Das Projekt "International Surface Ocean - Lower Atmosphere Study (SOLAS)" wird/wurde ausgeführt durch: Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR), Forschungsbereich 2: Marine Biogeochemie, Forschungseinheit Chemische Ozeanographie.Since 2004, the International Surface Ocean - Lower Atmosphere Study (SOLAS) project is an international research initiative aiming to understand the key biogeochemical-physical interactions and feedbacks between the ocean and atmosphere. Achievement of this goal is important to understand and quantify the role that ocean-atmosphere interactions play in the regulation of climate and global change. SOLAS celebrated its 10 year anniversary in 2014. In the first decade, the SOLAS community has accomplished a great deal towards the goals of the original Science Plan & Implementation Strategy and Mid-term Strategy (Law et al. 2013) as highlighted by the open access synthesis book on 'Ocean Atmosphere Interactions of Gases and Particles' edited by Liss and Johnson and the synthesis article in Anthropocene from Brévière et al. 2015. However there are still major challenges ahead that require coordinated research by ocean and atmospheric scientists. With this in mind, in 2013, SOLAS has started an effort to define research themes of importance for SOLAS research over the next decade. These themes form the basis of a new science plan for the next phase of SOLAS 2015-2025. SOLAS being a bottom-up organisation, a process in which community consultation play a central role was adopted. After two sets of reviews by our four sponsors (SCOR, Future Earth, WCRP and iCACGP), the SOLAS 2015-2025 Science Plan and Organisation (SPO) was officially approved.
Das Projekt "Water and Sewerage Project Shkodra, Albania - Feasibility Study" wird/wurde gefördert durch: kfw Bankengruppe. Es wird/wurde ausgeführt durch: RWTH Aachen University, Institut für Umweltforschung, Lehr- und Forschungsgebiet Ökosystemanalyse (ESA).
Das Projekt "Transportwege von Feuchte und Wasserdampfisotopologe" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Karlsruher Institut für Technologie (KIT), Institut für Meteorologie und Klimaforschung - Atmosphärische Spurenstoffe und Fernerkundung.Das Zusammenspiel von atmosphärischem Wasser und Zirkulation über Beeinflussung des Strahlungshaushalts, den Transport latenter Wärme und Rückkopplungsmechanismen von Wolken ist eines der bedeutendsten Hindernisse für das Verständnis des Klimasystems. Ein Vergleich zwischen Modellen verschiedener Auflösungen und Parameterisierungen kann wertvolle Einblicke in die Problematik geben. Jedoch werden für aussagekräftige Modelltests Messdaten benötigt. In diesem Zusammenhang können Isotopologen des troposphärischen Wasserdampfs eine wichtige Rolle spielen. Das Isotopologenverhältnis reflektiert die Bedingungen am Ort des Feuchteeintrags sowie verschiedene Umwandlungsprozesse (z.B. in Wolken). Während der letzten Jahre gab es großen Fortschritt beim Modellieren und Messen der Isotopologenverhältnisse, so dass kombinierte Untersuchungen nun global zeitlich und räumlich hochaufgelöst durchführbar sind. Das Ziel dieses Projektes ist es, Wasserdampfisotopologe als neue Methode zu etablieren, um modellierte atmosphärische Feuchteprozesse zu testen und damit einige der größten Herausforderungen der aktuellen Klimaforschung anzugehen. Um statistisch robuste Untersuchungen zu ermöglichen, werden wir eine große Anzahl von (H2O, deltaD)-Paaren messen (deltaD ist das standardisierte Verhältnis zwischen den Isotopologen HD16O und H216O). Zum ersten Mal wird dann ein validierter Beobachtungsdatensatz zur Verfügung stehen, der große Gebiete, lange Zeiträume und verschiedene Tageszeiten abdeckt. Gleichzeitig wird ein hochauflösendes meteorologisches Modell, welches die Isotopologe simuliert, benutzt, um zu untersuchen inwiefern sich Eintrag und Transport von Feuchte in den Isotopologen wiederspiegeln. Diese Kombination von Messung und Modell ist einzigartig zum Testen der Modellierung von Feuchteprozessen. Das Potential der Isotopologen wird anhand von drei klimatisch interessanten Regionen aufgezeigt. Für Europa wird unser Ansatz einen wertvollen Einblick in den Zusammenhang zwischen Feuchteeintrag und den Isotopologen im Falle hochvariablen Wettergeschehens geben. Über dem subtropischen Nordatlantik werden wir Mischprozessen zwischen der marinen Grenzschicht und der freien Troposphäre untersuchen. Die verschiedenartige Einbindung dieser Prozesse in Modelle ist sehr wahrscheinlich ein Grund für die große Unsicherheit bei Rückkopplungsmechanismen von Wolken. Über Westafrika wird die Modellierung des Monsuns getestet (horizontaler Feuchtetransport, Feuchterückfluss von Land in die Troposphäre, und Tagesgänge in Zusammenhang mit vertikalen Mischprozessen). Die Frage, wie organisierte Konvektion die Monsunzirkulation und die Feuchtetransportwege beeinflusst, wird dabei von besonderem Interesse sein. In Kombination werden die Ergebnisse helfen, Defizite in aktuellen Wetter- und Klimamodellen aufzuspüren und besser zu verstehen, und dadurch einen wichtigen Beitrag für zukünftige Modellverbesserungen liefern.
