<p>Deutschland besitzt außer Kohle keine bedeutenden weiteren konventionellen Energieressourcen. Knapp 70 Prozent des Energieaufkommens wird deshalb durch Importe diverser Energieträger gedeckt. Um die Versorgung auch zukünftig zu sichern, sollte die Importabhängigkeit verringert und die Vielfalt an Lieferländern und Transportstrukturen erhöht werden.</p><p>Entwicklung der Primärenergiegewinnung</p><p>Seit dem Jahr 1990 ging die Gewinnung von konventionellen Energierohstoffen in Deutschland um mehr als drei Viertel zurück und konnte auch durch einen Zuwachs bei den erneuerbaren Energien nicht kompensiert werden. Im Jahr 2023 wurden etwa 3.400 Petajoule (PJ) inländisch gewonnen (siehe Abb. „Primärenergiegewinnung in Deutschland“). Das entspricht etwa 32 % des gesamten Primärenergieverbrauchs dieses Jahres. Der Anteil der inländischen Gewinnung am <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a> schwankt seit Mitte der 2000er Jahre zwischen 28 und 32 %.</p><p>Heute sind die wichtigsten im Inland gewonnenen Energieträger die <em>erneuerbaren Energien</em> wie Windkraft, Sonnenenergie, Wasserkraft und <a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Biomasse#alphabar">Biomasse</a>. Sie machen inzwischen etwa 62% der im Inland gewonnenen Energie aus. Biomasse und der erneuerbare Teil des Siedlungsabfalls tragen zu etwa einem Drittel zur inländischen Primärenergiegewinnung bei.</p><p>Neben den erneuerbaren Energien ist noch immer die<em> Braunkohle</em> der bedeutendste inländische Energieträger und machte im Jahr 2023 27 % der im Inland gewonnenen <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergie#alphabar">Primärenergie</a> aus. Dabei wird seit dem Jahr 2003 in Deutschland regelmäßig etwas mehr Braunkohle gefördert, als im Inland verbraucht wird. Darüber hinaus stammten 2023 etwa 5 % des in Deutschland verbrauchten <em>Erdgases</em> und etwa 2 % des Inlandsverbrauchs an <em>Mineralöl</em> aus deutschen Quellen. Die Förderung von <em>Steinkohle</em> wurde in Deutschland 2019 eingestellt.</p><p>Importabhängigkeit verringern</p><p>Importiert werden somit vor allem die fossilen Energieträger Mineralöl, Gas und Steinkohle. Bis zur Stilllegung der letzten Atomkraftwerke wurden seit 1991 ferner 100% des benötigten Urans eingeführt (siehe Tab. „Primärenergieimporte“). In den kommenden Jahren wird Deutschland weiterhin auch bei Erdöl und Erdgas auf Importe angewiesen sein. Die Risiken dieser hohen Importabhängigkeit wurden im Jahr 2022 im Zuge des russischen Überfalls auf die Ukraine sichtbar. Deutlich verringerte Einfuhren von Erdgas aus Russland führten zu stark steigenden Erdgas-Preisen für Verbraucher und in der Folge zu erheblichen volkswirtschaftlichen Effekten.</p><p>Um die Abhängigkeit von Energieimporten weiter zu verringern, sollten heimische erneuerbare Energien weiter ausgebaut und Lieferländer und Transportstrukturen diversifiziert werden. Auch das Einsparen von Energie hilft, die Importabhängigkeit zu verringern.</p>
Every year, more than 50 million vehicles reach the end of their service life throughout the World. In the EU, the amount of waste generated by the automotive industry raised up to 10 million tonnes in 2010, and it is foreseen that it will increase by 40% until 2015. Thus, the appropriate recycling of this waste has important implications from the environmental point of view. About 8% of the total weight in the automotive shredder corresponds to non-ferrous metals, which is often processed by Heavy Media Separation, and handsorting. Vision systems can be used to separate metals based on their colour. However this requires thermal and chemical etching treatments of the shredder to remove coatings, and to induce surface colour modifications, resulting in substantial operational costs, higher energy and water consumption and associated waste and GHG emissions. Moreover, none of current sorting technologies is still able to successfully sort the light fraction of the metals (Al and Mg) into individual alloys, which consequently must be downgraded to produce cast aluminium. In the next years, unless new technologies enable the recovery of Al in the form of wrought alloys ('cradle-to-cradle' approach), secondary Al will not be completely absorbed by the market, and the production of primary Al will increase by 25%. This represents a major environmental concern due to the much higher energy and emissions of primary production process. This project aims at developing a new dry sorting technology for non-ferrous automotive shredder. First, shredder will be separated into different metals, based on their conductivity. To this end, a new electromagnetic sensing technique combined with a vision system will be used. In a next step, the light fraction (Al and Mg alloys, with overlapping conductivities), will be alloy-sorted using LIBS. A novel LIBS system design is proposed, enabling upscaling the sorting throughput by one order of magnitude with respect to existing systems.
