API src

Found 15 results.

Additional porewater, bottom water and solid phase geochemical and Ni isotope data for sediment cores collected during AL543

The reactivity and isotope fractionation of Ni is strongly influenced by biological and redox-related processes in the ocean, giving the isotope system (expressed as δ60 Ni) some potential for studying past ocean environments. This requires, however, a profound understanding of its modern elemental and isotopic oceanic mass balance. In order to better understand mechanisms determining fluxes of Ni and its isotopes from the sediment-porewater system in reducing ocean settings, we present trace metal concentrations and Ni isotope data from sediments, porewaters and the water column of the shallow-water Kiel Bight, in the southwestern Baltic Sea. The samples were collected during RV Alkor cruise AL543. Trace metal concentrations in porewater, bottom water and BTP bottom water samples were measured on a Thermo Scientific Element XR and Nickel isotope compositions were measured using a Thermo Scientific Neptune Plus MC-ICP-MS. Digestion solutions of sediments and suspended particulate matter were measured by ICP-OES.

Bottom Water (collected with the benthic trace profiler (BTP)) geochemical and Ni isotope data collected during ALKOR cruise AL543

The reactivity and isotope fractionation of Ni is strongly influenced by biological and redox-related processes in the ocean, giving the isotope system (expressed as δ60 Ni) some potential for studying past ocean environments. This requires, however, a profound understanding of its modern elemental and isotopic oceanic mass balance. In order to better understand mechanisms determining fluxes of Ni and its isotopes from the sediment-porewater system in reducing ocean settings, we present trace metal concentrations and Ni isotope data from sediments, porewaters and the water column of the shallow-water Kiel Bight, in the southwestern Baltic Sea. The samples were collected during RV Alkor cruise AL543. Trace metal concentrations in porewater, bottom water and BTP bottom water samples were measured on a Thermo Scientific Element XR and Nickel isotope compositions were measured using a Thermo Scientific Neptune Plus MC-ICP-MS. Digestion solutions of sediments and suspended particulate matter were measured by ICP-OES.

Ni and P elemental concentrations in suspended particulate matter of bottom water (BTP) samples collected during ALKOR cruise AL543

The reactivity and isotope fractionation of Ni is strongly influenced by biological and redox-related processes in the ocean, giving the isotope system (expressed as δ60 Ni) some potential for studying past ocean environments. This requires, however, a profound understanding of its modern elemental and isotopic oceanic mass balance. In order to better understand mechanisms determining fluxes of Ni and its isotopes from the sediment-porewater system in reducing ocean settings, we present trace metal concentrations and Ni isotope data from sediments, porewaters and the water column of the shallow-water Kiel Bight, in the southwestern Baltic Sea. The samples were collected during RV Alkor cruise AL543. Trace metal concentrations in porewater, bottom water and BTP bottom water samples were measured on a Thermo Scientific Element XR and Nickel isotope compositions were measured using a Thermo Scientific Neptune Plus MC-ICP-MS. Digestion solutions of sediments and suspended particulate matter were measured by ICP-OES.

Porewater geochemical and Ni isotope data for sediment cores collected during ALKOR cruise AL543

The reactivity and isotope fractionation of Ni is strongly influenced by biological and redox-related processes in the ocean, giving the isotope system (expressed as δ60 Ni) some potential for studying past ocean environments. This requires, however, a profound understanding of its modern elemental and isotopic oceanic mass balance. In order to better understand mechanisms determining fluxes of Ni and its isotopes from the sediment-porewater system in reducing ocean settings, we present trace metal concentrations and Ni isotope data from sediments, porewaters and the water column of the shallow-water Kiel Bight, in the southwestern Baltic Sea. The samples were collected during RV Alkor cruise AL543. Trace metal concentrations in porewater, bottom water and BTP bottom water samples were measured on a Thermo Scientific Element XR and Nickel isotope compositions were measured using a Thermo Scientific Neptune Plus MC-ICP-MS. Digestion solutions of sediments and suspended particulate matter were measured by ICP-OES.

Salt- corrected chemical compounds, elemental concentrations and Ni isotope data of the solid phase for sediment cores collected during ALKOR cruise AL543

The reactivity and isotope fractionation of Ni is strongly influenced by biological and redox-related processes in the ocean, giving the isotope system (expressed as δ60 Ni) some potential for studying past ocean environments. This requires, however, a profound understanding of its modern elemental and isotopic oceanic mass balance. In order to better understand mechanisms determining fluxes of Ni and its isotopes from the sediment-porewater system in reducing ocean settings, we present trace metal concentrations and Ni isotope data from sediments, porewaters and the water column of the shallow-water Kiel Bight, in the southwestern Baltic Sea. The samples were collected during RV Alkor cruise AL543. Trace metal concentrations in porewater, bottom water and BTP bottom water samples were measured on a Thermo Scientific Element XR and Nickel isotope compositions were measured using a Thermo Scientific Neptune Plus MC-ICP-MS. Digestion solutions of sediments and suspended particulate matter were measured by ICP-OES.

