<p>Alle Wirtschaftsbereiche zusammen verbrauchen fast drei Viertel der in Deutschland benötigten Primärenergie. Der Anteil des verarbeitenden Gewerbes am Primärenergieverbrauch aller Produktionsbereiche lag 2022 bei rund 46 Prozent. Der Energiebedarf dieses Gewerbes blieb im Zeitraum 2010 bis 2022 etwa konstant, der spezifische Energieverbrauch pro Tonne Stahl, Glas oder Chemikalien ging aber zurück.</p><p>Der Energiebedarf Deutschlands</p><p>Der gesamte Primärenergiebedarf Deutschlands betrug im Jahr 2022 nach dem Inländerkonzept rund 11.854 Petajoule (PJ). Dabei wird der Verbrauch inländischer Wirtschaftseinheiten in der übrigen Welt in die Berechnung des Gesamtverbrauchs einbezogen, während der Verbrauch gebietsfremder Einheiten im Inland unberücksichtigt bleibt. Die privaten Haushalte in Deutschland verbrauchten rund 30 % der <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergie#alphabar">Primärenergie</a>. Die Wirtschaft mit ihren vielen Produktionsbereichen benötigte die übrigen 70 %. Zu diesen Bereichen zählen das Herstellen von Waren, das Versorgen mit Energie und der Warentransport. All diese Produktionsbereiche verbrauchten im Jahr 2022 zusammen mehr als 8.170 PJ Primärenergie (siehe Abb. „Primärenergieverbrauch 2022 (Inländerkonzept)“).</p><p>Zur Begriffsklärung: Mit der Präposition „primär“ betonen Fachleute, dass der <a href="https://www.umweltbundesamt.de/daten/energie/primaerenergiegewinnung-importe">“Primär“-Energiebedarf</a> sowohl den realen Energiebedarf bei Energieverbrauchern erfasst als auch die Energieverluste, die bei der Bereitstellung und beim Transport von Energie entstehen. Und diese Verluste sind hoch: Mehr als ein Drittel aller Primärenergie geht bei der Bereitstellung und beim Transport von Energie verloren <a href="https://www.destatis.de/GPStatistik/receive/DEMonografie_monografie_00003790">(Statistisches Bundesamt 2006)</a>.</p><p>Der Energiebedarf des verarbeitenden Gewerbes</p><p>Die Firmen, die Waren herstellen, werden als „verarbeitendes Gewerbe“ bezeichnet. Sie hatten von allen Produktionsbereichen im Jahr 2022 mit circa 3.768 PJ den größten Primärenergiebedarf. Das ist ein Anteil von rund 46 % am Energieverbrauch aller Produktionsbereiche. Der nächstgrößte Energieverbraucher war die Energieversorgung mit 1.594 PJ (oder 19,5 % Anteil am <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a>), gefolgt vom Verkehr mit 1.121 PJ (oder 13,7 % Anteil am Primärenergieverbrauch) (siehe Abb. „Anteil wirtschaftlicher Aktivitäten am Primärenergieverbrauch aller Produktionsbereiche 2022“).</p><p>Primärenergienutzung des verarbeitenden Gewerbes</p><p>Die Primärenergienutzung innerhalb des verarbeitenden Gewerbes verteilt sich auf verschiedene Produktionssektoren (siehe Abb. „Anteile der Sektoren am <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a> des verarbeitenden Gewerbes 2022“). Ein wichtiger Sektor ist dabei die Chemieindustrie. Sie benötigte im Jahr 2022 mit rund 1.592 PJ von allen Sektoren am meisten <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergie#alphabar">Primärenergie</a> zur Herstellung ihrer Erzeugnisse. Das ist ein Anteil von 42,3 % am Energieverbrauch im <a href="https://www.umweltbundesamt.de/service/glossar/v?tag=verarbeitenden_Gewerbe#alphabar">verarbeitenden Gewerbe</a>. Weitere wichtige Energienutzer sind die Metallindustrie mit einem Anteil von 14,7 % sowie die Hersteller von Glas, Glaswaren, Keramik, verarbeiteten Steinen und Erden mit 7,3 % am Energieverbrauch im verarbeitenden Gewerbe.</p><p>Die Energie wird Unternehmen dabei als elektrischer Strom, als Wärme (etwa als Dampf oder Thermoöl) sowie direkt in Form von Brennstoffen (wie Erdgas, Kohle oder <a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Biomasse#alphabar">Biomasse</a>) zur Verfügung gestellt.</p><p>Gleichbleibender Primärenergieverbrauch</p><p>Seit dem Jahr 2010 blieb der <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a> in fast allen Produktionssektoren relativ konstant (siehe Abb. „Primärenergieverbrauch ausgewählter Sektoren des verarbeitenden Gewerbes“).</p><p>Gesunkene und gestiegene Primärenergieintensität </p><p>Die Primärenergieintensität beschreibt, wie viel <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergie#alphabar">Primärenergie</a> bezogen auf die erzielte Bruttowertschöpfung eines Produktionsbereichs oder Wirtschaftszweigs verbraucht wird. Die Entwicklung dieser Energieintensität über mehrere Jahre kann einen Hinweis darauf geben, ob in einem Wirtschaftszweig energieeffizient gearbeitet wird.