Das Projekt "Sonderforschungsbereich (SFB) 607: Wachstum oder Parasitenabwehr? Wettbewerb um Ressourcen in Nutzpflanzen aus Land- und Forstwirtschaft, Teilprojekt B1: Allometrie und Raumbesetzung von krautigen und holzigen Pflanzen. Integration von Pflanzen- und Bestandesebene" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Lehrstuhl für Waldwachstumskunde.Das Projekt B1 'Allometrie und Raumbesetzung von krautigen und holzigen Pflanzen' ist Teil des Sonderforschungsbereiches 607 Wachstum und Parasitenabwehr und befindet sich bereits in der vierten Phase des seit 1998 laufenden Forschungsprojektes. Bisher wurde im Projekt B1 die Allometrie als Resultat der pflanzeninternen Steuerung der Allokation untersucht. Auf Individuenebene wurden Allometrie und ihre Veränderung für verschiedene Baumarten in verschiedenen ontogenetischen Stadien untersucht. Auf Bestandesebene wurden die self-thinning-Linien von Yoda und Reineke für krautige bzw. holzige Pflanzenbestände analysiert. Bisherige Allometriebestimmungen erbrachten für diese Arten zwar ähnliche Größenordnung aber auch charakteristische Unterschiede, die Ausdruck spezifischer Strategien der Raumbesetzung und -ausbeutung widerspiegeln. Die bisher vereinzelten Auswertungen sollen in Phase IV in eine übergreifende Analyse (versch. Arten, ontogenetische Stadien, Konkurrenzsituationen, Störfaktoren) der Allometrie auf Pflanzen- und Bestandesebene münden.
Das Projekt "Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Untersuchung zu Wolkenkondensationskeimen und eisnukleierenden Aerosolpartikeln während der Antarktis-Umrundungsexpedition (ACE)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Leibniz-Institut für Troposphärenforschung e.V..Über dem Antarktischen Ozean findet man das am wenigsten vom Menschen beeinflusste Aerosol der Erde, aber es gibt so gut wie keine Aerosol bezogenen Messdaten aus dieser interessanten Region. Als Partner des Projekts -Study of Preindustrial-like-Aerosol Climate Effects- (SPACE) beteiligen wir uns an der beispiellosen Antarctic Circumnavigation Expedition (ACE), die uns die einmalige Gelegenheit bietet, hochwertige Aerosolmessungen in dieser abgelegenen Region durchzuführen. ACE-SPACE zielt auf eine detaillierte Charakterisierung des vorhandenen Aerosols, welches von anthropogener Verschmutzung unbeeinflusst ist und somit ein Aerosol darstellt, welches mit dem in einer vorindustriellen Atmosphäre vergleichbar ist. Im Rahmen von ACE-SPACE liegt der Schwerpunkt von TROPOS auf Aerosolpartikeln, welche an klimarelevanten Aerosol-Wolken-Wechselwirkungen beteiligt sind. Insbesondere Partikel, die als Wolkenkondensation (CCN) fungieren können, sowie Partikel, die in der Lage sind, zur Vereisung von Wolken zu führen, sind Untersuchungsgegenstand. Während der Antarktischen Umrundung werden wir 3 Monate lang kontinuierliche INP- und CCN-bezogene in-situ-Messungen an Bord des russischen Eisbrechers Akademik Tryoshnikov durchführen, ergänzt durch Aerosol Filterproben. Im Rahmen des ACE-SPACE Projekts wird TROPOS nur für die Durchführung der Messungen und die chemische Charakterisierung der Filterproben finanziert. Deshalb beantragen wir hiermit Mittel für die wissenschaftliche Auswertung, physikalische Analyse und Interpretation (hauptsächlich 1 Doktorand, 67% für drei Jahre) der gesammelten Proben und Daten.Wir werden einen einzigartigen Datensatz zu den physikalischen und chemischen Eigenschaften von Wolkenkondensationskernen (CCN) und Eis nukleierenden Partikeln (INP), sowie deren Quellen, über dem Antarktischen Ozean liefern. Der