Das Projekt "Erschließung der Ressourceneffizienzpotenziale im Bereich der Kreislaufwirtschaft Bau^Forschungsinitiative Zukunft Bau - Forschungscluster 'Nachhaltiges Bauen/Bauqualität', Untersuchung der Ressourceneffizienzpotenziale im Bereich der Abfall- und Kreislaufwirtschaft" wird/wurde gefördert durch: Bundesinstitut für Bau-, Stadt- und Raumforschung (BBSR). Es wird/wurde ausgeführt durch: Leibniz-Institut für ökologische Raumentwicklung e.V..Kernanliegen des Vorhabens ist es, einen Überblick darüber zu gewinnen, wie sich Bauabfälle einer stofflichen Verwertung zuleiten lassen und dabei möglichst in gleicher oder anderer Funktionalität wieder in Bauprodukte zurückgeführt werden können, bevor sie in eine anderweitige bzw. thermische Verwertung gelangen. Ziel ist die Herbeiführung einer verbesserten Kreislaufwirtschaft im Bereich der Bauwirtschaft. Ausgangslage: Mit dem Beschluss der Bundesregierung 'Nachhaltiges Deutschland' wurde als einer der Leitindikatoren die Ressourceneffizienz bestimmt. Darin wird gefordert, die Ressourceneffizienz vom Niveau 1990 bis 2020 um 50Prozent zu steigern. Da der Indikator aus dem Quotient von BIP und Materialumsatz in Tonnen gemessen wird, hat das Bauwesen mit den eingesetzten Massenbaustoffen einen hohen Anteil (ca. 50Prozent). Die Anforderungen an Bauwerke sind maßgeblich durch die gesellschaftlichen Vorgaben definiert. Da zudem die Wertschöpfung bezogen auf die Masse der Substanz im Verhältnis zu anderen Wirtschaftszweigen gering ist, sind Ressourceneinsparungen schwieriger zu realisieren als bei anderen Produktbereichen. In Deutschland werden nach Angaben der Bauwirtschaft bereits annähernd 90Prozent des entstehenden Abfalls verwertet und ein hoher Anteil davon recycelt (Nachnutzung). Dennoch fallen am Ende des Lebenszyklus nach wie vor Bauabfälle in der Größenordnung von 32,5 Mio. Tonnen an, die nicht dem Recycling, sondern der 'sonstigen Verwertung' zugeführt werden. Ziel: Das Projekt hat das Ziel, Potenziale zur Steigerung eines hochwertigen Recyclings bei Bauschutt und Baustellenabfällen zu untersuchen. Hierfür werden die derzeitigen Stoffströme der Massenbaustoffe Beton, Ziegel, Kalksandstein, Porenbeton, Gips, Holz, Mineralwolle und Hartschaumdammstoffe, Glas und Kunststoffe analysiert und zwei Szenarien für 2030 aufgestellt. Dabei sollen typische Hemmnisse bei der Steigerung der Kreislaufführung von Baumaterialien aufgezeigt werden. Für die Potenzialabschätzung werden vorab Herkunft, Zusammensetzung und Verwertungswege der genannten Materialfraktionen überschlägig ermittelt. Einen Schwerpunkt der Betrachtung bilden die technischen Möglichkeiten zur Steigerung der Kreislaufführung durch höherwertige Verwertung der Abfallströme des Bauwesens. Innovative Recycling- und Verwertungstechnologien kommen zur Bewertung. Zusätzlich zu den Verfahren zur Gewinnung hochwertiger Rezyklate und deren Optimierungspotenzialen sollen Aufnahmekapazitäten des Bauwesens für mögliche recycelbare Stoffmengen entlang der Bautätigkeit 2010 bis 2030 eingeschätzt werden.