</p><p>Die Primärenergieintensität einzelner Wirtschaftszweige entwickelte sich im Zeitraum 2010 bis 2021 unterschiedlich (siehe Abb. „Primärenergieintensität ausgewählter Sektoren des verarbeitenden Gewerbes“):</p><p>Begrenzte Aussagekraft der Primärenergieintensität</p><p>Schwankende Preise für Rohstoffe und Produkte sowie andere äußere Wirtschaftsfaktoren oder ggf. auch die Auswirkungen der weltweiten Corona-Pandemie beeinflussen zwar die Bruttowertschöpfung, nicht aber die Energieeffizienz eines Prozesses. Die Primärenergieintensität eignet sich daher nur eingeschränkt, um die Entwicklung der Energieeffizienz in den jeweiligen Herstellungsprozessen zu beschreiben. Dies ist unter anderem deutlich bei den Kokerei- und Mineralölerzeugnissen zu sehen.</p>
About 40% of final energy consumption in Germany will take place in and around buildings. Heating, cooling, hot water and the operation of electric devices are doing the most important areas - in the future probably also increasingly electric vehicles. The Open Gateway Energy Management Alliance (OGEMA) is an open software platform for energy management in this area. This connects energy consumers and producers to the customer with control centers of energy supply and binds a display for user interaction to. Thus, end-users should be able to automatically observe the future variable price of electricity and energy consumption to times. All participating developers to turn their ideas for automated energy can be used more efficiently to implement in appropriate software.
The Clean Development Mechanism (CDM) suffers from a price level for certificates that went down to almost zero in a period less than a year. Additionally, no short-term price recovery is expected which could incentivise new projects. A risk is that market participants leave the market and the valuable CDM knowledge base on GHG mitigation and quantification will be lost. The CDM Market Support Study analyses the actual price vulnerability of projects and identifies various financing and project type opportunities for project developers and for (institutional public) investors who intent to support the CDM project continuation and the further development of the CDM framework. The study also shows how the current regulatory framework of the CDM can be maintained by transferring it to future mechanisms. This could be a chance to develop the CDM from a pure market-based instrument towards an integrated part within future market-based and also policy-based instruments. The CDM can provide useful components to currently discussed or tested instruments such as the NMM (New Market Mechanism), the FVA (Framework for Varios Approaches), NAMAs (Nationally Appropriate Mitigation Actions) or results-based financing approaches. The study was financed by the German KfW-managed PoA Support Centre . The aim of the PoA-Support-Centre Germany is to support the development of Programmes of Activities (PoAs) under CDM and JI (Joint Implementation) worldwide.
Die Dynamik auf landwirtschaftlichen Bodenmärkten veränderte sich in Deutschland substanziell in den vergangenen zehn Jahren, in denen sowohl die Pacht- als auch die Kaufpreise für Ackerland massiv angestiegen sind. Dieser Preisanstieg wirkte sich auf die landwirtschaftliche Bodennutzung aus und führte unter anderem zu einer Zunahme des Anteils größerer Betriebe, zu größeren Flurstücken und zu einer geringeren Heterogenität der Agrarproduktion. Diese Strukturveränderungen in der Landwirtschaft hatten auch erhebliche Auswirkungen auf Umweltindikatoren sowohl auf landwirtschaftlichen Flächen als auch auf deren Umgebung, beispielsweise durch veränderte Landschaftsstrukturen und durch Beeinflussung der Habitatzusammensetzung. In diesem Teilprojekt soll ein besseres Verständnis generiert werden, wie die beobachteten Veränderungen auf dem landwirtschaftlichen Bodenmarkt auf die landwirtschaftliche Anbaustruktur, Eigentumsverhältnisse, Betriebsgrößen und Schlaggrößen sowie auf Vogelbiodiversität auswirken. Vogelbiodiversität ist ideal, um die Umweltauswirkungen der Landwirtschaft zu