Datensatz beinhaltet sowohl CCN und INP-Anzahlkonzentrationen entlang der Route der Antarktischen Umrundung (ACE), als auch quantitative Informationen bzgl. des Aktivierungsverhaltens (Hygroskopizität) und Eisnuklerationsverhaltens (z.B. Gefriertemperaturen), der gesammelten CCN und INP. Der erhobene Datensatz ist repräsentativ für ein natürliches, von menschlichen Einflüssen quasi freies, vorindustrielles Aerosol und damit ein sehr wertvoller Beitrag zur Verbesserung der Vorhersage der Klimaveränderungen in der Antarktischen Region im Besonderen, und der globalen Atmosphäre im Allgemeinen. Die gewonnenen Daten werden innerhalb des SPP offen zur Verfügung gestellt aber auch von unseren Partnern im ACE-SPACE-Projekt zur Klimamodellierung und Validierung von Satellitenretrievals genutzt.
Das Projekt "Forschergruppe (FOR) 1525: INUIT - Ice Nuclei research UnIT, Die Bedeutung von Eisnukleationspartikeln und -moden für die Entstehung der Eisphase und Niederschlag: Modellsimulationen basierend auf Labormesssungen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Johannes Gutenberg-Universität Mainz, Institut für Physik der Atmosphäre.In diesem Projekt sollen mit COSMO-SPECS, einem 3D-Wolkenmodell mit einer spektralen Beschreibung der wolken-mikrophysikalischen Prozesse von Hydrometeoren und Aerosolpartikeln, Modellsimulationen durchgeführt werden. Da dasselbe mikrophysikalische Schema in dem Luftpaketmodell enthalten ist, mit dem in INUIT-1 gearbeitet wurde, werden alle neuen Entwicklungen und Verbesserungen der Mikrophysik aus INUIT-1 direkt in COSMO-SPECS übertragen. Zunächst soll ein künstlicher Testfall simuliert werden, eine Wärmeblase über einem flachen Gelände. Sensitivitätsstudien sollen die Entwicklung der Eisphase und die Bildung von Niederschlag aufzeigen, wobei die Verteilung und die Typen der Eisnukleations-Partikel auf realistische Weise variiert werden. Ein anderer Schwerpunkt der Sensitivitätsstudien soll auf der Wirkung von sog. kleinen Triggern liegen, wie etwa Eisnukleations-Partikel oder Gefriermoden (z.B. biologische Partikel oder Kontaktgefrieren), die keine signifikanten Effekte hinsichtlich der Anzahl der entstehenden Eispartikel zeigen, aber doch die Dynamik der Wolke in einer Weise beeinflussen können, dass sich im Endeffekt die Eisbildung erhöht. Weiterhin ist in Zusammenarbeit mit INUIT RP5 eine Fallstudie geplant, die auf INUIT Feldexperimenten basiert. Hier sollen die Beiträge der verschiedenen eisbildenden Prozesse quantifiziert werden und dadurch die atmosphärische Relevanz der Eisbildungs-Regimes, wie sie in INUIT Labor- und Feldexperimenten untersucht werden, abgeschätzt werden. Gleichzeitig werden neue Parametrisierungen für Partikel, die während INUIT-2 untersucht werden, entwickelt und in das mikrophysikalische Schema eingebunden; vorhandene Parametrisierungen sollen weiter modifiziert und verbessert werden. Dieses Projekt schließt selbst auch Laborexperimente zum Kontakt- und Immersionsgefrieren ein, die am Mainzer vertikalen Windkanal und mit einer akustischen Tropfenfalle durchgeführt werden. Hier liegt der Schwerpunkt auf einer Verbesserung des Kontaktgefrierens. Die Experimente sollen am Mainzer vertikalen Windkanal durchgeführt werden, wobei unterkühlte Tropfen in einem Luftstrom, der die potentiellen Kontakteiskeime mit sich führt, frei ausgeschwebt werden. Auf diese Weise kann die Anzahl der Kollisionen zwischen Tropfen und Partikeln berechnet und die Gefriereffizienz, d.h. die Gefrierwahrscheinlichkeit für eine Tropfen-Partikel Kollision bestimmt werden.