Das Projekt "Herstellung von Kalksandsteinen aus Bruchmaterial von Kalksandsteinmauerwerk mit anhaftenden Resten von Daemmstoffen sowie weiterer Baureststoffe" wird/wurde ausgeführt durch: Forschungsvereinigung Kalk-Sand e.V. des Bundesverbandes Kalksandsteinindustrie.Fuer eine umweltvertraegliche Mauersteinproduktion sind Fragen der Wiederverwertung von Abbruchmaterial aus Bauwerken von wichtiger Bedeutung. Fruehzeitig hat sich deshalb die Kalksandsteinindustrie entschlossen, Forschungsaktivitaeten auf das Recyclingverhalten von Kalksandsteinen zu konzentrieren. Damit bekennt sie sich zu dem Ziel des im Herbst 1996 verabschiedeten Kreislaufwirtschaftsgesetzes, das eine moeglichst weitgehende Wiederverwertung von Baurestmassen anstrebt. Neben der Entlastung der Deponien von wiederverwertbarem Abfall kann durch das Recycling von Kalksandsteinmauerwerk eine Schonung wertvoller Rohstoffressourcen erreicht werden. Die Zugabe von reinem KS-Bruchmaterial zur KS-Rohmischung und dessen Auswirkung auf die qualitaetskennzeichnenden Eigenschaftswerte von Kalksandsteinen wurde mit dem Forschungsvorhaben 'Wiederverwertung von Kalksandsteinen aus Abbruch von Bauwerken bzw aus fehlerhaften Steinen aus dem Produktionsprozess' (erschienen im August 1994, Forschungsvereinigung Kalk-Sand eV) ausfuehrlich untersucht. Das Ergebnis dieses ersten Forschungsvorhabens zum Recycling von Kalksandstein besteht in der Erkenntnis, dass die Zugabe von reinem KS-Buchmaterial ohne wesentliche Aenderungen der Eigenschafswerte der KS-Pruefkoerper grundsaetzlich moeglich ist. Einbussen bei der Steindruckfestigkeit kann mit Hilfe von gezielten - jedoch kostenintensiven - produktionstechnischen Massnahmen (zB Erhoehung der Kalkdosis, Verlaengerung der Haertezeit) entgegengewirkt werden. Die vorliegende Arbeit ist die Fortsetzung des og Forschungsvorhabens und beschreibt die Untersuchungen ueber die Verwertung von Kalksandsteinbruchmaterial mit Resten anhaftender anderer Baustoffe als Zuschlagstoff fuer die KS-Herstellung. Die grundsaetzlichen Auswirkungen unterschiedlicher Zugabemengen an verunreinigtem Bruchmaterial auf wesentliche Eigenschaften von Kalksandsteinen werden nach baustofftechnischen Gesichtspunkten untersucht. Insgesamt zeigen die vorliegenden Untersuchungsergebnisse, dass die Herstellung von Kalksandsteinen unter Verwendung von zerkleinertem KS-Bruchmaterial mit Resten anhaftender anderer Baustoffe in den meisten Faellen prinzipiell moeglich ist. Im allgemeinen resultieren aus der Zugabe von KS-Bruchmaterial mit Fremdtoffen zur KS-Rohmischung zum Teil jedoch erhebliche Einbussen bei den qualitaetskennzeichnenden Eigenschaftswerten der Kalksandsteine und bei produktions- und umweltrelevanten Kenndaten (zB Einbussen bei der Steindruckfestigkeit). Im Einzelfall werden dagegen ebenfalls geringfuegige Verbesserungen bei der Steindruckfestigkeit festgestellt (zB Zugabe von KS-Bruchmaterial mit Normalbeton bzw Porenbeton). Die Messwerte der Waermeleitfaehigkeit und die Schwindwerte liegen im allgemeinen in der Groessenordnung handelsueblicher Kalksandsteine. Die Mindesthaftscherfestigkeit nach DIN 1053 wird in nahezu jedem Fall eingehalten....
Radon in Baumaterialien In jedem Baumaterial aus natürlichem Gestein ist – abhängig von seiner geologischen Herkunft - ein natürlicher Anteil an Uran und Radium enthalten. Zerfallen Uran und Radium, entstehen Radon und seine Folgeprodukte und werden aus dem Baumaterial ins Gebäude freigesetzt. Messungen des BfS belegen, dass Baustoffe wenig zur Radon -Konzentration von Aufenthaltsräumen beitragen - üblicherweise wenige Becquerel pro Kubikmeter, meist deutlich unterhalb von 20 Becquerel pro Kubikmeter. Baumaterial In jedem Baumaterial aus mineralischen Rohstoffen oder natürlichem Gestein ist – abhängig von seiner geologischen Herkunft - ein natürlicher Anteil an Uran und Radium enthalten. Zerfallen Uran und Radium, entstehen Radon und seine Folgeprodukte und werden aus dem Baumaterial ins Gebäude freigesetzt. Radon ist nach dem Rauchen eine der wichtigsten Ursachen für Lungenkrebs . Etwa sechs Prozent der Todesfälle durch Lungenkrebs in der Bevölkerung sind nach aktuellen Erkenntnissen auf Radon und seine Zerfallsprodukte in Gebäuden zurückzuführen. Baumaterialien