API src

Found 119 results.

Related terms

Integration of Power to Gas/ Power to Liquids into the ongoing transformation process

Power to gas (⁠ PtG ⁠) is a technology for producing hydrogen and methane using electricity, while power to liquids (⁠ PtL ⁠) is an electricity-based process for the generation of liquid fuels. Jointly with other so-called power-to-x technologies PtG and PtL make it possible to provide renewable energies for all applications. This position paper assesses the role and prospects of the power-to-gas/power-to-liquids (PtG/PtL) technology in a fully renewable energy system and identifies, in particular, the challenges for integration and further development of this technology in the ongoing transformation process, which should be addressed in the next few years. Veröffentlicht in Position.

Detailed analyses of the system comparison of storable energy carriers from renewable energies

In the course of the transformation to a greenhouse gas-neutral society in the second half of the 21st century, the use of synthetic energy carriers based on renewable electricity or biomass is under discussion. This project evaluates the environmental impacts of technical and logistical options for the generation of such energy carriers on the basis of environmental impact categories such as global warming potential, acidification or land use. The production of five products (Fischer-Tropsch fuels, methanol, synthetic natural gas, biomethane and hydrogen) was examined on the basis of various process steps/procedures and their current and future technical data. By using regional factors for Germany, Europe and the Mediterranean region - like the availability of renewable energy sources such as wind or PV and of raw materials such as carbon or water as well as transport routes to Germany - these processes were combined to form supply paths for these energy carriers. Using the life cycle assessment method, the environmental effects were analysed for today and 2050. In addition, the costs for plant construction and operation were estimated. As a result, synthetic energy carriers generally have a significantly lower global warming potential than today's fossil reference products due to the use of renewable energies. However, the production of electricity generation plants and associated economic processes - such as steel and cement production - can still make a relevant contribution to the global warming potential if they are not also greenhouse neutral. At the same time, it is this production of the necessary plants that leads to (sometimes significantly) increased burdens compared with the fossil reference in almost all other impact categories, most notably in terms of water and land use. This study therefore also provides indications of which environmental impacts must be further reduced in the future. Quelle: Forschungsbericht

System comparison of storable energy carriers from renewable energies

In the course of the transformation to a greenhouse gas-neutral society in the second half of the 21st century, the use of synthetic energy carriers based on renewable electricity or biomass is under discussion. This project evaluates the environmental impacts of technical and logistical options for the generation of such energy carriers on the basis of environmental impact categories such as global warming potential, acidification or land use. The production of five products (Fischer-Tropsch fuels, methanol, synthetic natural gas, biomethane and hydrogen) was examined based on various process steps/procedures and their current and future technical data. By using regional factors for Germany, Europe, and the Mediterranean region - like the availability of renewable energy carriers such as wind or PV and of raw materials such as carbon or water as well as transport routes to Germany - these processes were combined to form supply paths for these energy carriers. Using the method of life cycle assessment, the environmental effects were analysed for today and 2050. In addition, the costs for plant construction and operation were estimated. The results show that synthetic energy carriers generally have a significantly lower global warming potential than today's fossil reference products due to the use of renewable energies. However, the production of electricity generation plants and associated economic processes - such as steel and cement production - can still make a relevant contribution to the global warming potential if they are not also greenhouse neutral. At the same time, it is this production of the necessary plants that leads to (sometimes significantly) increased burdens compared with the fossil reference in almost all other impact categories, most notably in terms of water and land use. This study therefore also provides indications of which environmental impacts must be further reduced in the future. Quelle: Froschungsbericht

Detailanalysen zum Systemvergleich speicherbarer Energieträger aus erneuerbaren Energien