Stable isotope (2H and 18O) depth profiles of pore waters and inferred soil physical parameters in the Attert catchment, Luxembourg

Depth profiles of stable water isotopes in the soil provide important information on flow and transport processes in the subsurface. We sampled depth profiles of stable water isotopes (2H and 18O) in the pore waters on two occasions at 46 sites in the Attert catchment, Luxembourg and are partly located in mixed deciduous forest and partly on grassland. These sites correspond to the sensor cluster sites of the DFG research unit CAOS. Sampling took place once between February 2012 and October 2013 and once in June 2014. Sampling procedure: We took 1-3 soil cores of 8 cm diameter in close proximity with a percussion drill (Atlas Copco Cobra, Stockholm, Sweden) at each study site within a radius of 5 m from the soil moisture sensor profiles. We drilled as deep as possible and divided the extracted soil cores into subsamples of 5 to 10 cm length and sealed the material in air tight bags (Weber Packaging, Güglingen, Germany). The soil sample depths were corrected for compaction during the drilling pro-cess and are provided as the mean depth of 5 or 10 cm soil core subsamples. For isotope analyses of the pore water, we used the direct equilibration method (Wassenaar et al., 2008). Analyses were carried out at the Chair of Hydrology, University of Freiburg. We provide detailed information about the laboratory analyses in Sprenger et al. (2015) and Sprenger et al. (2016) and the data description associated with the data.

Surface and subsurface characterisation of salt pans

This data collection bundles six datasets about the surface, subsurface and environmental conditions of saltpans that express polygonal patterns in their surface salt crust that are fully described in Lasser et al., 2020 (https://doi.org/10.5194/essd-2020-86). Information stems from 5 field sites at Badwater Basin and 21 field sites at Owens Lake – both in central California, US. All data was recorded during two field campaigns, from between November and December, 2016, and in January 2018. (1) Lasser, J., Goehring, L. (2020a). Grain size distributions of sand samples from Owens Lake and Badwater Basin in central California, collected in 2016 and 2018. PANGAEA - Data Publisher for Earth & Environmental Science. https://doi.org/10.1594/PANGAEA.910996 (2) Lasser, J., Goehring, L. (2020b): Subsurface salt concentration profiles and pore water density measurements from Owens Lake, central California, measured in 2018 (Version 2). PANGAEA, https://doi.org/10.1594/PANGAEA.922264 (3) Lasser, J., Goehring, L., Nield, J. M. (2020). Images and Videos from Owens Lake and Badwater Basin in central California, taken in 2016 and 2018 [Data set]. PANGAEA - Data Publisher for Earth & Environmental Science. https://doi.org/10.1594/PANGAEA.911054 (4) Lasser, J., Karius, V. (2020). Chemical characterization of salt samples from Owens Lake and Badwater Basin, central California, collected in 2016 and 2018. PANGAEA - Data Publisher for Earth & Environmental Science. https://doi.org/10.1594/PANGAEA.911239 (5) Nield, J. M., Lasser, J., Goehring, L. (2020). TLS surface scans from Owens Lake and Badwater Basin, central California, measured in 2016 and 2018 [Data set]. PANGAEA - Data Publisher for Earth & Environmental Science. https://doi.org/10.1594/PANGAEA.911233 (6) Nield, J. M., Lasser, J., Goehring, L. (2020): Temperature and humidity time-series from Owens Lake, central California, measured during one week in November 2016 (Version 2). Max Planck Institute for Dynamics and Self-Organization, PANGAEA, https://doi.org/10.1594/PANGAEA.922231

Radiographs of the gravity core HE443/10-3 from North Sea

Radiographs of gravity core HE443/10-3 that was collected in the Helgoland mud area. The radiographs were produced about 8 months after coring and sampling. The white spots derive from previous sediment sampling that was performed onboard through windows that were cut into the core liner. The core shows intervals with intact sedimentary structures, but also intervals that are strongly mixed by bioturbation.

Solid phase iron isotopic composition of a gravity core at Station HE443/10, North Sea

Solid-phase samples were collected onboard (RV Heincke expedition HE443) using cut-off syringes. The MUC was sliced and sampled. For sampling the GC, small windows were drilled into the liner through which the syringes were introduced. All samples were stored anoxically and frozen at -20°C until processing. The processing involved freeze-drying and grinding. Extracts deriving from the sequential extraction of Fe phases were processed for stable Fe isotope analysis after Henkel et al. (2016).

Solid phase geochemistry of a multicorer core and a gravity core at Station HE443/10, North Sea

Solid-phase samples were collected onboard (RV Heincke expedition HE443) using cut-off syringes. The MUC was sliced and sampled. For sampling the GC, small windows were drilled into the liner through which the syringes were introduced. All samples were stored anoxically and frozen at -20°C until processing. The processing involved freeze-drying and grinding before splitting the samples for the different kinds of analyses.

1 2