setzen eher wenig Radon frei Das BfS hat marktübliche Baumaterialien wie Beton, Ziegel, Porenbeton und Kalksandstein untersucht und auch die Freisetzung (Exhalation) von Radon daraus gemessen. Der baustoffbedingte Anteil liegt üblicherweise bei wenigen Becquerel pro Kubikmeter, meist deutlich unterhalb von 20 Becquerel pro Kubikmeter. Damit sind Baumaterialien im Allgemeinen nicht die Ursache für erhöhte Radon-Konzentrationen in Innenräumen von Gebäuden. Wieviel Radon aus Baumaterial austritt, hängt auch von der Beschaffenheit des Materials ab: Werden zum Beispiel Ziegel bei hohen Temperaturen gebrannt, verschließen sich die Poren im Baumaterial. So kann anschließend nur wenig Radon austreten. Bei ungebranntem Material wie zum Beispiel Lehmputz ist damit zu rechnen, dass mehr Radon austritt. Gesetzliche Regelungen Gesetzliche Regelungen zur expliziten Begrenzung der Radonfreisetzung aus Baumaterialien existieren nicht. Der Beitrag des Radons aus Baumaterialien soll jedoch nicht wesentlich zur Überschreitung der für Radon geltenden Referenzwerte beitragen. Radioaktivitätsgehalt von Baumaterial wird seit 1. Januar 2019 begrenzt Baumaterialien wie zum Beispiel Betonziegel bestehen üblicherweise aus Zuschlagsstoffen wie Sand, Kies, Ton, Kalk, Zement oder ähnlichem. Werden als Zuschlagstoffe Rückstände aus industriellen Prozessen wie zum Beispiel Schlacken aus der Metallverhüttung oder Schlämme aus der Wasseraufbereitung verwendet, die mehr Uran und Radium enthalten, kann sich die Menge des Radons, die aus dem Baumaterial ins Gebäude gelangt, erhöhen. Das Strahlenschutzgesetz sieht in den Paragraphen 133-135 vor, dass seit 1. Januar 2019 der Radioaktivitätsgehalt aller Baustoffe begrenzt wird, die beim Bau von Aufenthaltsräumen verwendet werden. Seit 2001 hatte die Strahlenschutzverordnung bereits einen maximalen prozentualen Anteil von Rückständen aus industriellen Prozessen in Baumaterialien vorgegeben. Seit 2019 umfasst die Prüfung des Radioaktivitätsgehalts auch natürliche mineralische Rohstoffe, die erhöhte Uran- und Radiumgehalte aufweisen können. Dadurch wird auch radioaktives Radon, das beim Zerfall von Uran und Radium aus Baumaterial freigesetzt werden kann, beschränkt. Medien zum Thema Broschüren und Video downloaden : zum Download: Radon - ein kaum wahrgenommenes Risiko (PDF, Datei ist barrierefrei⁄barrierearm) … PDF 3 MB Broschüre Radon - ein kaum wahrgenommenes Risiko downloaden : zum Download: Radon in Innenräumen (PDF, Datei ist barrierefrei⁄barrierearm) … PDF 853 KB Broschüre Radon in Innenräumen Video Radon Zu viel Radon im Haus kann Lungenkrebs verursachen. Aber woher weiß ich, ob ich betroffen bin? Wie kann ich es messen? Was kann ich gegen zu viel Radon tun? mehr anzeigen Stand: 13.11.2024 Ionisierende Strahlung Häufige Fragen Was ist Radon? Wie breitet sich Radon aus und wie gelangt es in Häuser? Welche Radon-Konzentrationen treten in Häusern auf? Alle Fragen
Das Projekt "CO2-arme Herstellung des Klinkerminerals Dicalciumsilikat aus Recycling-Baustoffen (R-Zement)" wird/wurde gefördert durch: Ministerium für Umwelt, Klima und Energiewirtschaft Baden-Württemberg. Es wird/wurde ausgeführt durch: Karlsruher Institut für Technologie (KIT), Institut für Technische Chemie.Etwa 35 % der industriellen CO2 Emissionen Baden-Württembergs entfallen auf die Zementherstellung. Zwei Drittel dieser Emissionen stammen aus der Entsäuerung des natürlichen Rohstoffs Kalk. Im Sinne des Klimaschutzes wäre es daher sinnvoll, den Rohstoff Kalk durch bereits weitgehend CO2-freie, zementhaltige Reststoffe aus dem Baustoffrecycling zu ersetzen. Ziel des Projektes ist es, ein neu entwickeltes Verfahren, das dieses ermöglicht, im Pilotmaßstab zu optimieren. Das Verfahren erzeugt das Klinkermineral Dicalciumsilikat. Dicalciumsilikatklinker könnte als Hauptbestandteil von europäischen Normalzementen eingesetzt werden. Weiterhin ist Dicalciumsilikat je nach erzeugter Qualität als Rohstoff für die Herstellung von Porenbeton oder Kalksandstein bzw. als Rohstoff für die Herstellung kalkarmer Recyclingzemente geeignet. Relativ zu Portlandzement ist für kalkarmen Recyclingzement eine abgeschätzte Senkung der CO2 Emission von bis zu 75 % möglich. Freigesetztes CO2 fällt in