Im Zuge der Transformation zu einer treibhausgasneutralen Gesellschaft in der zweiten Hälfte des 21. Jahrhunderts wird der Einsatz von synthetischen Energieträgern diskutiert, die auf erneuerbarem Strom oder Biomasse basieren. Dieses Vorhaben bewertet die Umweltwirkungen technischer und logistischer Optionen für die Bereitstellung solcher Energieträger anhand von Umweltwirkungskategorien wie Treibhauspotenzial, Versauerung oder Flächenbedarf. Auf Basis ausgewählter Prozessschritte/Verfahren und deren aktuellen und zukünftigen technischen Daten wurde die Herstellung von fünf Produkten (Fischer-Tropsch-Kraftstoffe, Methanol, synthetisches Erdgas, Biomethan und Wasserstoff) betrachtet. Die Verfügbarkeit erneuerbarer Energiequellen wie Wind oder PV, von Rohstoffen wie Kohlenstoff oder Wasser sowie von Transportrouten nach Deutschland bildeten die Standortfaktoren für Deutschland, Europa und den Mittelmeerraum, mittels derer die Verfahren zu Bereitstellungspfaden für diese Energieträger kombiniert wurden. Mit der Methode der Ökobilanz wurden die Umwelteffekte heute und im Jahr 2050 analysiert sowie Kosten für die Anlagenerrichtung und den Betrieb geschätzt. Demnach weisen synthetische Energieträger aufgrund der Nutzung erneuerbarer Energien in der Regel ein deutlich niedrigeres Treibhauspotenzial als heutige fossile Referenzprodukte auf. Die Herstellung der Stromerzeugungsanlagen und damit verbundene Wirtschaftsprozesse - etwa die Stahl- und die Zementproduktion - können jedoch einen relevanten Beitrag zum Treibhauspotenzial leisten, wenn sie nicht ebenfalls treibhausneutral sind. Gleichzeitig führen vor allem die Herstellung der erforderlichen Anlagen gegenüber der fossilen Referenz zu (mitunter deutlich) erhöhten Belastungen in fast allen anderen Wirkungskategorien, insbesondere im Wasser- und Flächenbedarf. Diese Studie liefert somit auch Hinweise, welche Umweltwirkungen zukünftig weiter reduziert werden müssen. Quelle: Forschungsbericht

Systemvergleich speicherbarer Energieträger aus erneuerbaren Energien

Im Zuge der Transformation zu einer treibhausgasneutralen Gesellschaft in der zweiten Hälfte des 21. Jahrhunderts wird der Einsatz von synthetischen Energieträgern diskutiert, die auf erneuerbarem Strom oder Biomasse basieren. Dieses Vorhaben bewertet die Umweltwirkungen technischer und logistischer Optionen für die Bereitstellung solcher Energieträger anhand von Umweltwirkungskategorien wie Treibhauspotenzial, Versauerung oder Flächenbedarf. Auf Basis ausgewählter Prozessschritte/Verfahren und deren aktuellen und zukünftigen technischen Daten wurde die Herstellung von fünf Produkten (Fischer-Tropsch-Kraftstoffe, Methanol, synthetisches Erdgas, Biomethan und Wasserstoff) betrachtet. Die Verfügbarkeit erneuerbarer Energiequellen wie Wind oder PV, von Rohstoffen wie Kohlenstoff oder Wasser sowie von Transportrouten nach Deutschland bildeten die Standortfaktoren für Deutschland, Europa und den Mittelmeerraum, mittels derer die Verfahren zu Bereitstellungspfaden für diese Energieträger kombiniert wurden. Mit der Methode der Ökobilanz wurden die Umwelteffekte heute und im Jahr 2050 analysiert sowie Kosten für die Anlagenerrichtung und den Betrieb geschätzt. Demnach weisen synthetische Energieträger aufgrund der Nutzung erneuerbarer Energien in der Regel ein deutlich niedrigeres Treibhauspotenzial als heutige fossile Referenzprodukte auf. Die Herstellung der Stromerzeugungsanlagen und damit verbundene Wirtschaftsprozesse - etwa die Stahl- und die Zementproduktion - können jedoch einen relevanten Beitrag zum Treibhauspotenzial leisten, wenn sie nicht ebenfalls treibhausneutral sind. Gleichzeitig führen vor allem die Herstellung der erforderlichen Anlagen gegenüber der fossilen Referenz zu (mitunter deutlich) erhöhten Belastungen in fast allen anderen Wirkungskategorien, insbesondere im Wasser- und Flächenbedarf. Diese Studie liefert somit auch Hinweise, welche Umweltwirkungen zukünftig weiter reduziert werden müssen. Quelle: Forschungsbericht

