Auch große Industrieländer können ihre CO2-Emissionen bis 2050 um 95 Prozent senken Kann ein Industrieland wie Deutschland seine menschengemachten Treibhausgasemissionen fast vollständig vermeiden? Die Antwort, die das Umweltbundesamt (UBA) in einer neuen Studie gibt, fällt positiv aus: „Technisch ist es möglich, den Treibhausgasausstoß im Vergleich zu 1990 um fast 100 Prozent zu vermindern. Und zwar mit heute schon verfügbaren Techniken.“, sagte UBA-Präsident Jochen Flasbarth. „Unser jährlicher Pro-Kopf-Ausstoß von heute über 10 Tonnen CO2-Äquivalente kann auf weniger als eine Tonne pro Kopf im Jahr 2050 sinken. Im Vergleich zu 1990, dem internationalen Bezugsjahr, entspricht das einer Reduktion um 95 Prozent. Deutschland kann bis zur Mitte des Jahrhunderts annähernd treibhausgasneutral werden.“, sagte der UBA-Präsident bei der Präsentation der UBA-Studie „Treibhausgasneutrales Deutschland 2050“. Für eine vollständige Treibhausgasneutralität müssten zusätzlich Emissionen in anderen Ländern – über deren eigene Klimaschutzverpflichtungen hinausgehend – sinken, um die dann noch verbleibende Tonne pro Kopf auszugleichen. Die entscheidenden Weichenstellungen stehen im Energiesektor an, so Flasbarth: „Strom, Wärme und herkömmliche Kraftstoffe verursachen derzeit rund 80 Prozent unserer Treibhausgasemissionen. Wir können unseren Endenergieverbrauch im Jahr 2050 gegenüber 2010 aber halbieren und vollständig durch erneuerbare Energien decken. So können wir mehr als Dreiviertel der Emissionen vermeiden. Dafür brauchen wir weder Atomkraft, noch müssen wir CO 2 im Untergrund verklappen.“ 95 Prozent weniger Treibhausgasemissionen sind nur möglich, wenn alle Sektoren einen Beitrag leisten. Neben dem Energiesektor (inklusive Verkehr) sind Industrie, Abfall- und Abwasserwirtschaft sowie Land- und Forstwirtschaft gefragt. Die Emissionen der Landwirtschaft und aus bestimmten Industrieprozessen lassen sich leider nicht vollständig vermeiden. Daher ist eine vollständig regenerative Energieversorgung das Kernstück des UBA -Szenarios – und zwar sowohl für die Strom-, als auch für die Wärme- und Kraftstoffversorgung. Für das Jahr 2050 setzt das UBA vor allem auf Wind- und Solarenergie. Keine Zukunft hat dagegen die so genannte Anbaubiomasse: „Statt Pflanzen wie Mais und Raps allein zum Zweck der Energieerzeugung anzubauen, empfehlen wir auf Biomassen aus Abfall und Reststoffen zu setzen. Diese stehen auch nicht in Konkurrenz zur Lebensmittelproduktion“, sagte Flasbarth. Zentral für eine fast treibhausgasneutrales Deutschland ist, den künftig zu 100 Prozent erneuerbar erzeugten Strom in Wasserstoff, Methan und langkettige Kohlenwasserstoffe umzuwandeln. Bei diesen Power-to-Gas und Power-to-Liquid genannten Verfahren wird Solar- und Windstrom genutzt, um mittels Elektrolyse von Wasser und weiterer katalytischer Prozesse das Gas Methan oder flüssige Kraftstoffe herzustellen. Diese können dann als Ersatz für Diesel oder Benzin genutzt werden, ebenso als Ersatz für Erdgas zum Heizen von Wohnungen eingesetzt sowie als Rohstoffe in der chemischen Industrie dienen. Erste erfolgreiche Pilotprojekte zu dieser Technik gibt es bereits in Deutschland. Allerdings ist dieser Prozess mit hohen Umwandlungsverlusten verbunden und derzeit noch teuer. Weitere Forschung – auch zu anderen Optionen bei der Mobilität und Wärmeversorgung – ist nötig. Der Verkehrssektor verursacht heute rund 20 Prozent der Klimagase. Diese können bis zum Jahr 2050 auf null sinken. Ganz wichtig dazu ist, unnötigen Verkehr überhaupt zu vermeiden. Nicht vermeidbare Mobilität sollte möglichst auf Fahrrad, Bus und Bahn verlagert werden. Bei Pkw und Lkw muss zudem die technische Effizienz der Fahrzeuge deutlich besser werden. Der wesentliche Schlüssel für null Emissionen im Verkehrssektor ist die Umstellung auf erneuerbare Energien: „Autos werden im Szenario des Umweltbundesamtes für das Jahr 2050 knapp 60 Prozent der Fahrleistung elektrisch erbringen. Flugzeuge, Schiffe und schwere Lkw werden in Zukunft zu einem großen Teil weiterhin auf flüssige Kraftstoffe angewiesen sein – dann aber als klimaverträglich hergestellte, synthetische Flüssigkraftstoffe, hergestellt im Power-to-Liquid-Verfahren.