konzentrierter Form an und kann z.B. zur Methanisierung oder zur Karbonatisierungshärtung von Betonzuschlag genutzt werden. Im Rahmen der Projektlaufzeit soll die Technologie in einer Pilotanlage aufgebaut und mit realen Recyclingprodukten betrieben, optimiert und demonstriert werden. Die Pilotanlage besteht aus Einrichtungen zum Mischen und Aufmahlen der Rohstoffe sowie zur Aufbereitung des Produkts. Zentrale Komponente ist ein in einer CO2-Atmosphäre betriebener Drehrohrofen zum Brennen des Dicalciumsilikats. Weiterhin wird die Qualität des hergestellten Dicalciumsilikats demonstriert. Grundlegende Fragen zur Energieeffizienz, Standfestigkeit und Wirtschaftlichkeit werden ebenfalls betrachtet. Das produzierte Dicalciumsilikat ist je nach erzeugter Qualität potentiell direkt als Zement einsetzbar oder kann als Rohstoff für die Herstellung von Porenbeton oder Kalksandstein eingesetzt werden. Im Projekt wird somit die gesamte stoffliche Prozesskette vom bisher nicht verwertbaren realen Altbaustoff bis zum Recyclingzement im Pilotmaßstab abgebildet. Die Technologie soll insbesondere skalierbar und in Bezug auf die Einsatzstoffe flexibel sein, um den Betrieb kleinerer dezentraler Anlagen zu ermöglichen. Die realen Ressourceneffizienz-Effekte (insbesondere die Reduktion des Kalkbedarfs und die Reduktion der zu deponierenden Baureststoffe) sowie die reale erreichbare CO2-Reduktion werden im Pilotmaßstab ermittelt.
Das Projekt "ReMin: Laserbasierte Baustoffsortierung zur Aufbereitung von Bau- und Abbruchabfällen für die Kreislaufwirtschaft" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: IAB - Institut für Angewandte Bauforschung Weimar gemeinnützige GmbH.
Lehm als Baumaterial Übliche mineralische Baumaterialien für Häuser wie Beton, Ziegel, Gips und Porenbeton enthalten natürliche Radionuklide . Eine gesundheitlich relevante Strahlenbelastung für die Bewohner des Hauses entsteht dadurch normalerweise nicht. Derzeit wird die Frage diskutiert, ob als Baumaterial verwendeter ungebrannter Lehm zu einer gesundheitlich bedenklichen Strahlenbelastung führen kann, da ungebrannter Lehm das radioaktive Gas Thoron in die Raumluft abgeben kann. Anders als bei Radon , dessen Vorkommen in Wohnräumen und dessen gesundheitlichen Wirkungen gut erforscht sind, sind beim Thoron aber weitere Untersuchungen erforderlich, um seine gesundheitliche Bedeutung sicher bewerten zu können. Übliche mineralische Baumaterialien für Häuser wie Beton, Ziegel, Gips und Porenbeton enthalten natürliche Radionuklide . Eine gesundheitlich relevante Strahlenbelastung für die Bewohner des Hauses entsteht dadurch normalerweise nicht. Lehm als Baumaterial: Innenraum mit Lehmputz Auch Lehm gewinnt als Baumaterial im Kontext des nachhaltigen Bauens wieder an Bedeutung: Seine ökologischen und guten bauphysikalischen Eigenschaften sorgen für ein gutes Innenraumklima. Dabei wird immer wieder die Frage diskutiert, ob als Baumaterial verwendeter ungebrannter Lehm zu einer gesundheitlich bedenklichen Strahlenbelastung führen kann. Der Grund: Ungebrannter Lehm kann das radioaktive Gas Thoron in die Raumluft abgeben. Es ist nicht auszuschließen, dass es in Einzelfällen zu erhöhten Thoron-Werten in der Raumluft kommt. Radon-222 und Radon -220 (auch Thoron genannt) sind beides Isotope des natürlichen, gasförmigen Elements Radon . Wenn verkürzt von Radon die Rede ist, ist in der Regel das Isotop Radon-222 gemeint, das beim Zerfall von Uran entsteht. Der Begriff Thoron weist auf die Herkunft des Radon -220 aus dem Zerfall von Thorium hin. Anders als bei Radon-222 , dessen Vorkommen in Wohnräumen und dessen gesundheitlichen Wirkungen gut erforscht sind, sind beim Thoron aber weitere Untersuchungen erforderlich, um seine gesundheitliche Bedeutung sicher bewerten zu können. Radon und Thoron in Wohnungen Ein Radonproblem entsteht hauptsächlich dann, wenn aus dem Erdboden unter einem Gebäude viel Radon in die bewohnten Räume eindringt. Es ist bekannt, dass erhöhte Radon -Konzentrationen in Wohnräumen das Lungenkrebsrisiko erhöhen . Auch Thoron entsteht im Erdboden. Mit einer Halbwertszeit von nur 55 Sekunden zerfällt es aber auf dem Weg aus dem Erdboden in ein Gebäude fast vollständig. Damit ist der Untergrund – anders als