Die TRANSGAS Flüssiggas Transport und Logistik GmbH & Co. KG betreibt am Standort Brückenstraße / Am Bahnhof in Züttlingen, Gemarkung Möckmühl, Flurstück-Nr. 47 eine Eisenbahnkesselwagenumfüllstelle (EKW-Umfüllstelle) zur Befüllung von unternehmenseigenen Straßentankwagen (TKW) in Eisenbahnkesselwagen (EKW) mit Flüssiggas (Propan) innerhalb eines Tageszeitraums (EKW-Umfüllstelle). Bisher werden am Standort in Züttlingen lediglich unternehmenseigene Tankwagen aus dem Unternehmen der TRANSGAS Flüssiggas Transport und Logistik GmbH & Co. KG befüllt. Da die Umfüllvorgänge derzeit innerhalb eines Tageszeitraums stattfinden und be-triebsbedingt bis zu 50 t an Flüssiggas (Propan) bereitgestellt werden, handelt es sich bei der EKW-Umfüllstelle bislang um keine immissionsschutzrechtlich genehmigungsbedürftige Anlage nach § 4 BImSchG i. V. m. § 1 der 4. BImSchV und dem Anhang 1 zur 4. BIm-SchV. Das Unternehmen beabsichtigt nun auch unternehmensfremde Tankwagen zu befüllen und die dafür erforderlichen organisatorischen Abläufe zu verbessern. Außerdem soll die bestehende EKW-Umfüllstelle im Wesentlichen um eine zweite EKW-Umfüllstation erweitert werden. Es ist nicht mehr gewährleistet, dass die EKW innerhalb von 24 Std. bzw. bis zum darauffolgenden Werktag umgefüllt werden können. Mit der Erweiterung der EKW-Umfüllstelle um eine zweite EKW-Umfüllstation kann zukünftig davon ausgegangen werden, dass sich zeitgleich bis zu zwei Eisenbahnkesselwagen mit einer Lagermenge von jeweils 50 t Flüssiggas (Propan), insgesamt 100 t Flüssiggas (Propan), am Standort befinden. Eine gleichzeitige Entladung der EKW findet nicht statt. Für das Vorhaben wurde daher eine immissionsschutzrechtliche Genehmigung nach §§ 4 und 10 BImSchG i. V. m. §§ 1, 2 der 4. BImSchV und der Nr. 9.1.1.1 des Anhangs 1 zur 4. BImSchV beantragt. Für das Vorhaben der TRANSGAS Flüssiggas Transport und Logistik GmbH & Co. KG am Standort in Züttlingen war darüber hinaus eine allgemeine Vorprüfung des Einzelfalls nach § 7 Abs. 1 UVPG i. V. m. Nr. 9.1.1.2 der Anlage 1 Liste „UVP-pflichtige Vorhaben“ zum Gesetz über die Umweltverträglichkeitsprüfung (UVPG) durchzuführen.
Nachweis aller im Rauchgas/Luftgemisch von Fluessiggas- und Leichtoelbrennern auftretenden Stoffe (Pb, F, CrIII, CrVI, Zn, Se, Ni, As, Hg, Cd, Mo, Sn, Cu, SO2, Hf, NOx, polycyklische Aromate) bei Variation von Luftmenge, Gas- bzw. Oelmenge und Brennereinstellung. Ermittlung der Ablagerungen aus diesem Rauchgas/Luftgemisch auf Koernerschuettungen in Satz- und Durchlauftrocknern.
