Lithium-Schwefel Batterien sind aufgrund ihres geringen Gewichts, der Verfügbarkeit des aktiven Materials, ihrer hohen theoretischen Kapazität, ihrer hohen Energiedichte im Vergleich zu existierenden Li-Ionen Batterien, ihrer kurzen Ladungszeiten sowie ihrer langen Lebensdauer vielversprechend für Energiespeicher. Organische Polymere mit elektronisch isolierten Redoxzentren sind attraktive Materialien für Batterieelektroden aufgrund ihres vielfältigen strukturellen Designs, ihrer Verarbeitung aus Lösung, der Verfügbarkeit der entsprechenden Elemente, und ihrer Skalierbarkeit. Solche Redoxpolymere weisen definierte Redoxpotentiale auf und erlauben die Herstellung von Batterien mit stabilen Lade/ Entladepotentialen. Gleichzeitig sind jedoch spezifische Kapazität und Energie limitiert. In diesem project sollen daher neue Kathodenmaterialien für Lithium-Schwefel Batterien mit zusätzlichen Redoxeinheiten synthetisiert, charakterisiert, modelliert und mit hochanspruchsvoller in-operando X-ray Spektroskopie untersucht werden. Redox-aktive Comonomere mit unterschiedlichem Redoxpotential sollen als Vernetzer für die inverse Vulkanisierung von elementarem Schwefel verwendet werden. In den so hergestellten Schwefel-Copolymernetzwerken kann durch das Vorhandensein des redoxaktiven Vernetzers zusätzliche Ladung gespeichert werden. Für die neuen Schwefel-Copolymernetzwerke werden weiterhin maßgeschneiderte Gelelektrolyte verwendet werden, die innerhalb eines erweiterten Potentialfensters stabil sind. Als Kontrolle werden Schwefel-Copolymernetzwerke ohne redox-aktiven Vernetzer verwendet. Die Synthese, Charakterisierung, Elektrodenherstellung, Optimierung des Elektrolyten sowie elektrochemische Untersuchungen werden an der Technischen Universität Chemnitz durchgeführt. Die neuen Batterieelektroden werden weiterhin an der Physikalisch-Technischen Bundesanstalt mittels in-operando, synchrotron-basierter Röntgenspektroskopie untersucht. So sollen in-operando near edge X-ray absorption fine structure (NEXAFS) Spektroskopie, X-ray emission spectroscopy (XES) und referenzefreie X-ray Fluoreszenzanalyse (XRF) verwendet werden, um sowohl den gegenseitigen Einfluss der beiden Redoxsysteme (Schwefel und Redoxmonomer), mechanistische Details sowie Nebenreaktionen während dem Batteriebetrieb zu untersuchen. Diese Untersuchungen werden weiterhin durch theoretische Berechnungen der Universität Freiburg untermauert, um die Stabilität und elektronische Struktur der beteiligten Spezies zu verstehen. Der theoretische Teil umfasst auch die Berechnung von NEXAFS Spektren auf einer absoluten Skala, wodurch eine verlässliche Identifizierung von Intermediaten durch NEXAFS und XES möglich wird. Die Synergien dieses kombinierten theoretischen und experimentellen Projekts werden zu einem verbesserten mechanistischem Verständnis, und zuletzt zu stabileren und effizienteren Materialien für LiS Batterien führen.
In Projekt C01 wird die Entstehung von sekundärem Mikroplastik aus makroskopischen Kunststoffformkörpern und der weitere Zerfall durch Einwirkung von UV-Strahlung, Wasser und mechanischen Kräften untersucht. Dazu werden verschiedene Kunststoffe in reiner und additivierter Form durch beschleunigte Bewitterungsprozesse gealtert und hinsichtlich ihrer mechanischen Eigenschaften und molekularen Struktur charakterisiert. So verbinden wir Rissbildung und -fortschritt mit Molekulargewicht, Kettenbruch bzw. Endgruppen der Makromolekülketten sowie Additivkonzentration bzw. -migration. Hierzu wird eine breite Palette verschiedener Techniken von mechanischen Analysen über Massenspektrometrie bis hin zur Festkörper-NMR-Spektroskopie genutzt. Durch Korrelation dieser Ergebnisse, die von mikroskopischen bis hin zu makroskopischen Längenskalen reichen, wird ein vertieftes Verständnis der Mechanismen und der zeitlichen Abläufe des Abbaus von Kunststoffen in der Natur erreicht.