bei Radon – keine nennenswerte Quelle für Thoron in Innenräumen. Erhöhte Thoronwerte sind nur möglich, wenn es in größerem Umfang aus den verwendeten Baustoffen direkt an einen Wohnraum abgegeben wird. Die Vermutung, dass ungebrannter Lehm eine gesundheitlich relevante Strahlenbelastung in Gebäuden verursachen könnte, geht auf Untersuchungen in traditionellen chinesischen Lehmbehausungen zurück. Lehm enthält zwar nicht grundsätzlich mehr Uran oder Thorium als andere Baustoffe. Er hat aber eine größere Oberfläche, weil er sehr feinkörnig ist. Über diese größere Oberfläche kann mehr Radon und Thoron in die Raumluft gelangen als zum Beispiel bei gebrannten Lehmziegeln. Beim Brennen der Ziegel verschmelzen die Körner und die Oberfläche wird kleiner. Deswegen geben gebrannte Lehmziegel keine relevanten Mengen an Radon und Thoron ab. Wie viel Radon und Thoron im Lehm überhaupt entsteht, hängt von dessen Uran - und Thoriumgehalt ab. Dieser schwankt je nach Herkunftsregion des Lehms deutlich. Als Baumaterial besitzt Lehm eine natürliche Dichtheit, nimmt Luftfeuchtigkeit auf und speichert Wärme - diese Eigenschaften schaffen ein angenehmes Raumklima, welches oftmals keine verstärkte Lüftung der Innenräume erfordert. Um jedoch die Radon- und Thoron-Konzentration zu senken, sollte vorsichtshalber darauf geachtet werden, bei ungebranntem Lehm als Baumaterial betroffene Räume regelmäßig zu lüften. Weitere Forschungen notwendig Dass Radon in Gebäuden Lungenkrebs hervorrufen kann, ist aus umfassenden wissenschaftlichen Studien bekannt. Das Risiko zu erkranken, hängt dabei von der Radon -Konzentration ab. Grundsätzlich besitzt auch Thoron das Potenzial, Lungenkrebs hervorzurufen. Ab welcher Thoronkonzentration in der Raumluft das Risiko erkennbar steigt, ist aber weit weniger gut erforscht als bei Radon . Auch zum Vorkommen von Thoron in Wohnungen in Deutschland gibt es – verglichen mit dem Radon – erst wenige Untersuchungen. Um die gesundheitliche Bedeutung von Thoron in Baumaterialien in Deutschland sicher bewerten zu können, sind deshalb weitere Untersuchungen notwendig. Nachweis von Thoron ist schwierig Das Bundesamt für Strahlenschutz hat bereits wichtige Anstöße gegeben, um qualitätsgesicherte Thoron-Messungen zu ermöglichen: Im Rahmen der Ressortforschung hat es den Aufbau einer Kalibriereinrichtung für Thoron-Messgeräte bei der Physikalisch-Technischen Bundesanstalt ( PTB ) sowie eine Studie des Helmholtz-Zentrums München zur Eignung von Thoron-Messgeräten für nationale Erhebungen initiiert und fachlich betreut. Das BfS selbst bietet im akkreditierten Radon-Kalibrierlaboratorium Werkskalibrationen von Thoron-Messgeräten an. Hierbei werden Messgeräte genau bekannten Thoron-Konzentrationen ausgesetzt, um die Richtigkeit der Messergebnisse sicherstellen zu können. Dies ist eine Grundvoraussetzung dafür, die technisch sehr anspruchsvollen Thoron-Messungen qualitätsgesichert durchzuführen. Medien zum Thema Mehr aus der Mediathek Radioaktivität in der Umwelt In Broschüren, Videos und Grafiken informiert das BfS über radioaktive Stoffe im Boden, in der Nahrung und in der Luft. Stand: 22.04.2024
In diesem Forschungsvorhaben wurden die Möglichkeiten branchenindividueller bzw. produktspezifischer Anreize zur Stärkung des Recyclings und zur Schaffung von Anreizen zur Verwendung recycelbarer Materialien im Bereich der Bauprodukte untersucht. Außerdem wurden die Rahmenbedingungen und Herausforderungen hinsichtlich einer verursachergerechten Zuordnung von Entsorgungskosten im Bausektor betrachtet. Dabei wurden die derzeitigen Rahmenbedingungen für das Recycling von Bauprodukten in Deutschland, insbesondere der rechtliche Rahmen, die grundlegenden Beteiligten, ihre Beiträge und die derzeitige produktspezifische Entsorgungssituation dargestellt. Auf dieser Grundlage wurden anhand von drei beispielhaft ausgewählten Bauprodukten oder Materialien (PVC-Fensterprofile, Flachglas aus Fenstern, Porenbeton) produktspezifische Modelle entwickelt und diskutiert, die Ansätze, Ideen und Impulse zur Stärkung des Recyclings im Baubereich enthalten. Es werden ebenfalls Lösungsvorschläge vorgestellt, welche einen allgemeingültigen Charakter für den Baubereich haben. Veröffentlicht in Texte | 05/2021.