An der Primärenergieproduktion haben die Erneuerbaren Energien in Deutschland derzeit einen Anteil von ca. 13 %. Davon wiederum sind ca. 70 % Biomasse-basierte Energieträger. Bezogen auf die reine Energiemenge ist die Wärmebereitstellung das bei weitem wichtigste Segment der Erneuerbaren Energien. Die feste Biomasse, insbes. (Wald-) Holz, hat mit rund 80 % den größten Anteil daran. Einhergehend mit der so genannten Energiewende hat die energetische Nutzung (Waldhackschnitzel, Scheitholz, Waldholzanteile in Pellets) daher auch zunehmende Relevanz in der Wertschöpfung. Sie steht aber auch in wachsender Konkurrenz mit den stoffl. Verwendungen von Waldholz. Mit den Zielen, den Anteil der Erneuerbaren Energien an der Primärenergie aus inländischer Herkunft zu erhöhen, steigt generell der Nutzungsdruck auf die Ressource Holz. Konfliktpotenziale zeigen sich u.a. im Rahmen der Nachhaltigkeitsdiskussion und einer befürchteten Übernutzung mit negativen Auswirkungen auf Ressourcen (u.a. standortspez. Nährstoffpotenziale und Gefährdungen von extensiv genutzten naturschutzfachlich wertvollen Waldbeständen). Ökonomische Wertschöpfungseffekte (Einkommen, Unternehmergewinne, Steuereinnahmen) und Umweltauswirkungen (Nutzungsintensitäten, Emissionen von Luftschadstoffen und Treibhausgasen) können als Kriterien für eine Entscheidungshilfe von eventuell begünstigten Förderungen bestimmter 'Value Chains' herangezogen werden. Dies gilt sowohl für eine energet. als auch für eine stoffl. Verwendung sowie im Detail für Teilstoffströme bei der Betrachtung von Wertschöpfungsketten innerhalb der energet. Nutzung selbst. Von entscheidender Bedeutung ist auch, die Wertschöpfung nach ihren regionalen und überregionalen Wirkungen differenziert zu betrachten (Stoffströme, Regionalität der Wertschöpfung). Gerade die Regionalität der Effekte wurde in bisherigen Studien weitgehend vernachlässigt. Im Forschungsvorhaben stehen die Analyse der Nutzungskonkurrenzen und die Wertschöpfungsketten der Energieholznutzung im Kleinprivatwald (kleiner 200 ha) am Beispiel des Bundeslandes BW im Fokus. Dort werden bislang noch ungenutzte Holzressourcen zur Schließung von bestehenden und prognostizierten Versorgungslücken vermutet, soweit die Hypothese. Folgende Fragestellungen sollen im Detail untersucht werden: - Wie sieht die Holznutzung im Kleinprivatwald hinsichtl. der Intensität tatsächlich aus? - Welche Wertschöpfungsketten der Energieholznutzung des Kleinprivatwaldes stellen sich in einer ganzheitlichen Bewertung (ökonomische Effekte, Umweltauswirkungen, Regionalität von Stoffströmen und Wertschöpfung) als vorteilhaft heraus? - Wie unterscheiden sich Nutzungsintensität und Wirkungen der Energieholznutzung im Kleinprivatwald von den übrigen Waldbesitzarten? - Welche Ketten der stofflichen bzw. energetischen Verwertung sollten bevorzugt werden, wenn eine Optimierung der Umweltauswirkungen und die Maximierung der (regionalen) Wertschöpfungseffekte im Vordergrund stehen? (Text gekürzt)
Die Albert Köhler GmbH & Co. KG ist ein mittelständisches Unternehmen, das Pappen zu 96 Prozent aus Altpapier herstellt. Ziel des Vorhabens ist es, durch eine für die Papierbranche neuartige Anlage sein Abwasser so aufzubereiten, dass es in den Produktionskreislauf zurückgeführt werden kann. Zugleich soll die im Abwasser gespeicherte Wärme zur Deckung des Energiebedarfs im Unternehmen beitragen. Insgesamt werden rund 2000 Tonnen klimaschädliches Kohlendioxid pro Jahr eingespart. Das Vorhaben wird im Rahmen der Klimaschutzinitiative des Bundesumweltministeriums gefördert. Das Unternehmen plant, das vorgereinigte Abwasser zukünftig in zwei weiteren Stufen, einem Membranbioreaktor und einer nachgeschalteten Teilstrombehandlung mittels Umkehrosmose, zu reinigen. Der Membranbioreaktor ist eine Kombination von konventionellem Belebungsverfahren und Ultrafiltration. Bis zu 94 Prozent des Abwassers können dem Produktionskreislauf wieder zugeführt werden. Dementsprechend sinkt der Frischwasserbedarf. Zugleich wird die Schadstofffracht verringert und ein Beitrag zum Gewässerschutz geleistet. Durch den Wiedereinsatz des warmen Abwassers in der Produktion verringert sich der Bedarf an Primärenergie. Zu dieser Verringerung trägt auch das Vorwärmen des zugesetzten Frischwassers bei. Die dafür erforderliche Energie wird mit Hilfe von Wärmetauschern aus dem Abwasser gewonnen.