Integration of Power to Gas/ Power to Liquids into the ongoing transformation process

Power to gas (PtG) is a technology for producing hydrogen and methane using electricity, while power to liquids (PtL) is an electricity-based process for the generation of liquid fuels. Jointly with other so-called power-to-x technologies PtG and PtL make it possible to provide renewable energies for all applications. This position paper assesses the role and prospects of the power-to-gas/power-to-liquids (PtG/PtL) technology in a fully renewable energy system and identifies, in particular, the challenges for integration and further development of this technology in the ongoing transformation process, which should be addressed in the next few years.

Errichtung und Betrieb einer Elektrolyse mit Methanisierung, Gaslager und BHKW (PtX Lübesse)

Die Lübesse Energie GmbH (Schelfstraße 35, 19055 Schwerin) plant die Errichtung und den Betrieb einer Power to X-Anlage, Gemarkung Lübesse, Flur 2: Flurstück 37/65. Für das Errichten und Betreiben der Anlage ist eine Genehmigung nach § 4 BImSchG beantragt.

Kraftstoffe und Antriebe

Kraftstoffe und Antriebe Im Straßen-, Schiffs- und Flugverkehr dominieren immer noch klimaschädliche fossile Kraftstoffe. Zunehmend kommen jedoch auch klimafreundlichere alternative Kraftstoffe und Antriebe zum Einsatz. Im Bereich der Treibhausgasminderung bei Kraftstoffen ist das UBA im Rahmen der 37. und 38. Bundes-Immissionsschutzverordnung (BImSchV) auch für den Vollzug zuständig. Unsere Mobilität basiert zurzeit zu großen Teilen auf der Verbrennung flüssiger Kraftstoffe in Verbrennungskraftmaschinen. Da das ⁠ Verkehrsaufkommen ⁠ in Deutschland stetig wächst, stagnieren trotz vorhandener Effizienzgewinne durch den Einsatz von moderneren Motoren und Flugzeugturbinen die absoluten Treibhausgasemissionen des Verkehrs auf einem hohen Niveau. Für die notwendige deutliche Reduktion der Treibhausgasemissionen des Verkehrs für einen ausreichenden Klimaschutzbeitrag des Verkehrs sind neben weiteren Effizienzverbesserungen bei Motoren und einer weitreichenden Elektrifizierung des Straßenverkehrs auch ein Umstieg auf nachhaltige alternative Kraftstoffe in der Schifffahrt und der Luftfahrt notwendig. Konventionelle Kraftstoffe Bei konventionellen Kraftstoffen handelt es sich um Mineralölprodukte. Im Jahr 2019 entfielen ca. 94 Prozent des Endenergieverbrauchs im Verkehrssektor auf diese Kraftstoffe. Die dominierenden Kraftstoffe im deutschen Verkehrssektor sind die im Straßenverkehr eingesetzten Diesel- und Ottokraftstoffe. Ottokraftstoff wird unter dem Namen E5 oder E10 vermarktet und bezeichnet Benzin, das einen bestimmten Anteil an Ethanol enthalten darf. Während "E" für Ethanol steht, gibt die Zahl "5", beziehungsweise "10" an, wieviel Prozent Ethanol das Benzin maximal enthalten kann. Bei dem im Benzin typischerweise enthaltenen Ethanol handelt es sich um biogen bereitgestelltes Ethanol – kurz Bioethanol – das hauptsächlich aus zucker- und stärkehaltigen Pflanzen wie Zuckerrohr, Zuckerrübe, Getreide und Mais Pflanzen gewonnen wird. Die Mindestanforderungen für Ottokraftstoffe sind in der Norm DIN EN 228 festgeschrieben. Im weiteren Sinne sind alle Kraftstoffe, die in Ottomotoren genutzt werden können, Ottokraftstoffe, also unter anderem auch Flüssiggas (LPG) bzw. Erdgas (CNG). Bei diesen handelt es sich zwar nicht um Mineralölprodukte, jedoch werden sie hauptsächlich fossil hergestellt. Da beide keine typischen Kraftstoffe sind, werden diese oft den „alternativen Kraftstoffen“ zugeordnet. Dieselkraftstoff – auch vereinfacht Diesel genannt – wird nach den in der Norm DIN EN 590 definierten Mindestanforderungen an