In diesem Bericht werden die Möglichkeiten branchenindividueller bzw. produktspezifischer Anreize zur Stärkung des Recyclings und zur Schaffung von Anreizen zur Verwendung recycelbarer Materialien im Bereich der Bauprodukte systematisch erschlossen. Außerdem werden Verursachungsbeiträge für eine mögliche verursachergerechte Zuordnung der Entsorgungskosten erörtert. Zunächst werden die Gesamtumstände der Abfallbewirtschaftung und die Rahmenbedingungen für ein Recycling von Bauprodukten in Deutschland erörtert. Hierbei wird ein umfassender Überblick des rechtlichen Rahmens gegeben, grundlegende Beteiligte und ihre Beiträge werden vorgestellt und die derzeitige Entsorgungssituation in Deutschland wird dargestellt. Weiterhin erfolgt eine ausführliche Beschreibung des selektiven Rückbaus sowie dessen Herausforderungen. Nachfolgend werden Faktoren zur Beurteilung der grundsätzlichen Eignung für die Stärkung des Recyclings und der Verwendung von rezyklierten Materialien im Bereich von Bauprodukten vorgestellt. Diese Faktoren sind die Grundlage für die Erörterung der ausgewählten Produkt- und Materialbeispiele: PVC-Fensterprofile, Flachglas aus Fenstern und Porenbeton. Für jedes dieser Produkt- oder Materialbeispiele folgt eine systematische und produktspezifische Erörterung von Hemm- und Förderfaktoren zur Stärkung des Recyclings und der Verwendung von rezyklierten Materialien. Außerdem sind die wirtschaftliche Zumutbarkeit sowie ökologische und soziale Ziele essenzielle Grundbedingungen zur Stärkung des Recyclings und der Verwendung von rezyklierten Materialien. Anhand dieser Vorgehensweise werden produktspezifische Modelle für die drei ausgewählten Produkte oder Materialien entwickelt und diskutiert. Bei den Modellen handelt es sich nicht um konkrete Regulierungsvorschläge oder abschließend bewertete Maßnahmen. Vielmehr beinhalten die Modelle Ansätze, Ideen und Impulse, welche politisch weiterverfolgt werden können. Für die anschließende Ableitung und Priorisierung von Lösungsvorschlägen sowie als Grundlage für politische Entscheidungsprozesse wird die jeweilige Machbarkeit dieser Maßnahmen rechtlich, organisatorisch, technisch, sozio-ökonomisch und ökologisch anhand der ausgewählten Beispiele bewertet. Quelle: Forschungsbericht
Auf das Konto des Bausektors gehen in der EU die Hälfte der gesamten Rohstoffgewinnung und über 35 Prozent des gesamten Abfallaufkommens. Alleine in Deutschland fallen bei Errichtung, Umbau, Renovierung oder Abbruch von Bauwerken jährlich rund 200 Millionen Tonnen mineralischer Bauabfälle an. Ein UBA-Forschungsbericht zeigt auf, wie das Potenzial für ein Recycling besser genutzt werden könnte. Bauwerke enthalten wertvolle Roh- und Werkstoffe, verursachen aber auch Kosten in der Entsorgung. Eine funktionierende Kreislaufwirtschaft im Baubereich setzt aufeinander abgestimmte Maßnahmen und Lösungsansätze während des gesamten Lebenszyklus von Bauprodukten sowie den daraus entstehenden Bauwerken voraus. Die Umweltministerkonferenz, bestehend aus den Umweltministerinnen, - ministern, -senatorinnen und -senatoren des Bundes und aller deutschen Bundesländer, hatte daher den Bund gebeten, Möglichkeiten zur Schaffung von Anreizen zur Stärkung des Recyclings und für die Entwicklung und Verwendung recycelbarer Materialien zu untersuchen. Außerdem sollte eine mögliche verursachergerechte Zuordnung von Entsorgungskosten im Bereich der Bauprodukte betrachtet werden. In dem Forschungsvorhaben wurden daher die aktuellen Rahmenbedingungen für das Recycling von