Das Projekt "Phylogeny of bothropoid pitvipers (genera Bothrops, Bothrocophias)" wird/wurde ausgeführt durch: Zoologisches Forschungsmuseum Alexander König - Leibniz-Institut für Biodiversität der Tiere.Together with several colleagues from Argentina and Peru (main investigator is Paola Carrasco (Universidad Nacional de Cordoba), but also Gustavo Scrocchi (CONICET and Instituto de Herpetologia, San Miguel de Tucuman), Pablo Venegas (Centro de Ornitologia y Biodiversidad (CORBIDI), Lima), Juan Chaparro (Universidad Nacional de San Antonio Abad del Cusco, Cusco)), we started a collaboration on the phylogeny of bothropoid pitvipers (Bothrops, Bothrocophias), with the aim to solve systematic conflicts within the Bothrops-complex (to agree 50 species) using a phylogenetic analysis combining a large number of morphological and molecular data. Until recently, most phylogenetic analyses of the South American pitviper genus Bothrops used exclusively mitochondrial DNA sequences, whereas few of them have included morphological traits. Moreover, the systematic affinities of some species remain unclear. As part of this project we are currently working on a systematic revision of the Bothrops-complex in Peru (11 + 2 new species). We recently published the first data including the description of a new species (Carrasco et al. 2019) and a manuscript with the description of a second new species is in preparation. Additionally, the morphological variability in the Bothrops neuwiedii species group will be examined, with special respect to the widely distributed B. diporus. Bothrops diporus shall serve as a model species for studying possible influences of environmental factors on the phenotypical diversity of species in the genus Bothrops. The collaborative work started mid of 2015. First results of the collaborative project were presented at the XVI Congreso Argentino de Herpetología in San Miguel de Tucumán (September 2015), the I Congreso Argentino-Paraguayo de Herpetologia in Posadas, Argentina and Encarnación, Paraguay (September 2016), the XVIII Congreso Argentino de Herpetologia in Salta, Argentina (October 2017), the Latinamerican Congress of Herpetology in Quito, Ecuador (July 2017), and will be presented at the 3rd Biology of Pitvipers Symposium in Rodeo, USA (July 2019). Paola Carrasco just submitted a proposal to SYNTHESYS+ to visit the ZFMK in early 2020, in which I will serve as her host. In this visit, besides intensifying our collaboration, Paola wants to study different genera of Viperidae from our collection in the framework of our collaborative project.
Das Projekt "Leistungsoptimierte Lithium-lonen Batterien" wird/wurde ausgeführt durch: Technische Hochschule Aachen, Lehrstuhl und Institut für Stromrichtertechnik und Elektrische Antriebe.Der schnelle Fortschritt der elektronischen Geräte erhöht die Nachfrage nach verbesserten Li-Ionen Batterien. Kommerziell erhältliche Li-Zellen nutzen meist Lithiumkobaltoxid für die positive Elektrode. Doch gerade dieses Material ist ein Hindernis für eine weitere Optimierung, insbesondere für eine Kostensenkung. Vor allem für größere Anwendungen wie Hybrid- oder Elektrofahrzeuge müssen alternative Materialen erforscht werden, die billiger, sicherer und umweltverträglicher sind. Daher wird im ISEA derzeit ein neues Forschungsprojekt ins Leben gerufen und die dafür benötigte Infrastruktur geschaffen. Die Forschung wird sich auf die Untersuchung geeigneter Übergangsmetalloxide und Polyanionen konzentrieren, die besonders gut zur Einlagerung von Li-Ionen geeignet sind. Es werden neue Herstellungsverfahren unter Verwendung wässriger Precurser-Substanzen untersucht, die Verbindungen mit überlegenen Eigenschaften erzeugen und außerdem leicht an eine Massenproduktion angepasst werden können. Ziel der Arbeiten ist, preisgünstiges Elektrodenmaterial zu entwickeln, das eine spezifische Energie von über 200 Wh/kg und eine Leistungsdichte von 400 W/kg aufweist. Außerdem werden Arbeiten im Bereich der physikalisch-chemischen Charakterisierung der neuen Materialien stattfinden sowie elektrochemische Analysen der gesamten Zellen- und Batteriesysteme durchgeführt. Das elektrodynamische Verhalten der neuen Zellen wird u. a. mit Hilfe der elektrochemischen Impedanzspektroskopie analysiert, um präzise und zuverlässige Algorithmen für ein späteres Batteriemonitoring im realen Betrieb zu finden.