Tankstellen unter dem Namen B7 geführt und bezeichnet Diesel aus Mineralöl mit einer Beimischung von maximal sieben Prozent Biodiesel. In Deutschland wird Biodiesel vorwiegend aus Rapsöl hergestellt. Der Großteil des Biodiesels wird jedoch importiert und aus Abfall- und Reststoffen sowie aus Palmöl sowie Rapsöl hergestellt. Palmöl als Ausgangstoff für hydrierte Pflanzenöle (HVO - Hydrogenated Vegetable Oils) spielt im Bereich des Dieselkraftstoffes zumindest für das Jahr 2020 auch eine entscheidende Rolle. Durch die Überarbeitung der Treibhausgasminderungsquote (THG-Quote) ist die Verwendung von Palmöl seit dem 1. Januar Jahr 2022 deutlich beschränkt und ab 2023 beendet, da der Anbau von Ölpalmen einer der Haupttreiber für die Rodung von Regenwald ist. Im Flugverkehr wird größtenteils aus Erdöl hergestelltes Kerosin getankt. Kerosin bezeichnet Kraftstoffe, die sich für den Einsatz in Flugturbinen eignen. In der Binnenschifffahrt wird schwefelreduzierter Binnenschiffsdiesel verwendet. In der Seeschifffahrt kommen Marinediesel- und Marinegasöle sowie Schweröle mit unterschiedlichem Schwefelgehalt und ggf. notwendigen Abgasnachbehandlungssystemen (Kraftstoffnorm: ISO 8217) zum Einsatz. Sowohl im Binnen- als auch im Seeverkehr werden mehr und mehr Schiffe mit Flüssigerdgas (⁠ LNG ⁠ – Liquified Natural Gas) oder – in ersten Modellanwendungen – mit LPG (Liquified Petroleum Gas), auch Autogas genannt, Methanol oder Biodiesel betrieben. Mehr Informationen hierzu finden Sie auf unserer Themenseite zur Seeschifffahrt. Nur durch den Ersatz von mineralölbasierten Kraftstoffen durch klimafreundliche Alternativen kann der Verkehrssektor den notwendigen Beitrag zur Senkung seiner Treibhausgasemissionen leisten. Um diese Energiewende im Verkehr zu erreichen, ist die Entwicklung und Innovation bei alternativen Antriebstechnologien von zentraler Bedeutung. Perspektivisch sollte Strom aus erneuerbaren Energiequellen zur Energieversorgung im Verkehr direkt genutzt werden, d. h. ohne weitere Umwandlungsschritte zu strombasierten Kraftstoffen, sofern dies, wie etwa im Pkw-Verkehr, technisch möglich ist. Alternative Kraftstoffe Alternative Kraftstoffe sind entweder bezüglich der Bereitstellung alternativ, also "biogen" oder "synthetisch", oder es handelt sich um andere Kraftstoffe als Alternative zu Benzin oder Diesel. Biogene Kraftstoffe, oder auch Biokraftstoffe, werden vor allem aus Pflanzen, Pflanzenresten und ‑abfällen oder Gülle gewonnen. Synthetische Kraftstoffe unterscheiden sich von konventionellen Kraftstoffen durch ein geändertes Herstellungsverfahren und oft auch durch andere Ausgangsstoffe als Mineralöl. Biokraftstoffe wie Bioethanol oder Biodiesel leisten bereits seit vielen Jahren einen Beitrag zur Minderung der Treibhausgasemissionen des Verkehrssektors. Biokraftstoffe sind entweder flüssige (zum Beispiel Ethanol und Biodiesel) oder gasförmige (Biomethan) Kraftstoffe, die aus ⁠ Biomasse ⁠ hergestellt werden und für den Betrieb von Verbrennungsmotoren in Fahrzeugen bestimmt sind. Man unterscheidet Biokraftstoffe der ersten und zweiten Generation, wobei eine klare Abgrenzung der Kraftstoffe beider Generationen schwierig ist. Bei der Erzeugung von Biokraftstoffen der ersten Generation wird nur die Frucht (Öl, Zucker, Stärke) genutzt, während ein Großteil der Pflanze als Futtermittel Verwendung finden kann. Biokraftstoffe der zweiten Generation sind noch in der Entwicklung und werden aus Pflanzenmaterial hergestellt, das nicht als Nahrung verwendet werden kann, zum Beispiel aus Ernteabfällen, Abfällen aus der Landwirtschaft oder Siedlungsmüll. Zu dieser Generation, dessen Vertreter auch „fortgeschrittene Biokraftstoffe“ genannt werden, gehört auch solches Bioethanol, das aus zellulosehaltigen Materialien wie Stroh oder Holz gewonnen wird. Generelle Informationen zur energetischen Nutzung von Biomasse und zu den Nachhaltigkeitsanforderungen sind auf unserer UBA-Themenseite zur Bioenergie zusammengestellt. Synthetische Kraftstoffe sind Kraftstoffe, die durch chemische Verfahren hergestellt werden und bei denen, im Vergleich zu konventionellen Kraftstoffen, die Rohstoffquelle Mineralöl durch andere Energieträger ersetzt wird. XtL-Kraftstoffe sind synthetische Kraftstoffe, die ähnliche Eigenschaften und chemische Zusammensetzungen wie konventionelle Kraftstoffe aufweisen. Sie entstehen durch die Umwandlung eines Energieträgers zu einem kohlenstoffhaltigen Kraftstoff, der unter Normalbedingungen flüssig ist. Das "X" wird in dieser Schreibweise durch eine Abkürzung des ursprünglichen Energieträgers ausgetauscht. "tL" steht für "to Liquid". Aktuell sind in dieser Schreibweise die Abkürzungen GtL (Gas-to-Liquid) bei der Verwendung von Erdgas beziehungsweise Biogas, BtL (Biomass-to-Liquid) bei der Verwendung von Biomasse und CtL (Coal-to-Liquid) bei der Verwendung von Kohle als Ausgangsenergieträger gebräuchlich. Zur Herstellung von Power-to-X (Power-to-Gas/⁠ PtG ⁠ oder ⁠ PtL ⁠)-Kraftstoffen wird Wasser unter Einsatz von Strom in Wasserstoff und Sauerstoff aufgespalten. In einem Folgeschritt kann der gewonnene Wasserstoff in Verbindung mit anderen Komponenten – hier vor allem Kohlenstoffdioxid – zu Methan (PtG-Methan) oder flüssigem Kraftstoff (PtL) verarbeitet werden. Der gewonnene Wasserstoff (PtG-Wasserstoff) kann jedoch auch direkt als Energieträger im Verkehr, zum Beispiel in Brennstoffzellen-Fahrzeugen genutzt werden. Mehr Informationen hierzu finden Sie in den vom UBA beantworteten „Häufig gestellten Fragen zu Wasserstoff im Verkehr“ . Elektrischer Antrieb: Strom als Energieversorgungsoption Energetisch betrachtet, ist der Einsatz von ⁠ PtG ⁠-Wasserstoff in Brennstoffzellen-Pkw bzw. von ⁠PtG⁠-Methan und PtL⁠ in Verbrennungsmotoren von Pkw hochgradig ineffizient. Für dieselbe ⁠ Fahrleistung ⁠ muss etwa die drei- beziehungsweise sechsfache Menge an Strom im Vergleich zu einem Elektro-Pkw eingesetzt werden, wie die folgende Abbildung veranschaulicht. Da erneuerbarer Strom, beispielsweise aus Wind und Photovoltaik, und die notwendigen Ressourcenbedarfe für die Energieanlagen nicht unbegrenzt zur Verfügung stehen, muss auch mit erneuerbaren Energien sparsam umgegangen werden. Am effizientesten ist die direkte Stromnutzung im Verkehr, beispielsweise über Oberleitungen für Bahnen. Ähnlich effizient ist die Stromnutzung über batterieelektrisch betriebene Fahrzeuge. Deswegen sollte zur möglichst effizienten Defossilisierung des Straßenverkehrs ein weitgehender Umstieg auf batterieelektrisch betriebene Fahrzeuge angestrebt werden, wo immer dies technisch möglich ist. Vollzugsaufgaben des UBA zur 38. BImSchV In Deutschland sind Inverkehrbringer von Kraftstoffen gesetzlich verpflichtet, den Ausstoß von Treibhausgasen (THG) durch die von ihnen in Verkehr gebrachten Kraftstoffe um einen bestimmten Prozentsatz zu mindern. Dies regelt die im seit 1. Januar 2022 gültigen Gesetz zur Weiterentwicklung der Treibhausgasminderungsquote festgeschriebene THG‑Quote. Im Rahmen der THG-Quote hat das Umweltbundesamt (⁠ UBA ⁠) verschiedene Vollzugsaufgaben. Eine Aufgabe regelt die Verordnung zur Festlegung weiterer Bestimmungen zur Treibhausgasminderung bei Kraftstoffen (38. ⁠ BImSchV ⁠): Das UBA bescheinigt auf Antrag Strommengen, die im Straßenverkehr genutzt wurden. Weitere Informationen finden Sie auf der entsprechenden Themenseite zur 38. BImSchV .