Stimulus-responsive kolloidale Systeme und elastomere Opalfilme auf Basis reizbarer polymerer Kern-Schale-Architekturen haben im letzten Jahrzehnt bei ForscherInnen ein großes Interesse als optische Sensoren oder schaltbare Membranen geweckt. Das Zusammenspiel der optischen Eigenschaften solcher Materialien mit externen Reizen stand dabei im Mittelpunkt der Aktivitäten. Mögliche Stimuli sind z.B. die Temperatur, die Ionenstärke, Licht, das Anlegen eines elektrischen Feldes oder einer mechanischen Belastung. Die Interaktion solcher interessanten Architekturen wurde bisher nicht in Bezug auf lebende Materie oder Organismen und ihre Veränderungen in der Umgebung untersucht, um diese optischen Eigenschaften (gezielt) zu beeinflussen. Dies würde es ermöglichen, ein direktes optisches und hochempfindliches Antwortsignal für Bakterien zu erzeugen, z.B. in Form von probiotischen Wundfolien, die die Brauchbarkeit der Folie mit den Zellen anzeigen (bspw. durch Erreichen des gewünschten pH-Wertes oder ein Farbänderung aufgrund schlechter Qualität während der Anwendung). Ein Ansatz, der hier im Zuge des Projektes verfolgt werden soll, basiert auf Laktobazillen- oder Glukoseoxidase-induzierte H2O2-Detektion mit redox-responsiven Anteilen von Stimuli-responsiven Polymeren. Im Rahmen dieses Projekts werden wir gemeinsam an der Herstellung von Funktionspolymeren und adaptiven Materialien mit der Formulierung verschiedener Bakterien arbeiten und diese kombinieren, um eine neue Generation von Sensorsystemen auf der Grundlage lebender Materialien zu entwickeln. Stimuli-responsive weiche Partikelarchitekturen mit einer biokompatiblen Hülle werden für die Immobilisierung und Gerüstbildung von Bakterien entwickelt. Die partikelbasierten Materialien können durch Mikroextrusion verarbeitet werden, gefolgt von einer Opalfilmherstellung durch die Anwendung des Schmelz-Scher-Verfahren, einer Heißkantenverarbeitung oder durch den sogenannten Bending-Induced-Oscillatory Shearing-Prozess (BIOS). Auf diese Weise wird ein kolloidales Kristallgitter gebildet, das von einer elastomeren Schalenmatrix umgeben ist, was zu schillernden Reflexionsfarben gemäß dem Braggschen Beugungsgesetz führt. Die Bakterien werden in das Weichschalenmaterial eingebracht und entweder vor der Verarbeitung, während der milden Mikroextrusion, während der Filmbildung oder in einem Nachbearbeitungsschritt hinzugefügt, wodurch ein auf Bakterien reagierender, freistehender Opalfilm entsteht. Die Bakterien oder SporoBeads werden aufgrund ihrer Fähigkeit ausgewählt, den pH-Wert oder Redox-Potentiale (H2O2-Produktion, Glukose-Oxidase) in ihrer lokalen Umgebung zu verändern, um eine direkte Kommunikation mit der Opalstruktur zu ermöglichen, was unmittelbar zu einer Veränderung der optischen Eigenschaften führt.
In diesem Projekt werden wir Elektroden auf Basis von Polyimidazol mit stark eutektischen Lösungsmitteln als Elektrolyte kombinieren, um biokompatible und biologisch abbaubare Polymerbatterien mit hoher Leistung herzustellen. Polyimidazol kann aus natürlich vorkommenden Rohstoffen hergestellt werden. Im Gegensatz zu anderen konjugierten Redox-Polymeren ist die Ladung im Polyimidazol an isolierten dimeren Einheiten lokalisiert. Diese Besonderheit ermöglicht ein überlegenes und stabiles Verhalten beim Laden und Entladen. Stark eutektische Elektrolyte können ebenfalls aus natürlichen Ressourcen gewonnen werden. Viele stark eutektische Elektrolyten weisen darüber hinaus auch eine geringe Zytotoxizität auf. Um eine hohe Ladungsspeicherleistung zu erzielen, werden die Polyimidazol-Elektroden in Bezug auf Molekularstruktur, Oberfläche und Kompatibilität mit den stark eutektischen Elektrolyten optimiert. Hierzu werden die jeweiligen Phänomene an den Elektroden (bzw. den Grenzschichten) sukzessive elektrochemisch charakterisiert. Schließlich werden darüber hinaus die Biokompatibilität und -abbaubarkeit der verschiedenen Materialien unter Kompostierungsbedingungen untersucht.