Wärmepumpen sind eine der zentralen Lösungen für die klimaneutrale Gebäudeheizung und Klimatisierung der Zukunft. Die Absatzzahlen im Heizungsbereich stiegen in den letzten Jahren in Deutschland stark an, auf 154.000 installierte Geräte im Jahr 2021. Im Neubau wurde jede zweite Heizung mit der Wärmepumpentechnologie umgesetzt. Im Jahr 2021 waren 1,2 Mio. Wärmepumpen in Deutschland im Betrieb. Die überwiegende Zahl dieser Wärmepumpen (70%) nutzen als Wärmequelle die Luft. Steigt ihre Zahl weiter so stark an, wird eine Herausforderung immer zentraler: Die Geräuschentwicklung der Wärmepumpen auf ein Minimum bringen. Diese Herausforderung geht der Projektverbund für Luft/Wasser-Wärmepumpen mit Wärmepumpenherstellern, Komponentenlieferanten und Forschungsinstituten an. Der Projektverbund QUEEN-HP verbindet Methodenentwicklung zur akustischen Analyse und Bewertung von Wärmepumpen und deren Komponenten mit Lösungsentwicklungen in Technologieprojekten mit neuen Komponenten in Wärmepumpen, neuen Formen der Schalldämpfung und innovativen Gerätemodifikationen. Das Technologieprojekt 1A 'Mikrokanal-Verdampfer mit Geometrischen Adaptionen' befasst sich mit Geometrieänderungen an Microchannel Wärmeübertragern für deren Einsatz als Verdampfer mit Kältemittel R290 (Propan) für Luft-Wasser-Wärmepumpen im Heizleistungsbereich von 10kW. Die geometrischen Änderungen am Verteiler und den Lamellen zielen auf eine bessere Verteilung des Kältemittels und langsameres Vereisen des Verdampfers ab. Die Performance mehrerer iterativ optimierter Microchannel-Verdampfer wird experimentell bestimmt. Bei der Vermessung wird eine kombinierte Methode aus u.a. Infrarotaufnahmen, Makrodetailaufnahmen und Messungen des Dampfgehalts eingesetzt, um gezielt geometrische Anpassungen am Verdampfer vornehmen zu können.
Wärmepumpen sind eine der zentralen Lösungen für die klimaneutrale Gebäudeheizung und Klimatisierung der Zukunft. Die Absatzzahlen im Heizungsbereich stiegen in den letzten Jahren in Deutschland stark an, auf 154.000 installierte Geräte im Jahr 2021. Im Neubau wurde jede zweite Heizung mit der Wärmepumpentechnologie umgesetzt. Im Jahr 2021 waren 1,2 Mio. Wärmepumpen in Deutschland im Betrieb. Die überwiegende Zahl dieser Wärmepumpen (70%) nutzen als Wärmequelle die Luft. Steigt ihre Zahl weiter so stark an, wird eine Herausforderung immer zentraler: Die Geräuschentwicklung der Wärmepumpen auf ein Minimum bringen. Diese Herausforderung geht der Projektverbund für Luft/Wasser-Wärmepumpen mit Wärmepumpenherstellern, Komponentenlieferanten und Forschungsinstituten an. Der Projektverbund QUEEN-HP verbindet Methodenentwicklung zur akustischen Analyse und Bewertung von Wärmepumpen und deren Komponenten mit Lösungsentwicklungen in Technologieprojekten mit neuen Komponenten in Wärmepumpen, neuen Formen der Schalldämpfung und innovativen Gerätemodifikationen. Das Technologieprojekt 1A 'Mikrokanal-Verdampfer mit Geometrischen Adaptionen' befasst sich mit Geometrieänderungen an Microchannel Wärmeübertragern für deren Einsatz als Verdampfer mit Kältemittel R290 (Propan) für Luft-Wasser-Wärmepumpen im Heizleistungsbereich von 10kW. Die geometrischen Änderungen am Verteiler und den Lamellen zielen auf eine bessere Verteilung des Kältemittels und langsameres Vereisen des Verdampfers ab. Die Performance mehrerer iterativ optimierter Microchannel-Verdampfer wird experimentell bestimmt. Bei der Vermessung wird eine kombinierte Methode aus u.a. Infrarotaufnahmen, Makrodetailaufnahmen und Messungen des Dampfgehalts eingesetzt, um gezielt geometrische Anpassungen am Verdampfer vornehmen zu können.