Bauprodukten in Deutschland, insbesondere der rechtliche Rahmen, die grundlegenden Beteiligten, ihre Beiträge und die derzeitige produktspezifische Entsorgungssituation dargestellt. Es wurden anhand von drei ausgewählten Beispielen (PVC-Fensterprofile, Flachglas aus Fenstern, Porenbeton) produktspezifische Modelle entwickelt und diskutiert, die Ansätze, Ideen und Impulse zur Stärkung des Recyclings enthalten. Wesentliche Merkmale des Bausektors wurden dargestellt, die eine verursachergerechte Zuordnung von Entsorgungskosten erschweren. Die Lösungsvorschläge zeigen auf, dass geeignete Maßnahmen im Baubereich vorwiegend produkt- oder anwendungsfallspezifisch gefunden werden müssen. Aber auch allgemeingültige Aussagen konnten abgeleitet und diskutiert werden. Im Abschlussbericht werden verschiedene Ansätze aufgegriffen, dazu gehören unter anderem: Finanzielle Anreize als Wirkmechanismus-übergreifender Lösungsvorschlag Einführung bzw. Verbesserung von Rückbaukonzepten Einheitliche Identifikation und Kennzeichnung von rezyklierbaren und rezyklierten Produkten Weiterentwicklung von Umweltproduktdeklarationen Imagekampagnen für Kundinnen und Kunden, um die Nachfrage und die Akzeptanz von Recyclingbaustoffen zu steigern Erforschung und Entwicklung neuartiger Verwertungs- und Recyclingverfahren sowie Sortiertechniken Qualitätsanforderungen und -vorgaben für Rezyklate sowie Grenzwerte für Schad- oder Störstoffe in den Recyclingbaustoffen Der vorliegende Abschlussbericht dieses Forschungsvorhabens zeigt Ansätze zur Stärkung des Recyclings, zur Schaffung von Anreizen zur Verwendung recycelbarer und rezyklierter Materialien und zur verursachergerechten Zuordnung von Entsorgungskosten im Bereich der Bauprodukte auf.
Kurzbericht Verbesserung der Nachhaltigkeit sowie Stärkung der urbanen grünen Infrastruktur durch Einsatz von Ersatzbaustoffen in Kunststoff-Bewehrte-Erde-Konstruktionen Akronym: Recycle KBE Prof. Dr.-Ing. Sven Schwerdt / Prof. Dr. Petra Schneider Hochschule Magdeburg-Stendal Fachbereich Wasser, Umwelt, Bau und Sicherheit Breitscheidstraße 2 39114 Magdeburg Gefördert vom Land Sachsen-Anhalt durch das Ministerium für Umwelt, Landwirtschaft und Energie Leipziger Straße 58 39112 Magdeburg Magdeburg, Mai 2021 1. Veranlassung und Zielstellung Im Projekt „Recycle – KBE“ wurde die Verwendbarkeit von Ersatzbaustoffen (Hochofenschlacke, Elektroofenschlacke, Gleisschotter, Betonrecycling, Porenbeton und Ziegelbruch) in ingenieurtechnischen Bauwerken untersucht. Motivation für diese Untersuchungen war, dass mineralische Abfälle den mengenmäßig größten Abfallstrom bilden sobald ein gewisses Maß an Urbanisierung vorhanden ist. In Deutschland fällt der Stoffstrom unter die Klasse der Ersatzbaustoffe, was bedeutet „anstelle von Primärrohstoffen verwendete Baustoffe aus industriellen Herstellungsprozessen oder aus Aufbereitungs- /Behandlungsanlagen“ (Entwurf der Ersatzbaustoffverordnung) (1). Die Nutzung von Ersatzbaustoffen in Ingenieurbauwerken, Verkehrswegen oder anderen Bereichen des Bauwesens hat erhebliche Relevanz für die Schonung natürlicher Ressourcen durch Einsparung von Primärrohstoffen und kann damit die Umweltbilanz der Baumaßnahmen verbessern. Daneben war es ein weiteres Ziel, die Begrünbarkeit von Ersatzbaustoffen zu untersuchen. Zum Erreichen dieser Ziele wurde eine begrünte Kunststoff-Bewehrte-Erde-Konstruktion (KBE- Konstruktion) errichtet, deren mineralische Bestandteile nahezu vollständig aus Ersatzbaustoffen bestand. Dabei wurden sowohl für die Füllboden als auch die Außenhaut Ersatzbaustoffe verwendet. Als begrünungsfähige Schichten an der Außenseite wurden Gemische aus Oberboden und verschiedenen Ersatzbaustoffen eingebaut. 