“, sagte Flasbarth. Ob und in welcher Form die strombasierten Kraftstoffe dann für einzelne Verkehrsträger bereitgestellt werden können, bedarf der weiteren Forschung. Sämtliche Raum- und Prozesswärme für die Industrie wird laut UBA-Szenario bis zum Jahr 2050 aus erneuerbaren Strom und regenerativ erzeugtem Methan erzeugt. Hierdurch sinken die energiebedingten Treibhausgasemissionen vollständig auf null. Die prozess- bzw. rohstoffbedingten Treibhausgasemissionen sinken immerhin um 75 Prozent auf etwa 14 Millionen Tonnen. Die heute sehr stark erdölbasierte Rohstoffversorgung der chemischen Industrie müsste dazu auf regenerativ erzeugte Kohlenwasserstoffe umgestellt werden; so entstünden künftig fast keine Treibhausgasemissionen etwa bei der Ammoniakherstellung oder anderen chemischen Synthesen. Die Emissionen aus dem Sektor Abfall und Abwasser sind bis heute schon stark gesunken und liegen laut UBA im Jahr 2050 bei nur noch drei Millionen Tonnen CO 2 -Äquivalenten. Nötig wäre dazu, noch mehr Deponiegase zu erfassen und in Blockheizkraftwerken zu nutzen. Auch eine bessere Belüftung von Kompostanlagen für Bioabfall kann künftig noch stärker helfen, dass sich kein klimaschädliches Methan in den Anlagen bildet. Der größte Emittent im Jahr 2050 könnte die Landwirtschaft mit 35 Millionen Tonnen CO 2 -Äquivalenten sein. Da technische Maßnahmen alleine nicht ausreichen, um diese Minderung zu erreichen, ist es notwendig, den Tierbestand vor allem der Wiederkäuer zu verringern. Das Umweltbundesamt ist in seinem Szenario davon ausgegangen, dass Deutschland im Jahr 2050 weiterhin eines der führenden Industrieländer der Welt ist. Die Studie stellt nur ein technisch mögliches Szenario dar – und ist keine sichere Prognose dessen, was kommen wird. Dargestellt wird eine technisch mögliche Zukunft im Jahr 2050. Der Transformationspfad von heute bis 2050 wird ebenso wenig betrachtet, wie ökonomische Fragen zu Kosten und Nutzen. Außerdem wurde angenommen, dass das Konsumverhalten der Bevölkerung sich nicht grundlegend ändert. Mit klima- und umweltfreundlicheren Lebensstilen ließen sich die Klimaschutzziele deshalb natürlich noch leichter erreichen. Die 95-prozentige Treibhausgasminderung leitet sich aus Erkenntnissen der Wissenschaft ab. Auf diesen Erkenntnissen basiert auch die internationale Vereinbarung, den Anstieg der globalen Mitteltemperatur auf maximal 2 Grad zu begrenzen. Dazu muss der weltweite Ausstoß an Klimagasen bis zur Mitte des Jahrhunderts um 50 Prozent sinken, für die Industrieländer entspricht das um 80-95 Prozent weniger als 1990. Entsprechende Klimaschutzziele haben sich Deutschland und die EU gesetzt.
Power to gas ( PtG ) is a technology for producing hydrogen and methane using electricity, while power to liquids ( PtL ) is an electricity-based process for the generation of liquid fuels. Jointly with other so-called power-to-x technologies PtG and PtL make it possible to provide renewable energies for all applications. This position paper assesses the role and prospects of the power-to-gas/power-to-liquids (PtG/PtL) technology in a fully renewable energy system and identifies, in particular, the challenges for integration and further development of this technology in the ongoing transformation process, which should be addressed in the next few years. Veröffentlicht in Position.
Unter Power to Gas ( PtG ) versteht man die Bereitstellung von Wasserstoff sowie Methan und unter Power to Liquid ( PtL ) die Bereitstellung flüssiger Kraftstoffe mithilfe von Strom. Zusammen mit anderen "Power to X-Techniken" ermöglichen diese Techniken eine regenerative Energieversorgung aller Anwendungsbereiche. Ziel dieses Positionspapiers ist es, aus dem derzeitigen Kenntnisstand des Umweltbundesamts die Rolle und Perspektive von Power to Gas/Power to Liquid (PtG/PtL) in einem vollständig regenerativen Energiesystem einzuschätzen und insbesondere die Herausforderungen bei der Integration und Weiterentwicklung dieser Technik im laufenden Transformationsprozess in den nächsten Jahren zu benennen. Veröffentlicht in Position.
In order to elaborate the scenario “Greenhousegas Neutral Europe“ UBA has commissioned a survey on levers relevant for decarbonisation in selected energy scenarios. Overall, significant mitigation potential can be observed in the power sector, although scenarios differ in realizing emissions reductions in 2050. The respective levers for decarbonisation in the sectors are: Renewable energies in the power sector. Energy effiency, electrification and renewable energies in the services and building sectors. In the transport sector relevant levers are energy efficiency, renewable fuels, electrification and power-to-gas or power-to-liquid options. The industry sector could benefit by using renewable energies, electrification, carbon capture and storage and power-to-gas or power to liquid options. Veröffentlicht in Climate Change | 28/2019.