approximieren, da Vögel als Stellvertreterarten für andere Taxa dienen. Zudem sind aus wissenschaftlicher Bürgerbeteiligung konsistente Raumzeitdaten für Vogelbiodiversität für ganz Deutschland erhältlich. Wir werden die Verbindungen zwischen diesen Variablen mit Hilfe räumlich und zeitlich expliziter Analysen sowohl retrospektiv als auch prospektiv untersuchen. Die datengetriebene Herangehensweise bedient sich räumlicher statistischer Analysen und Verfahren des maschinellen Lernens, um Muster und Prozesse in zwei landwirtschaftlich bedeutenden Regionen Deutschlands (Brandenburg und Niedersachen) und in der Tschechischen Republik herauszufiltern. Die retrospektiven Ergebnisse werden zusammen mit Akteurswissen dazu dienen Zukunftsszenarien zu entwickeln, um alternative Entwicklungen der Landmärkte vorherzusehen und deren Folgen auf Betriebsstrukturen, Landnutzung und Vogelbiodiversität abzuschätzen. Das Teilprojekt, angesiedelt in der Schnittstelle zwischen Geographie, Agrarökonomie und Geoinformationswissenschaften, wird detaillierte und flächendeckende Einsichten in Bezug auf die indirekten Auswirkungen der Veränderungen auf Bodenmärkten für die Forschergruppe liefern. Dieses Wissen kann wertvolle Argumente für staatliche Bodenmarktinterventionen liefern und auch deren räumliche Planung unterstützen. Solches Wissen ist bedeutend, weil die Umweltauswirkungen des anhaltenden landwirtschaftlichen Strukturwandels gesellschaftlich eine hohe Bedeutung haben und dadurch auch viel Aufmerksamkeit in Wissenschaft, Politik und Medien bekommen.
Das Ziel des Projektes ist die Herstellung von wartungsarmen/-freien Elektrolysezellen aus keramischen Werkstoffen für den Einsatz in kleinen Elektrolyseuren mit einer Nennleistung zwischen 2 kW und 25 kW mit hoher Umweltverträglichkeit und niedrigem Preis. Dabei sollen die Elektroden jeweils eine Fläche bis circa 300 cm² aufweisen. Durch Verwendung keramischer Werkstoffe anstelle von bisher üblichen Nickel-Stahlblechen als Elektroden sollen die spezifischen Vorteile carbidischer und nitridischer Keramiken genutzt und dadurch Herstell- und Betriebskosten reduziert werden. Im Rahmen des Projektes soll die Entwicklung aus der Konzeptphase (TRL 3) in ein Bauteilmuster (TRL 5) überführt werden.
Das Ziel des Projektes ist die Herstellung von wartungsarmen/-freien Elektrolysezellen aus keramischen Werkstoffen für den Einsatz in kleinen Elektrolyseuren mit einer Nenn-leistung zwischen 2 kW und 25 kW mit hoher Umweltverträglichkeit und niedrigem Preis. Dabei sollen die Elektroden jeweils eine Fläche bis circa 300 cm² aufweisen. Durch Verwendung keramischer Werkstoffe anstelle von bisher üblichen Nickel-Stahlblechen als Elektroden sollen die spezifischen Vorteile carbidischer und nitridischer Keramiken genutzt und dadurch Herstell- und Betriebskosten reduziert werden. Im Rahmen des Projektes soll die Entwicklung aus der Konzeptphase (TRL 3) in ein Bauteilmuster (TRL 5) überführt werden.
Das Ziel des Projektes ist die Herstellung von wartungsarmen/-freien Elektrolysezellen aus keramischen Werkstoffen für den Einsatz in kleinen Elektrolyseuren mit einer Nenn-leistung zwischen 2 kW und 25 kW mit hoher Umweltverträglichkeit und niedrigem Preis. Dabei sollen die Elektroden jeweils eine Fläche bis circa 300 cm² aufweisen. Durch Verwendung keramischer Werkstoffe anstelle von bisher üblichen Nickel-Stahlblechen als Elektroden sollen die spezifischen Vorteile carbidischer und nitridischer Keramiken genutzt und dadurch Herstell- und Betriebskosten reduziert werden. Im Rahmen des Projektes soll die Entwicklung aus der Konzeptphase (TRL 3) in ein Bauteilmuster (TRL 5) überführt werden.
Das Ziel des Projektes ist es, die Herstellung von wartungsarmen/-freien Elektrolysezellen aus keramischen Werkstoffen für den Einsatz in kleinen Elektrolyseuren mit einer Nennleistung zwischen 2 kW und 25 kW mit hoher Umweltverträglichkeit und niedrigem Preis. Dabei sollen die Elektroden jeweils eine Fläche bis circa 300 cm² aufweisen. Die Nutzung keramischer Werkstoffe anstelle von bisher üblichen Nickel-Stahlblechen als Elektroden soll spezifische Vorteile carbidischer und nitridischer Keramiken nutzen und dadurch Herstell- und Betriebskosten reduzieren. Im Rahmen des Projektes soll die Entwicklung aus der Konzeptphase in ein Bauteilmuster überführt werden.