Das Projekt "Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Biogene Opalisotope - neue Proxies zur Untersuchung vergangener Nährstoffkreisläufe und hydrographischer Strukturen im Südpazifik in Beziehung zu der Entwicklung des Klimas und der antarktischen Kryosphäre" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung - Fachbereich Geowissenschaften.Der Verlauf der atmosphärischen CO2-Konzentrationen während der vergangenen Klimazyklen ist durch ein Sägezahnmuster mit Maxima in Warmzeiten und Minima in Kaltzeiten geprägt. Es besteht derzeit Konsens, dass insbesondere der Süd Ozean (SO) eine Schlüsselfunktion bei der Steuerung der CO2-Entwicklung einnimmt. Allerdings sind die dabei wirksamen Mechanismen, die in Zusammenhang mit Änderungen der Windmuster, Ozeanzirkulation, Stratifizierung der Wassersäule, Meereisausdehnung und biologischer Produktion stehen, noch nicht ausreichend bekannt. Daten zur Wirkung dieser Prozesse im Wechsel von Warm- und Kaltzeiten beziehen sich bislang fast ausschließlich auf den atlantischen SO. Um ein umfassendes Bild der Klimasteuerung durch den SO zu erhalten muss geklärt werden, wie weit sich die aus dem atlantischen SO bekannten Prozesswirkungen auf den pazifischen SO übertragen lassen. Dies ist deshalb von Bedeutung, da der pazifische SO den größten Teil des SO einnimmt. Darüber hinaus stellt er das hauptsächliche Abflussgebiet des Westantarktischen Eisschildes (WAIS) in den SO dar. Im Rahmen des Projektes sollen mit einer neu entwickelten Proxy-Methode Paläoumwelt-Zeitreihen an ausgewählten Sedimentkernen von latitudinalen Schnitten über den pazifischen SO hinweg gewonnen werden. Dabei handelt es sich um kombinierte Sauerstoff- und Siliziumisotopenmessungen an gereinigten Diatomeen und Radiolarien. Es sollen erstmalig die physikalischen Eigenschaften und Nährstoffbedingungen in verschiedenen Stockwerken des Oberflächenwassers aus verschiedenen Ablagerungsräumen und während unterschiedlicher Klimabedingungen beschrieben werden. Dies umfasst Bedingungen von kälter als heute (z.B. Letztes Glaziales Maximum) bis zu wärmer als heute (z.B. Marines Isotopen Stadium, MIS 5.5). Die Untersuchungen geben Hinweise zur (1) Sensitivität des antarktischen Ökosystems auf den Eintrag von Mikronährstoffen (Eisendüngung), (2) Oberflächenwasserstratifizierung und (3) 'Silicic-Acid leakage'-Hypothese, und tragen damit zur Überprüfung verschiedener Hypothesen zur Klimawirksamkeit von SO-Prozessen bei. Die neuen Proxies bilden überdies Oberflächen-Salzgehaltsanomalien ab, die Hinweise zur Stabilität des WAIS unter verschiedenen Klimabedingungen geben. Darüber hinaus kann die Hypothese getestet werden, nach der der WAIS während MIS 5.5 vollständig abgebaut war. Die Projektergebnisse sollen mit Simulationen mit einem kombinierten biogeochemischen (Si-Isotope beinhaltenden) Atmosphäre-Ozean-Zirkulations-Modell aus einem laufenden SPP1158-DFG Projekt an der CAU Kiel (PI B. Schneider) verglichen werden. Damit sollen die jeweiligen Beiträge der Ozeanzirkulation und der biologischen Produktion zum CO2-Austausch zwischen Ozean und Atmosphäre getrennt und statistisch analysiert werden. Informationen zu Staubeintrag, biogenen Flussraten, physikalischen Ozeanparametern und zur Erstellung von Altersmodellen stehen durch Zusammenarbeit mit anderen (inter)nationalen Projekten zur Verfügung.
