API src

Found 747 results.

Umweltprobenbank des Bundes (German Environmental Specimen Bank)

Die Umweltprobenbank des Bundes (UPB) mit ihren Bereichen Bank für Umweltproben und Bank für Humanproben ist eine Daueraufgabe des Bundes unter der Gesamtverantwortung des Bundesumweltministeriums sowie der administrativen und fachlichen Koordinierung des Umweltbundesamtes. Es werden für die Bank für Umweltproben regelmäßig Tier- und Pflanzenproben aus repräsentativen Ökosystemen (marin, limnisch und terrestrisch) Deutschlands und darüber hinaus für die Bank für Humanproben im Rahmen einer Echtzeitanalyse Blut-, Urin-, Speichel- und Haarproben studentischer Kollektive gewonnen. Vor ihrer Einlagerung werden die Proben auf eine Vielzahl an umweltrelevanten Stoffen und Verbindungen (z.B. Schwermetalle, CKW und PAH) analysiert. Der eigentliche Wert der Umweltprobenbank besteht jedoch in der Archivierung der Proben. Sie werden chemisch veränderungsfrei (über Flüssigstickstoff) gelagert und somit können auch rückblickend Stoffe untersucht werden, die zum Zeitpunkt ihrer Einwirkung noch nicht bekannt oder analysierbar waren oder für nicht bedeutsam gehalten wurden. Alle im Betrieb der Umweltprobenbank anfallenden Daten und Informationen werden mit einem Datenbankmanagementsystem verwaltet und aufbereitet. Hierbei handelt es sich insbesondere um die biometrischen und analytischen Daten, das Schlüsselsystem der UPB, die Probenahmepläne, die Standardarbeitsanweisungen (SOP) zu Probenahme, Transport, Aufbereitung, Lagerung und Analytik und die Lagerbestandsdaten. Mit einem Geo-Informationssystem werden die Karten der Probenahmegebiete erstellt, mit denen perspektivisch eine Verknüpfung der analytischen Ergebnisse mit den biometrischen Daten sowie weiteren geoökologischen Daten (z.B. Daten der Flächennutzung, der Bodenökologie, der Klimatologie) erfolgen soll. Ausführliche Informationen und eine umfassende Datenrecherche sind unter www.umweltprobenbank.de abrufbar.

Aufreinigung von Biogas mittels hochselektiver, keramischer Membranen, Teilvorhaben 2: Gastrennung unter Einsatzbedingungen

Ziel des Projektansatzes ZeoClean ist die Entwicklung und Erprobung nanoporöser Materialien als Membranmaterial für die Aufbereitung und Bereitstellung von Biomethan. Der große Vorteil bei Verwendung einer Membran im Vergleich zur Adsorption, zum Strippen oder zur kryogenen Trennung ist einerseits die hohe erzielbare Flussleistung, andererseits auch die chemische und mechanische Stabilität. Hierbei grenzen sich die anorganischen, keramischen Membranen deutlich von den Polymermembranen ab. Adressiert wird im Rahmen dieses Forschungsantrages die Entwicklung anorganischer, keramischer Membranen für Volumina im Bereich bis zu 1.000 m³/h. ZeoClean richtet sich auf die Trennaufgabe von CO2 und CH4 mittels Membrantechnologie aus und verfolgt einerseits die Membranentwicklung mit einer CO2/CH4 Selektivität von mehr als 50 und einer CO2-Permenaz von mindestens 1 m³/(m²hbar) und andererseits die Umsetzbarkeit anhand eines experimentellen Nachweises in realem Biogas. Im Rahmen von ZeoClean soll eine neue und hoch selektive Zeolithmembran entwickelt werden, die nahezu undurchlässig für CH4, sehr hohe CO2-Flüsse aufweist und überaus robust gegen Störstoffe ist. Am meisten interessieren die Zeolithe CHA und DD3R. Für das Erreichen dieser Ziele ist das Vorhaben in zwei Projektphasen gegliedert. Die erste Projektphase 'Materialentwicklung und Funktionsnachweis' adressiert die Entwicklung dieser Membranen. In Abhängigkeit der Entwicklungsergebnisse wird eine zweite Projektphase 'Prototypenentwicklung und Technologie' angestrebt, wo es vordergründig um Skalierung und Pilotierung der Membransynthese, aber auch der Technologieentwicklung im Ganzen gehen soll. Der Fokus de DBI (TV 2) liegt die Testung der am Fraunhofer IKTS entwickelten Membran. Dies beginnt im Labor, wird aber primär an einer Biogas- bzw. Klärgasanlage im Projekt erfolgen. Damit wird gewährleitet, dass die Membran auch bezüglich Stabilität und Trennverhalten im realen Anwendungsfall getestet und bewertet wird.