Gebäudecharakteristik und Konzeption der Anlagentechnik: Gebäude: Kirche, Baujahr 1954, 205 qm Bruttofläche, Nutzung für Gottesdienste und gelegentliche Konzerte. PV-Anlage: - Aufdachgenerator, bestehend aus 30 Modulen je 120 Wp. Modulmasse 1456 x 731 mm; - 2 Strang-Wechselrichter Typ SMS Sunnyboy 2000 und 850. - Verschaltung mit Solarleitung Ho7-RN-F 1 x 4 qm; - Dachneigung 50 Grad, Himmelsrichtung 32 Grad Südwest. Geplante Maßnahmen zur Verbreitung: Die Anlage wurde am 5. September 2001 anlässlich des Gemeindefestes offiziell in Betrieb genommen. Strom wurde bereits einige Tage früher ins Netz eingespeist. Vorangegangen sind als Werbemaßnahmen 1 Sonderbeilage und weitere Artikel im Gemeindebrief, 1 Sonderbeilage im Gemeindeblatt (Amtliches Mitteilungsblatt für alle Haushalte der Großgemeinde), Auslage der Broschüre in diversen Läden in Schonungen selbst und in der Umgebung, Vorstellung in der Lokalpresse. Ab dem Jahr 2002 sind Öffentlichkeitsinformationen geplant im Rahmen einer Agenda 21-Arbeitsgruppe, der VHS-Aussenstelle Schonungen im Rahmen von Vorträgen und Besichtigungen usw. Das Anzeigemodul der Fa. Skytron ist an der Außenseite des Pfarrhauses angebracht und von jedem gut einsehbar. Fazit: Öffentliche Gebäude (Kirchen, Schulen, Kindergärten, Rathäuser) eignen sich hervorragend zur Verbreitung der solaren Stromerzeugung. Auf dem Neubau des Schonunger Rathauses wurde nach unserer Solaranlage inzwischen bereits eine weitere Anlage installiert. Ästhetische Vorbehalte werden gerade durch eine Anlage auf einem Kirchendach abgebaut, die durch den Förderanschub wohl zu erwartenden Preissenkungen werden im Zusammenhang mit dem EEG für eine weitere Verbreitung im privaten Bereich sorgen. Weitere Informationen zur Förderung bei Privatpersonen wären zur Weitergabe an diese sinnvoll.
Die Forschung zielt darauf ab, die Veraenderungen in den Marktstrukturen in der Energiewirtschaft mit besonderem Schwerpunkt fuer Oel, Erdgas und Elektrizitaetswirtschaft zu analysieren. Fuer die leitungsgebundenen Energietraeger vollziehen sich die gravierendsten Veraenderungen durch neue Rahmenbedingungen auf nationaler und europaeischer Ebene. Der Oelmarkt wird durch internationale Veraenderungen bestimmt: Teil-Entmachtung bisher starker Unternehmen, Aufkommen neuer Anbieter, Entstehung von Oelboersen etc sind von grosser Bedeutung fuer Preisbildung und Versorgungssituation. Im einzelnen wurden in den letzten Jahren bearbeitet: 1) Modellierungsarbeiten fuer eine deutsche Analyse der Bedingungen fuer CO2-Reduktionspolitik. 2) Marktveraenderungen durch neue Regulierungssysteme fuer leistungsgebundene Energietraeger? 3) Strukturwandel auf dem Oelmarkt.
| Origin | Count |
|---|---|
| Bund | 422 |
| Land | 21 |
| Type | Count |
|---|---|
| Daten und Messstellen | 1 |
| Förderprogramm | 398 |
| Text | 28 |
| Umweltprüfung | 2 |
| unbekannt | 12 |
| License | Count |
|---|---|
| geschlossen | 41 |
| offen | 400 |
| Language | Count |
|---|---|
| Deutsch | 411 |
| Englisch | 100 |
| Resource type | Count |
|---|---|
| Datei | 5 |
| Dokument | 19 |
| Keine | 279 |
| Unbekannt | 2 |
| Webdienst | 1 |
| Webseite | 154 |
| Topic | Count |
|---|---|
| Boden | 320 |
| Lebewesen und Lebensräume | 367 |
| Luft | 247 |
| Mensch und Umwelt | 441 |
| Wasser | 198 |
| Weitere | 426 |