Ziel dieses gemeinsamen Projektes von IPF Dresden und FSU Jena ist die Entwicklung neuartiger Polymerelektrolyte, komplementär zu relevanten Modell-Aktivmaterialien, für polymerbasierte Batterien. Die zu entwickelnden Elektrolyte werden mit polymerchemischen Mitteln hinsichtlich Ionentransport, Morphologie, thermischer und elektrochemischer Stabilität und Kompatibilität mit den Elektroden (z.B. Aktivmaterial und Leitadditiv) maßgeschneidert. Neben der Erforschung prinzipieller Transportmechanismen, soll das Projekt einen Beitrag zum besseren Verständnis des Einflusses von Elektrolytstruktur und der Grenzflächen zu den Elektroden auf die Zellleistung und, als Hauptziel, neue Erkenntnisse über den Zusammenhang von chemischer und morphologischer Struktur der Zellkomponenten und Batterieverhalten liefern. Dafür werden zuerst polymere Ionenleitersysteme für Einzelionen synthetisiert, die für Aktivmaterialen, die einen Anionentransport erfordern, geeignet sind. Der zweite Ansatz zielt darauf, auch Systeme mit einer Umkehr des Ladungstransports zu untersuchen, hierfür werden Aktivmaterialien mit geladenen Spezies ausgerüstet. Weiterhin werden Triblock-Copolymere entwickelt, die alle für eine molekulare Batterie notwendigen Komponenten enthalten.
Obwohl eine große Anzahl redox-aktiver Bausteine basierend auf kleinen Molekülen und Polymeren bekannt ist, wurde bisher wenig über deren relative molekulare Ausrichtung und Anordnung in Polymermaterialien untersucht. Jedoch haben nicht-kovalente Wechselwirkungen sowie der Einfluss von kristalliner Ordnung und hierarchische Strukturierung durch Mehrkomponentensysteme einen signifikanten Einfluss auf die Batterieleistung. In diesem gemeinsamen Projektvorschlag werden systematische Vergleichsstudien redox-aktiver Bausteine in linearen Polymeren gegenüber deren Einbau in kovalent-organischen Gerüsten (COFs) durchgeführt. Lineare Polymere haben den Vorteil, dass Sie durch ihre Flexibilität die geladenen Bausteine mit supramolekularen Wechselwirkungen (pi-Stapelung) durch interne Aggregation stabilisieren können. Dahingegen sind die analogen zweidimensionalen COFs bereits intrinsisch gestapelt, haben jedoch den Nachteil der mikrokristallinen Struktur mit nur limitierter Elektrolytendiffussion. Die Synthese neuer 2D-COFs (Arbeitsgruppe Dumele) und deren korrespondierende lineare Polymere (Arbeitsgruppe Esser), die jeweils direkt vergleichbare redox-aktiven Untereinheiten tragen, sollen innerhalb dieses SPP-Projekts realisiert werden. Dabei werden fundamentale Mechanismen der Ladungs- und Radikalstabilisierung mit spektroskopischen und elektrochemischen Methoden untersucht. Es werden vergleichbare Batteriezellen aus COFs und linearen Polymeren als aktives Elektrodenmaterial hergestellt (Arbeitsgruppe Esser) und eine ausführliche Struktur-Leistung-Beziehung ausgearbeitet. Basierend auf diesen Erkenntnissen werden versprechende Materialtypen weiter an den entsprechenden Parametern gezielt verbessert. Zum Beispiel können bei zu niedrigem Ladungstransport in den COFs zusätzliche leitfähige Polymere in deren Poren eingebettet werden, um die Limitationen dieses Materials zu überwinden. Weiterhin werden DFT-Rechnungen zur Unterstützung dieser Untersuchungen durchgeführt. Die Ergebnisse dieses Verbundprojektes über Polymerbatterien basierend auf flexiblen und kristallinen Grundgerüsten wird bei der fundamentalen Entwicklung von zukünftigen Energiespeichern eine entscheidende Rolle spielen.
Dieses Projekt zielt darauf ab, synthetisches und elektrochemisches Fachwissen zu kombinieren, um die Entwicklung neuer kleiner elektroaktiver organischer Moleküle und deren Einarbeitung in Polymere voranzutreiben. Die am häufigsten untersuchten organischen Radikalbatteriesysteme basieren auf TEMPO-haltigen Polymeren. Um jedoch ihre Leistung und insbesondere ihre Energiedichte zu verbessern, sind neuartige kleinere organische redoxaktive Moleküle dringend erforderlich. Hierbei konzentrieren wir uns auf die kleinsten bekannten redoxaktiven organischen Spezies, nämlich Derivate von Cyclopropeniumkationen und Quadratsäureamiden. Sie sollen als Bausteine für eine neue Klasse von redoxaktiven Polymeren dienen, die sich als Materialien zur elektrochemischen Energiespeicherung eignen. Diese redoxaktiven Polymermaterialien in Organischen Radikalbatterien müssen eine Reihe von Kriterien erfüllen: (i) stabile und reversible Redoxzustände, (ii) einfacher synthetischer Zugang, sowie (iii) große positive und/oder negative Redoxpotenziale, um hohe Vollzellenspannungen zu erhalten.