Platinbestimmung von Membran- Elektroden- Einheiten aus Brennstoffzellen

Die genaue Kenntnis der Platingehalte von Membranen aus Brennstoffzellen ist für einen Aufbereitungsprozess und vor allem zur genauen Berechnung der Wertschöpfung von großer Bedeutung. Auf Grund der chemischen Zusammensetzung, vor allem durch erhöhte Fluorfrachten, wird die genaue Analytik, aber auch die Aufbereitung, erschwert. Im Mittelpunkt dieses Forschungsprojektes stand deshalb die Prüfung von Probenahme, Probenaufbereitung und Analytik hinsichtlich ihrer Eignung bei der Bestimmung von Platingehalten der Membran- Elektroden Einheiten. Es konnte dabei gezeigt werden, dass die größten Probleme erwartungsgemäß bei der Probenvorbereitung und -aufbereitung auftreten. Bei der anschließenden vergleichenden Analytik lagen die Messwerte sehr eng beieinander, so dass keinem der Verfahren hier der Vorrang gegeben werden kann. Auf Grund der gewonnenen Erkenntnisse in der Probenaufbereitung konnten abschließend auch einige Vorschläge für einen Aufbereitungsprozess zusammengestellt werden.

Einsatz stabiler Isotope in der Ökophysiologie: Stickstoff- und Kohlenstoffallokation sowie Kohlenstoffumsatz junger Bäume im Bodenraum

Im Rahmen des hier beantragten 12-monatigen Aufenthalt bei Prof. Dr. T. Dawson werde ich verschiedene Einsatzmöglichkeiten von stabilen Isotopen zum mechanistischen Verständnis von Prozessen in der Ökophysiologie/Baumphysiologie erlernen. Besonderer Schwerpunkt wird hierbei auf dem Studium biotischer Interaktionen und Stoffumsätze im Boden liegen. Anhand von eigenem Probenmaterial aus bereits abgeschlossenen Experimenten werde ich mir zunächst die Probenaufarbeitung, Verwendung der Massenspektrometer und Dateninterpretation von Grund auf aneignen. Während eines etwa vierwöchigen Aufenthalts bei Dr. C. Andersen werde ich in die Handhabung einer Messvorrichtung für unterirdische Untersuchungen an jungen Bäumen eingeführt. Diese 'mycocosms' werden anschließend für die in Berkeley geplanten Versuche eingesetzt. Mit Hilfe der stabilen Isotope 13C und 15N und Messungen der Bodenatmungsraten werden der Fluss an neu fixiertem C von den Blättern in den Boden, der C-Umsatz dort quantifiziert sowie die N- und C-Allokation erfaßt. Die Experimente dienen dem mechanistischem Verständnis qualitativer und quantitativer Änderungen dieser Allokations- und Umsatzprozesse durch Mykorrhizapilze und Konkurrenzinteraktionen. Die erlernten Methoden werden nach Beendigung des Auslandsstipendiums in Deutschland im Rahmen von Projekten eingesetzt, die sich mit der Konkurrenz zwischen Buche und Fichte beschäftigen.

Synthese von biobasierten Acrylnitril als Monomer für Carbonfasern auf Multipurpose-Demonstrationsanlagen, Teilvorhaben: LCA von biobasierten Acrylnitril

Bioökonomie International 2021: GelSus

Schwerflüchtige organische Schadstoffe in der Deposition, Luftqualitätsüberwachungsnetzwerk (LUQS)

Bestimmung von polychlorierten Dibenzo-p-dioxinen, Dibenzofuranen (PCDD/F) und polychlorierten Biphenylen (PCB) in der Deposition. Die Probenahme erfolgt nach dem Bergerhoff-Verfahren. Hierbei werden 6 Gefäße für einen Monat an einem Messort aufgestellt. Der Inhalt der Gefäße wird anschließend im Labor, nach Extraktion und Aufreinigung der Extrakte, mittels GC-HRMS analysiert.

Schwerflüchtige organische Schadstoffe in der Außenluft, Luftqualitätsüberwachungsnetzwerk (LUQS)

Bestimmung von polychlorierten Dibenzo-p-dioxinen, Dibenzofuranen (PCDD/F) und polychlorierten Biphenylen (PCB) in der Außenluft. Mittels eines Kleinfiltergerätes werden pro Monat ca. 1000 m³ Außenluft über verschiedene Filtermedien gesaugt. Diese werden anschließend im Labor, nach Extraktion und Aufreinigung der Extrakte, mittels GC-HRMS analysiert.