Die Studie zeigt auf, welche Kombinationen aus Antriebssystem und Kraftstoff – auch als Energieversorgungsoption bezeichnet – einen treibhausgasneutralen Verkehr in Deutschland im Jahr 2050 möglich machen. Auf Basis bestehender Forschungsarbeiten und Studienergebnisse wird ein systematischer Überblick über postfossile Optionen gegeben. Zu den potentiellen postfossilen Kraftstoffen zählen regenerativer Strom, aus regenerativem Strom hergestellte Kraftstoffe wie Power-to-Gas ( PtG -Wasserstoff, PtG-Methan) und Power-to-Liquid ( PtL ) sowie Biokraftstoffe, zu den Antrieben neben Verbrennungsmotoren Elektromotoren, Hybride (Plug-in-Hybride, Elektrofahrzeuge mit Range-Extender) sowie Brennstoffzellen. Für Pkw, Lkw, Linienbus, Flugzeug und Seeschiff wurde untersucht, mit welcher postfossilen Energieversorgungsoption die jeweils höchsten Treibhausgasminderungen erreicht werden können. Außerdem wurden weitere ökologische, ökonomische, technische, infrastrukturelle sowie systemische Aspekte in die ganzheitliche Bewertung der Energieversorgungsoptionen einbezogen. Veröffentlicht in Texte | 30/2015.
Die Studie gibt erste Antworten zu möglichen Importpotentialen von strombasierten regenerativen Energieträgern mittels Power to Gas sowie den zugehörigen Transportanforderungen der Strom- und Gasinfrastruktur im In- und Ausland. Es wird ein systematischer Vergleich von möglichen Importpfaden und CO2 Minderungspotenzialen für strombasierte regenerative Energieträger sowie erste Handlungsempfehlungen für die Integration dieser im Rahmen des Transformationsprozesses hin zu einer treibhausgasärmeren Energieversorgung gegeben. Veröffentlicht in Climate Change | 08/2016.
Wasserstoff-Elektrolyseur zur H2-Herstellung, inkl. Strombedarf für Wasseraufbereitung nach #1, hier für power-to-gas (P2G) Auslastung: 7000h/a Brenn-/Einsatzstoff: Elektrizität Flächeninanspruchnahme: 8400m² gesicherte Leistung: 100% Jahr: 2050 Lebensdauer: 25a Leistung: 75MW Nutzungsgrad: 70% Produkt: Brennstoffe-Sonstige
Wasserstoff-Elektrolyseur zur H2-Herstellung, inkl. Strombedarf für Wasseraufbereitung nach #1, hier für power-to-gas (P2G) Auslastung: 7000h/a Brenn-/Einsatzstoff: Elektrizität Flächeninanspruchnahme: 8400m² gesicherte Leistung: 100% Jahr: 2030 Lebensdauer: 25a Leistung: 75MW Nutzungsgrad: 70% Produkt: Brennstoffe-Sonstige
Wasserstoff-Elektrolyseur zur H2-Herstellung, inkl. Strombedarf für Wasseraufbereitung nach #1, hier für power-to-gas (PtG) Auslastung: 7000h/a Brenn-/Einsatzstoff: Elektrizität Flächeninanspruchnahme: 8400m² gesicherte Leistung: 100% Jahr: 2020 Lebensdauer: 25a Leistung: 75MW Nutzungsgrad: 70% Produkt: Brennstoffe-Sonstige
Wasserstoff-Elektrolyseur zur H2-Herstellung, inkl. Strombedarf für Wasseraufbereitung nach #1, hier für power-to-gas (P2G) Auslastung: 7000h/a Brenn-/Einsatzstoff: Elektrizität Flächeninanspruchnahme: 8400m² gesicherte Leistung: 100% Jahr: 2030 Lebensdauer: 25a Leistung: 75MW Nutzungsgrad: 70% Produkt: Brennstoffe-Sonstige
Origin | Count |
---|---|
Bund | 251 |
Land | 16 |
Type | Count |
---|---|
Förderprogramm | 204 |
Text | 25 |
Umweltprüfung | 7 |
unbekannt | 31 |
License | Count |
---|---|
geschlossen | 57 |
offen | 204 |
unbekannt | 6 |
Language | Count |
---|---|
Deutsch | 257 |
Englisch | 29 |
unbekannt | 2 |
Resource type | Count |
---|---|
Archiv | 6 |
Datei | 6 |
Dokument | 24 |
Keine | 135 |
Webseite | 114 |
Topic | Count |
---|---|
Boden | 185 |
Lebewesen & Lebensräume | 167 |
Luft | 178 |
Mensch & Umwelt | 267 |
Wasser | 126 |
Weitere | 267 |