EU veröffentlicht Langfrist-Klimaschutzstrategie

EU veröffentlicht Langfrist-Klimaschutzstrategie Im Rahmen des Übereinkommens von Paris (ÜvP) sollen die Vertragsparteien bis 2020 eine Langfrist-Klimaschutzstrategie vorlegen, mit der sie darlegen, auf welche Weise sie die Umsetzung des ÜvP unterstützen werden. Jetzt hat die EU-Kommission eine Kommunikation veröffentlicht, mit der sie die Optionen für eine langfristige EU-Klimaschutz-Politik darstellt und analysiert. Bei der Kommunikation „A Clean Planet for all – A European strategic long-term vision for a prosperous, modern, competitive and climate neutral economy“ an das EU-Parlament, den Europäischen Rat, das Wirtschafts- und Sozial-Komitee der Regionen und an die Europäische Investitionsbank handelt es sich um eine strategische Vision darüber, welchen Beitrag die EU zur Umsetzung des Übereinkommens von Paris (ÜvP) leisten kann. Die EU-Kommission (EU-KOM) setzt ein klares Langfristziel zur Transformation der EU-Volkswirtschaft mit netto-null Treibhausgasemissionen im Jahr 2050. Die EU-KOM legt damit weder einen Legislativvorschlag noch ein (neues) Klimaschutzziel für 2030 vor. Ebenfalls werden keine neuen Politik-Instrumente eingeführt. Jedoch führt die EU-KOM in ihrer Vision an, dass vor dem Hintergrund des jüngsten Sonderberichts des Weltklimarats (⁠ IPCC ⁠) zu 1,5-Grad globaler Erwärmung und der notwendigen Stabilisierung des Klimas die EU zu den ersten Staaten mit netto-null Treibhausgasemissionen gehören sollte. Die in der Folgenabschätzung dargelegten Szenarien fußen auf der weitgehenden Ausnutzung technisch-ökonomischer Potenziale zur Vermeidung von ⁠ Treibhausgas ⁠-Emissionen. In fünf dieser Szenarien führen jeweils separat Elektrifizierung, Energieeffizienz, Wasserstoff, Power-to-X und Kreislaufwirtschaft zu einer Treibhausgas-Emissionsreduktion von 80 Prozent im Jahr 2050 gegenüber 1990. Die kosteneffiziente Kombination dieser Treiber in einem weiteren ⁠ Szenario ⁠ erreicht bis 2050 eine Reduktion von 90 Prozent. Darauf aufbauend können mit zusätzlichen Maßnahmen (⁠ CCS ⁠/ BECCS oder Lebensstiländerungen) sogar netto-null Treibhausgas-Emissionen erreicht werden. Das ⁠ UBA ⁠ hat im Oktober 2018 eine umfassende Stellungnahme an die EU-KOM im Rahmen einer Konsultation zur EU-Langfrist-Klimaschutzstrategie eingebracht. Im Rahmen eines Forschungsvorhabens zur Analyse des jetzt veröffentlichten Kommissionsvorschlags hat das Umweltbundesamt nun einen Steckbrief (auf Englisch) über die EU-Kommunikation zur EU-Langfrist-Klimaschutzstrategie erarbeiten lassen.