2. Vorgehensweise Das Projekt gliederte sich in 3 Arbeitspakete. Im 1. Arbeitspaket wurden die späteren Materialien ausgewählt, im 2. Arbeitspaket erfolgten bodenmechanische und chemische Untersuchungen an den gewählten Ersatzbaustoffen, die dann im 3. Arbeitspaket in der KBE- Konstruktion verbaut wurden. Die Auswahl potentieller Materialien für die KBE-Konstruktion erfolgte im Hinblick auf die bodenmechanischen und chemischen Eigenschaften, die Beständigkeit, die erwarteten Eigenschaften im Verbund der mit den Geokunststoffen in der KBE und dem Potential zur Rezyklierbarkeit. Als Füllboden wurden Betonrecycling, Hochofenschlacke, Elektroofenschlacke und Gleisschotter ausgewählt. Für das Begrünungssubtrat der Außenhaut wurden Ziegelbruch und Porenbeton als Hauptmaterial im Verhältnis 2:1 mit Oberboden vermischt. Als Saatgutmischung wurde ein handelsübliches Saatgut (Schattenrasen, Acker- Ringelblume, Vergissmeinnicht, Glockenblume) das u.a. für Dachbegrünungen geeignet ist, verwendet. Die bodenmechanischen Untersuchungen umfassten neben den Standardversuchen, wie Bestimmung von Korngrößenverteilung, Proctordichte und Dichte auch Untersuchungen zur Bestimmung des Scher- und Herausziehverhaltens der Ersatzbaustoffe selber sowie in Verbindung mit dem Geokunststoff in der KBE-Konstruktion. Ferner wurden Untersuchungen zur Einbaubeschädigung der Geogitter innerhalb der Ersatzbaustoffe durchgeführt. Außerdem erfolgten Untersuchungen zur Bestimmung der nutzbaren Feld- und Luftkapazität. Die chemischen Untersuchungen umfassten zunächst Untersuchungen an den eingesetzten Ersatzbaustoffen. Zusätzlich wurde über die gesamte Standzeit der KBE-Konstruktion das Sickerwasser gesammelt und fortlaufend auf chemische Inhaltsstoffe untersucht. Die untersuchten Materialparameter orientierten sich dabei an der LAGA M 20. Der Großversuch erfolgte auf dem Gelände der Hochschule Magdeburg-Stendal. Zur Korrelation mit den Witterungsbedingungen konnte auf die Messwerte der hochschuleigenen Wetterstation zurückgegriffen werden. Die KBE-Konstruktion bestand aus vier Bereichen, in denen jeweils verschiedene Ersatzbaustoffe als Füllboden verwendet wurden (siehe Abbildung 1). An der Basis wurde jeweils eine Kunststoffdichtungsbahn verlegt. Diese erhielt ein Gefälle von 3 % zur nördlich gelegenen Frontseite. Das durch die Konstruktion sickernde Wasser wird dort gesammelt und in Sickerwassersammelbehälter geleitet. Abbildung 1: Draufsicht und Querschnitt der KBE-Konstruktion (Grafikautoren: Schwerdt, Mirschel). Abbildung 2: Links: Ansicht der Aufstandsfläche vor Beginn der Verlegearbeiten der KBE- Konstruktion; Rechts: Nordwestansicht der begrünten Konstruktion im Oktober 2020 (Bildautorin: Schneider) Nach der Errichtung der Konstruktion wurde die Menge des Sickerwassers für jeden Abschnitt separat erfasst und der Bewuchs dokumentiert. Das Sickerwasser wurde regelmäßig chemisch untersucht.
Origin | Count |
---|---|
Bund | 44 |
Land | 3 |
Type | Count |
---|---|
Förderprogramm | 38 |
Text | 3 |
unbekannt | 6 |
License | Count |
---|---|
geschlossen | 7 |
offen | 40 |
Language | Count |
---|---|
Deutsch | 47 |
Resource type | Count |
---|---|
Dokument | 2 |
Keine | 31 |
Webdienst | 2 |
Webseite | 14 |
Topic | Count |
---|---|
Boden | 42 |
Lebewesen & Lebensräume | 31 |
Luft | 18 |
Mensch & Umwelt | 47 |
Wasser | 13 |
Weitere | 45 |