Wie die 2020 Energie- und Klimaziele der EU für Österreich erreicht werden können, ist der Fokus des Projekts. Mittels der Methode des Backcasting für die Zeithorizonte 2020 und 2030 werden Technologien in den Schlüsselbereichen Gebäude, Produktion, Mobilität und Energiebereitstellung identifiziert (ausgehend von der Energiedienstleistung, im Übergang von Nutz-, End- auf Primärenergie), bewertet (auch Wertschöpfungseffekte), und zu Szenarien eines konsistenten Gesamtenergiesystems zusammengestellt. Die vertiefte Einbindung von Stakeholdern in diesen Prozess ist dabei zentral. Als weiteres innovatives Element fokussieren wir auf die Bundeslandebene, um beispielhaft anhand zumindest eines Bundeslandes eine breit akzeptierte Methode des Herunterbrechens der Energie- und Klimaziele auf die Länder zu entwickeln. Dies stellt auch eine Basis zur Festlegung der Verantwortlichkeiten zwischen diesen Ebenen bereit.
Die Albert Köhler GmbH & Co. KG ist ein mittelständisches Unternehmen, das Pappen zu 96 Prozent aus Altpapier herstellt. Ziel des Vorhabens ist es, durch eine für die Papierbranche neuartige Anlage sein Abwasser so aufzubereiten, dass es in den Produktionskreislauf zurückgeführt werden kann. Zugleich soll die im Abwasser gespeicherte Wärme zur Deckung des Energiebedarfs im Unternehmen beitragen. Insgesamt werden rund 2.000 Tonnen klimaschädliches Kohlendioxid pro Jahr eingespart. Das Vorhaben wird im Rahmen der Klimaschutzinitiative des Bundesumweltministeriums gefördert. Das Unternehmen plant, das vorgereinigte Abwasser zukünftig in zwei weiteren Stufen, einem Membranbioreaktor und einer nachgeschalteten Teilstrombehandlung mittels Umkehrosmose, zu reinigen. Der Membranbioreaktor ist eine Kombination von konventionellem Belebungsverfahren und Ultrafiltration. Bis zu 94 Prozent des Abwassers können dem Produktionskreislauf wieder zugeführt werden. Dementsprechend sinkt der Frischwasserbedarf. Zugleich wird die Schadstofffracht verringert und ein Beitrag zum Gewässerschutz geleistet. Durch den Wiedereinsatz des warmen Abwassers in der Produktion verringert sich der Bedarf an Primärenergie. Zu dieser Verringerung trägt auch das Vorwärmen des zugesetzten Frischwassers bei. Die dafür erforderliche Energie wird mit Hilfe von Wärmetauschern aus dem Abwasser gewonnen. Branche: Papier und Pappe Umweltbereich: Wasser / Abwasser Fördernehmer: Albert Köhler GmbH & Co. KG Bundesland: Baden-Württemberg Laufzeit: 2008 - 2010 Status: Abgeschlossen
| Origin | Count |
|---|---|
| Bund | 6 |
| Type | Count |
|---|---|
| Förderprogramm | 5 |
| Text | 1 |
| License | Count |
|---|---|
| geschlossen | 2 |
| offen | 4 |
| Language | Count |
|---|---|
| Deutsch | 5 |
| Englisch | 1 |
| Resource type | Count |
|---|---|
| Dokument | 2 |
| Keine | 2 |
| Webseite | 3 |
| Topic | Count |
|---|---|
| Boden | 5 |
| Lebewesen und Lebensräume | 5 |
| Luft | 4 |
| Mensch und Umwelt | 6 |
| Wasser | 4 |
| Weitere | 6 |