Bericht zum Klima- und Energiekonzept - Monitoring 2020

Bericht zum Klima- und Energiekonzept Monitoring 2020 Inhalt 1Einleitung ...................................................................................................................... 4 2Methodik des Monitorings ........................................................................................... 4 3 2.1Besonderheiten des KEK als Grundlage ............................................................. 4 2.2Prozessverlauf....................................................................................................... 5 2.3Vielfalt und Typologie der verwendeten Indikatoren .......................................... 6 Ergebnisse des Monitorings über die Handlungsfelder im KEK............................... 9 3.1 Handlungsfeld Energiewirtschaft (HF A) ............................................................10 A 1.1 Ausbau Wärmenetze und Erhöhung des EE-Anteils ............................................10 A 1.2 Ausbau Kraft-Wärme-Kopplung (KWK) ................................................................12 A 1.3 Abwärmenutzung .................................................................................................15 A 2.1 Ausbau Windenergie ............................................................................................15 A 2.2 Ausbau Photovoltaik ............................................................................................17 A 2.3 Erhaltung des Status Quo bei Bioenergieanlagen ................................................19 A 2.4 Dezentrale Energieversorgung / Energieträgersubstitution...................................21 A 2.5 Bürgerbeteiligung und Teilhabe............................................................................23 A 3.1 Optimierung des Stromnetzbetriebs .....................................................................23 A 3.2 Unterstützung von Flexibilitätsoptionen ................................................................25 A 3.3 Power-to-X ...........................................................................................................26 3.2 Handlungsfeld Gebäude (HF B)...........................................................................27 B 1.1 Klimaschutz und Energieeffizienz in der Siedlungsentwicklung ............................28 B 2.1 Energetische Gebäudesanierung .........................................................................29 B 2.2 Bauen und Sanieren mit ökologischen Baustoffen stärken ...................................32 B 2.3 Einsatz klimaschonender Wärme-, Kälte- und Stromanwendungen .....................33 B 2.4 Monitoring und Optimierung bei der Umsetzung von Klimaschutzmaßnahmen ....34 B 2.5 Beratungsangebote für Nutzer/innen und Eigentümer/innen ................................35 B 2.6 Photovoltaik auf Dächern .....................................................................................37 B 2.7 Klimaschutz in Kirchen und kirchlich genutzten Räumen......................................40 B 3.1 Energetische Sanierung der Landesliegenschaften..............................................42 B 3.2 Einsatz erneuerbarer Energien in den Landesliegenschaften...............................43 B 3.3 Steigerung der Energieeffizienz in den Landesliegenschaften .............................47 B 3.4 Das Land als Impulsgeber und Förderer ..............................................................49 3.3 Handlungsfeld Verkehr (HF C).............................................................................52 C 1.1 Verkehrsvermeidung durch Digitalisierung ...........................................................52 C 1.2 Verkehrsverringerung durch kürzere Wege ..........................................................53 1 C 1.3 Verkehrsvermeidung durch kürzere Warentransporte ..........................................53 C 1.4 Integrierte Siedlungsentwicklung..........................................................................54 C 1.5 Transportbündelung durch Micro Hubs ................................................................54 C 2.1 Förderung des Radverkehrs ................................................................................54 C 2.2 Förderung des Fußgängerverkehrs ......................................................................55 C 2.3: Verlagerung des Alltagsverkehrs vom Pkw zum ÖPNV.......................................55 C 2.4 Verlagerung von Freizeitverkehr auf den ÖPNV ..................................................62 C 2.5 Verknüpfung zwischen unterschiedlichen Verkehrsträgern ..................................63 C 3.1 Mobilitätsmanagement in Unternehmen ...............................................................65 C 3.2 Car-Sharing .........................................................................................................68 C 3.6 Autonomes Fahren für den ÖPNV (incl. Car-Sharing / Taxi) nutzen .....................68 C 3.8 Verstätigung des Verkehrsflusses im MIV ............................................................69 C 4.1: Maximierung des Anteils der E-Traktion im Schienenverkehr .............................69 C 4.2: Elektromobilität für Pkw und Nutzfahrzeuge ........................................................71 C 4.3 Alternative Antriebe im ÖSPV ..............................................................................74 C 4.4 Strategie für regenerative Gas-Mobilität ...............................................................76 C 5.2 Ökonomische Fahrweise (Eco-Driving) ................................................................76 C 5.3 Weiterentwicklung intelligenter Verkehrssysteme ................................................76 3.4 Handlungsfeld Wirtschaft (HF D) ........................................................................78 D 1.1 Übergreifende Maßnahmen für Querschnittstechnologien. ..................................78 D 1.2 Steigerung der Nutzung industrieller und gewerblicher Abwärme ........................80 D 1.3 Mobilitäts- und Logistikmanagement in Unternehmen ..........................................80 D 2.1 Steigerung bei Material- und Ressourceneffizienz sowie Kreislaufwirtschaft ........81 D 2.2 Substitution energieintensiver Materialien und Prozesse .....................................82 D 3.1 Optimierung und Ausbau von Energieberatungsangeboten für KMU ...................82 D 3.2 Erweiterung von Netzwerken für betrieblichen Erfahrungsaustausch ...................83 D 3.3 Fortführung und Weiterentwicklung von Qualifizierungs- sowie F&E- Förderprogrammen für Klimaschutz und Energieeffizienz.....................................84 D 4.1 Nutzung der Einsparpotenziale im Bereich Informations- und Kommunikationstechnologie (IKT) ........................................................................85 D 4.2 Energieeffizienz durch Automatisierung und Digitalisierung .................................85 3.5 Handlungsfeld Landwirtschaft, Landnutzung, Forstwirtschaft und Ernährung (HF E)....................................................................................................................88 E 1.1 Humusschonende Bodenbewirtschaftung ............................................................88 E 1.2 Effizienter Einsatz mineralischer Dünger ..............................................................89 E 1.3 Emissionsoptimierte Ausbringung organischer Dünger ........................................89 E 2.1 Optimierte und nährstoffangepasste Fütterung ....................................................90 E 2.2 Emissionsarme Haltungsverfahren/Stallbausysteme der Zukunft .........................92 2

1 2 3 4 510 11 12