Aufreinigung von Biogas mittels hochselektiver, keramischer Membranen, Teilvorhaben 3: Ökonomische und ökologische Evaluierung

Ziel des Projektansatzes ZeoClean ist die Entwicklung und Erprobung nanoporöser Materialien als Membranmaterial für die Aufbereitung und Bereitstellung von Biomethan. Der große Vorteil bei Ver-wendung einer Membran im Vergleich zur Adsorption, zum Strippen oder bspw. zur kryogenen Trennung ist einerseits die hohe erzielbare Flussleistung, andererseits auch die chemische und mechanische Stabilität. Hierbei grenzen sich die anorganischen, keramischen Membranen deutlich von den Polymermembranen ab, die darüber hinaus auch anfällig für Verunreinigungen sein können. Adressiert wird im Rahmen dieses Forschungsantrages die Entwicklung anorganischer, keramischer Membranen für Volumina im Bereich bis zu 1.000 m³/h. Dadurch sind die Membrankosten bezogen auf die Gesamtkosten der Gasaufbereitung als gering zu bewerten. Insbesondere bei Biogas- und Klärgasanlagen liegen die Volumenströme im Bereich von 200 - 500 m³/h. Das Produkt ist ein Gemisch bestehend aus CO2 und CH4, welches vor der Einspeisung ins Erdgasnetz aufgereinigt werden muss. Die in diesem Zusammenhang bereits gestellte Antragsskizze 'FlexMethan' (FKZ: 220NR154A) wurde substanziell überarbeitet und der Projektfokus erheblich geschärft. ZeoClean richtet sich auf die Trennaufgabe von CO2 und CH4 mittels Membrantechnologie aus und verfolgt einerseits die Membranentwicklung mit einer CO2/CH4 Selektivität von mehr als 50 und einer CO2-Permenaz von mindestens 1 m³/(m²hbar) und andererseits die Umsetzbarkeit anhand eines experimentellen Nachweises in realem Biogas.

Elektrochemische Valorisierung furanreicher Prozessströme aus dem hydrothermalen Aufschluss landwirtschaftlicher Reststoffe

Das Ziel des Verbundvorhabens ELEVATOR besteht in der Etablierung eines effizienten, gekoppelten elektrochemischen Prozesses für die Herstellung von biobasierter Furandicarbonsäure (FDCA) und biobasiertem Dimethylfuran (DMF) aus 5-Hydroxymethylfuran (HMF), das aus landwirtschaftlichen Reststoffen gewonnen wird. Der hochinnovative Charakter von ELEVATOR liegt dabei insbesondere in a) der kombinierten Nutzung der anodischen und kathodischen Halbzellreaktion (Oxidation und Reduktion) zur parallelen Synthese hochwertiger Produkte in einer einzigen elektrochemischen Zelle ('200% Zelle') und b) in der Verwendung eines industriell relevanten Eduktstroms aus dem hydrothermalen Aufschluss von lignozellulosehaltiger Biomasse. Der biogene Rohstoff wird dabei nicht aufwendig vorgereinigt. Der elektrochemische Prozess wird im Vorhaben bis TRL 4 entwickelt und zur Herstellung von Mustermengen der Produkte betrieben. Hierzu wird auch ein Verfahren zur Aufreinigung der Produkte FDCA und DMF etabliert. Das Ziel des Teilvorhabens 'Grundlagenuntersuchungen zur Elektrosynthese und zum Downstream Processing' von Fraunhofer IGB besteht in der grundlegenden Entwicklung der elektrochemischen Halbzellreaktionen, nämlich der Oxidation von DMF zu FDCA und der Reduktion von HMF zu DMF. Dabei sollen Materialien identifiziert werden, die eine effiziente und selektive Umsetzung von HMF erlauben und gleichzeitig ungewollte Nebenreaktionen minimieren. Die Halbzellreaktionen werden in einer elektrochemischen Zelle integriert und im Labor zu einem Gesamtprozess entwickelt, der für mindestens 100 h stabil betrieben werden kann und hohe Produktausbeuten ermöglicht. Weiterhin wird von Fraunhofer IGB in ELEVATOR ein Verfahren zur Abtrennung und Aufreinigung der Produkte FDCA und DMF etabliert. Dabei wird FDCA bis zu einer Qualität aufgereinigt, die die Verwendung des Produktes in der Herstellung von Polymeren erlaubt.

1 2 3 4 573 74 75