Das Projekt "Sind permeable Sedimente in Küstengebieten Hotspots für die Bildung von nicht-flüchtigem gelöstem organischem Schwefel (DOS) im Meer?" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Carl von Ossietzky Universität Oldenburg, Institut für Chemie und Biologie des Meeres.Organische Schwefelkomponenten sind abundant in marinen Sedimenten. Diese Verbindungen werden v.a. durch die abiotische Reaktion anorganischer Schwefelverbindungen mit Biomolekülen gebildet. Wegen seiner Bedeutung für globale Stoffkreisläufe, für die Nutzung von Erdöllagerstätten und für die Erhaltung des Paleorecords, gibt es eine Vielzahl von Studien zum Thema. Sehr wenig Aufmerksamkeit wurde allerdings wasserlöslichen Komponenten geschenkt, die beim Prozess der Sulfurisierung entstehen und als gelöster organischer Schwefel (DOS) in die Meere gelangen können. Anhand der wenigen verfügbaren Informationen ist Schwefel vermutlich das dritthäufigste Heteroelement im gelösten organischen Material (DOM) der Meere, nach Sauerstoff und Stickstoff. Einige Schwefelverbindungen, insbesondere Thiole, sind für die Verbreitung von Schadstoffen aber auch essenzieller Spurenstoffe verantwortlich. Wichtige klimarelevante Schwefelverbindungen entstehen aus DOS. Daher spielt der marine DOS-Kreislauf eine Rolle für die Meere und Atmosphäre. Trotz seiner Bedeutung sind die Quellen marinen DOS, seine Umsetzung im Meer und Funktion für Meeresbewohner unbestimmt. Auch ist die molekulare Zusammensetzung von DOS unbekannt. In diesem Projekt werden wir Pionierarbeit in einem neuen Forschungsfeld der marinen Biogeochemie leisten. Wir wollen grundlegende Fragen bzgl. der Bildung und Verteilung von nicht-flüchtigem DOS im Meer beantworten. Unsere wichtigsten Hypothesen:* Bildung von DOS:(1) Sulfatreduzierende Sedimente sind wesentlich für die Bildung von DOS.(2) Reduzierte Schwefelverbindungen (v.a. Thiole) dominieren in Zonen der DOS-Entstehung.(3) DOS wird v.a. über abiotische Sulfurisierung in der Frühdiagenese gebildet.* Transport und Schicksal von DOS im Ozean:(4) DOS wird von sulfat-reduzierenden intertidalen Grundwässern an das Meer abgeben.(5) In der Wassersäule oxidiert DOS schnell (z.B. zu Sulfonsäuren).(6) DOS aus intertidalen Sedimenten ist in oxidierter Form auf den Kontintentalschelfen stabil.Neben dem wissenschaftlichen Ziel der Beantwortung dieser Hypothesen, wird das Projekt drei Promovierenden (eine in Deutschland und zwei in Brasilien) die außergewöhnliche Gelegenheit bieten, ihre Doktorarbeiten im Rahmen eines internationalen Projektes durchzuführen. Wir werden die Stärken beider Partner in Feld- und Laborstudien und Elementar-, Isotopen- und molekularen Analysen kombinieren. Wir werden unterschiedliche Regionen im deutschen Wattenmeer und in brasilianischen Mangroven (Rio de Janeiro and Amazonien) beproben, sowie die benachbarten Schelfmeere. Sulfurisierungsexperimente werden die Feldstudien ergänzen. Zur quantitativen Bestimmung und molekularen Charakterisierung von DOS werden wir neue Ansätze anwenden, die von den beiden Arbeitsgruppen entwickelt wurden. Dabei kommen u.a. ultrahochauflösende Massenspektrometrie (FT-ICR-MS), und andere massenspektrometrischen und chromatographischen Methoden zu Anwendung.
Origin | Count |
---|---|
Bund | 241 |
Type | Count |
---|---|
Förderprogramm | 241 |
License | Count |
---|---|
offen | 241 |
Language | Count |
---|---|
Deutsch | 83 |
Englisch | 203 |
Resource type | Count |
---|---|
Keine | 166 |
Webseite | 75 |
Topic | Count |
---|---|
Boden | 190 |
Lebewesen & Lebensräume | 212 |
Luft | 148 |
Mensch & Umwelt | 241 |
Wasser | 158 |
Weitere | 241 |