlying reef type, 7) geographic isolation and 8) distance to the nearest neighbouring reef island. Extrinsic variables include: 1) mean water depth, 2) standard deviation of mean water depth, 3) mean annual significant wave height, 4) mean annual wave period, 5) mean spring tidal range, 6) relative tidal range, 7) wave-tide regime, 8) relative wave exposure, 9) relative tropical storm exposure and 10) year-2100 projected median sea level rise rate. The GRID was initially derived from version 2.1 of the UNEP-WCMC Global Island Database, a global shoreline vector file based on geometry data from Open Street Map® (OSM) and released in November 2015. The initial vector file was projected using the Mollweide projection, an equal-area pseudo cylindrical map projection chosen for its accurate derivation of area, especially in regions close to the equator, where most LRIs are located. The final GRID contains 34,404 individual LRIs distributed throughout tropical regions of the world's oceans, amassing a total land area of nearly 11,000 km² with approximately 60,740 km of shoreline and housing around 2.6 million people. While intrinsic variables are typically spatially homogenous, LRIs are generally highly spatially clustered throughout the GRID with respect to extrinsic variables. The spatial distribution of LRIs within the GRID was validated using: 1) published data and 2) quantitative accuracy assessments using satellite imagery. Spatial distributions of LRIs captured in the GRID are extremely consistent with those published in the literature (r² = 0.96) and those derived from independent analysis of satellite imagery (r² = 0.94). Finally, the GRID was used to develop an island vulnerability index (IVI) for each LRI on a scale of 0-1 with 0 representing no vulnerability and 1 representing maximum vulnerability. The GRID database is provided as a tab-delimited text file as well as ESRI shapefiles (points and polygons in WGS84 and Mollweide projection) and a comma-separated value file.
Fischbesiedelung Berliner Gewässer zusammengefasst in Gittereinheiten von 10 x 10 km. Für jede Fischart wird pro Gitterzelle die Populationsdichte aufgeführt.
Der Rückgang der Artenvielfalt ist auf globaler bis lokaler Ebene vielfach belegt. Insbesondere Arten des Offenlandes sind hiervon betroffen. Die Auswertung historischer und aktueller Daten zum Vorkommen von Arten der Tagfalter und Widderchen (im Folgenden kurz „Tagfalter“ genannt) im Raum Münster zeigt einen Rückgang um 38 % seit 1900. Vor diesem Hintergrund wurden die Tagfalter auf fünf extensiven Ganzjahresweiden und zwei Standortübungsplätzen (SÜP) im Münsterland untersucht. Entlang standardisierter Transekte erfolgte die Erfassung der Tagfalterdiversität und -abundanz sowie verschiedener Habitatparameter. Insgesamt konnten 32 Arten in den Untersuchungsgebieten nachgewiesen werden, die höchste Gesamtartenzahl bei gleichzeitig geringster Individuenzahl zeigte sich auf dem SÜP „Dorbaum“. Trotz der vergleichsweise kleinen Flächen wiesen die Weidelandschaften ein breites Artenspektrum auf, die Arten- und Individuenzahlen der Transektzählungen waren hier im Vergleich zu den SÜP signifikant höher. Die Datenauswertung und Diskussion ergab, dass für Tagfalter eine über die gesamte Vegetationsperiode hohe Blütendeckung, eine hohe Strukturvielfalt, blütenreiche Saumstrukturen, ein natürliches Störungsregime sowie Brachestadien essenziell sind. Auf Grundlage dieser Ergebnisse werden Schutzmaßnahmen für die Untersuchungsgebiete diskutiert.
Zielsetzung: Das Projekt verfolgt die drei folgenden Hauptziele: 1. Biodiversitätsanalyse: Die Biodiversitätsanalyse beinhaltet die wissenschaftliche Untersuchung des Einflusses von wilden Huftieren auf die Artenvielfalt von Pflanzen (Gefäßpflanzen und Moose), Heuschrecken, Dungkäfern und Brutvögeln im Offenland (Heiden) und Wald (Kiefernforst). Bei Dungkäfern und Heuschrecken wird neben der Artenvielfalt und den Abundanzen auch die Biomasse untersucht. 2. Erarbeitung evidenz-basierter Handlungsempfehlungen: Erarbeitung eines Leitfadens zum nachhaltigen, biodiversitätsfördernden Management von Offenland und Wald auf Naturerbeflächen unter Einbeziehung von wilden Huftieren. Die Grundlage hierfür bilden die Erkenntnisse der in diesem Projekt durchgeführten Studien und der relevanten, aktuellen Literatur (insbesondere Web of Science). 3. Wissenstransfer: Vermittlung der wissenschaftlichen Erkenntnisse durch intensive Öffentlichkeitsarbeit und Publikationstätigkeit auf regionaler, nationaler und internationaler Ebene.
Im August 2022 fand ein massives Fischsterben in der Oder statt. Die ersten verendeten Fische auf deutscher Seite der Oder wurden am 09.08.2022 im Bereich Frankfurt (Oder) gemeldet. Neben Fischen verendeten auch andere aquatische Organismen wie Schnecken und Muscheln. Das tatsächliche Ausmaß der Umweltschäden und die langfristigen Auswirkungen auf das Ökosystem können derzeit noch nicht quantifiziert werden. Die Anwendung zeigt bildhaft anhand von Diagrammen die Verläufe der Messwerte der verschiedenen gemessenen Parameter an ausgewählten Messstellen.
| Origin | Count |
|---|---|
| Bund | 1110 |
| Land | 237 |
| Wissenschaft | 64 |
| Zivilgesellschaft | 2 |
| Type | Count |
|---|---|
| Daten und Messstellen | 13 |
| Ereignis | 1 |
| Förderprogramm | 912 |
| Kartendienst | 1 |
| Software | 3 |
| Taxon | 43 |
| Text | 111 |
| unbekannt | 189 |
| License | Count |
|---|---|
| geschlossen | 231 |
| offen | 1003 |
| unbekannt | 36 |
| Language | Count |
|---|---|
| Deutsch | 1177 |
| Englisch | 265 |
| Resource type | Count |
|---|---|
| Archiv | 14 |
| Bild | 16 |
| Datei | 15 |
| Dokument | 182 |
| Keine | 771 |
| Unbekannt | 8 |
| Webdienst | 55 |
| Webseite | 299 |
| Topic | Count |
|---|---|
| Boden | 774 |
| Lebewesen und Lebensräume | 1187 |
| Luft | 538 |
| Mensch und Umwelt | 1242 |
| Wasser | 746 |
| Weitere | 1270 |