Strukturierte, multizelluläre Engineered Living Materials (ELMs) sind nicht nur für die Schaffung responsiver und anpassungsfähiger ELMs, sondern auch für die Schaffung multizellulärer Gebilde wie Gewebe von wesentlicher Bedeutung. In solchen ELMs können Polymere als synthetische, maßgeschneiderte extrazelluläre Matrix fungieren, die das zellhaltige Material mechanisch stützt und die Zelladhäsion und verschiedene andere Funktionen initiiert und/oder aufrechterhält. Dabei bieten die Polymere zwischen den Zellen die Möglichkeit, diese ELMs auf Stimuli reagieren zu lassen. Um multizelluläre, responsive, strukturierte und rekonfigurierbare Gebilde zu erreichen, schlagen wir vor, ELMs auf der Grundlage von Zellen zu entwickeln, die synthetische, stimuliresponsive Polymere auf ihrer Oberfläche selbst synthetisieren können. Die Polymere werden von der Zelloberfläche synthetisiert werden und wirken als selektives und reversibles Gerüst, um die Zell-Material-Zell-Adhäsion zu vermitteln. Sie fungieren somit als stimuli-responsives synthetisches Analogon einer extrazellulären Matrix. Damit ermöglich unser Ansatz die Synthese und Abscheidung eines sehr dünnen synthetischen extrazellulären Matrixanalogs auf Einzelzellebene und führt damit eine neue Methode zur Kontrolle der zellulären Selbstorganisation bei der 3D-Gewebebildung ein. Darüber hinaus überwindet unser Ansatz auch die derzeitigen Einschränkungen, die sich während der kontrollierten Anordnung verschiedener menschlicher Zelltypen in unmittelbarer Nähe zueinander ergeben, die sich andernfalls in 3D-Kulturen spontan entmischen würden. Im Gegensatz zu natürlichen extrazellulären Matrizen können die Polymereigenschaften, wie z. B. die Polarität und die Zelladhäsion, durch Temperatur und Licht verändert werden. Beim Wechsel von einem hydrophoben zu einem hydrophileren Polymer werden die Wechselwirkungen zwischen den polymerumhüllten Zellen schwach, so dass sich die Zellen zu jeder neuen multizellulären Form neu anordnen können. Darüber hinaus können die Zellen im Zustand schwacher Polymer-Polymer-Wechselwirkungen in ein Wachstumsmedium resuspendiert werden, was ein weiteres Wachstum der Biomasse unter optimalen Sauerstoff- und Nährstoffbedingungen ermöglicht, ohne durch den Massentransfer in einem ELM eingeschränkt zu werden. Nach dem Zellwachstum folgt ein weiterer Polymerisationsschritt, um die neu gebildeten Zellen in die stimuliresponsiven Polymere einzukapseln. Schließlich wird ein weiterer Aggregations- und Formgebungsschritt die Herstellung eines lebenden Materials mit einer neuen Form und einer höheren Masse als das Ausgangsmaterial ermöglichen. Somit wird das vorgeschlagene Projekt die Tür zu rekonfigurierbaren, selbstsynthetisierenden Zell-Polymer-Hybriden öffnen und damit neue Konzepte für die Gestaltung, das Wachstum und die Herstellung von adaptiven ELMs und Gewebe-Mimetika mit verbessertem zellulärem Überleben und multizellulärer räumlicher Anordnung einführen.
| Origin | Count |
|---|---|
| Bund | 9 |
| Type | Count |
|---|---|
| Förderprogramm | 9 |
| License | Count |
|---|---|
| offen | 9 |
| Language | Count |
|---|---|
| Deutsch | 9 |
| Englisch | 7 |
| Resource type | Count |
|---|---|
| Webseite | 9 |
| Topic | Count |
|---|---|
| Boden | 2 |
| Lebewesen und Lebensräume | 5 |
| Luft | 5 |
| Mensch und Umwelt | 9 |
| Wasser | 1 |
| Weitere | 9 |