Wärmepumpen sind eine der zentralen Lösungen für die klimaneutrale Gebäudeheizung und Klimatisierung der Zukunft. Die Absatzzahlen im Heizungsbereich stiegen in den letzten Jahren in Deutschland stark an, auf 154.000 installierte Geräte im Jahr 2021. Im Neubau wurde jede zweite Heizung mit der Wärmepumpentechnologie umgesetzt. Im Jahr 2021 waren 1,2 Mio. Wärmepumpen in Deutschland im Betrieb. Die überwiegende Zahl dieser Wärmepumpen (70%) nutzen als Wärmequelle die Luft. Steigt ihre Zahl weiter so stark an, wird eine Herausforderung immer zentraler: Die Geräuschentwicklung der Wärmepumpen auf ein Minimum bringen. Diese Herausforderung geht der Projektverbund für Luft/Wasser-Wärmepumpen mit Wärmepumpenherstellern, Komponentenlieferanten und Forschungsinstituten an. Der Projektverbund QUEEN-HP verbindet Methodenentwicklung zur akustischen Analyse und Bewertung von Wärmepumpen und deren Komponenten mit Lösungsentwicklungen in Technologieprojekten mit neuen Komponenten in Wärmepumpen, neuen Formen der Schalldämpfung und innovativen Gerätemodifikationen. Das Technologieprojekt 1A 'Mikrokanal-Verdampfer mit Geometrischen Adaptionen' befasst sich mit Geometrieänderungen an Microchannel Wärmeübertragern für deren Einsatz als Verdampfer mit Kältemittel R290 (Propan) für Luft-Wasser-Wärmepumpen im Heizleistungsbereich von 10kW. Die geometrischen Änderungen am Verteiler und den Lamellen zielen auf eine bessere Verteilung des Kältemittels und langsameres Vereisen des Verdampfers ab. Die Performance mehrerer iterativ optimierter Microchannel-Verdampfer wird experimentell bestimmt. Bei der Vermessung wird eine kombinierte Methode aus u.a. Infrarotaufnahmen, Makrodetailaufnahmen und Messungen des Dampfgehalts eingesetzt, um gezielt geometrische Anpassungen am Verdampfer vornehmen zu können.
Abfaelle aus polyolefinischen Materialien fallen einerseits in grossen Mengen in Form von Verpackungsmaterial oder Ein-Weg-Gebrauchsgegenstaenden beim Endverbraucher an. Andererseits werden auch bei der Herstellung von Polyolefinen, je nach Herstellungsverfahren und -bedingungen niedermolekulare und wachsartige Nebenprodukte erhalten, die nur zum geringen Teil Verwendung finden. Diese Abfaelle - sowohl die Nebenprodukte aus der Produktion als auch die Abfaelle aus dem Endverbrauch - werden zum groessten Teil verworfen und finden nur zum geringen Teil Anwendung, z.B. bei der Dampferzeugung in Kraftwerken oder Muellverbrennungsanlagen. Mit dem Forschungsprojekt soll daher geprueft werden, wie weit aus diesen Polyolefinabfaellen die Rohstoffe - Aethylen oder Propylen - oder andere Komponenten der chemischen Grundstoffproduktion - z.B. Acetylen - gewonnen werden koennen.Bei den entwickelten Verfahren wurden, im Gegensatz zu den mechanisch-thermischen Aufbereitungsverfahren, die Polyolefine einer partiellen Oxidation unterworfen. Bei dem Forschungsprojekt wurde zunaechst von ataktischem Polypropylen ausgegangen. Dies wurde aufgeschmolzen und in einem Injektionsbrenner zerstaeubt und anschliessend in einer Brennkammer mit Sauerstoff partiell oxidiert. Der Oxidationsvorgang wird dabei durch die Eigenschaften des Brennstoffnebels - Troepfchengroesse, Relativgeschwindigkeit Troepfchen/Gas- und durch die Menge des im Unterschuss eingesetzten Sauerstoffs beeinflusst. Hierdurch laesst sich die Produktverteilung bei der partiellen Oxidation, insbesondere die Konzentration an Olefinen und Acetylen, in relativ weiten Grenzen steuern.
Aktuell wird die Wärmeversorgung deutscher Haushalte maßgeblich durch Öl- und Gasheizungen bewerkstelligt, was eine starke Abhängigkeit von fossilen Ressourcen bedeutet. Durch ihre Effizienz verhalten sich elektrische Wärmepumpen (WP) deutlich klimafreundlicher und können, wenn mit Strom aus regenerativen Energiequellen betrieben, maßgeblich zur Dekarbonisierung der Wärmeversorgung beitragen. Zusätzlich wird die Nutzung umweltfreundlicher Kältemittel wie z.B. Propan (R290) oder Butan (R600) zunehmend gesetzlich gefördert. Durch die hohe Entzündlichkeit dieser Kältemittel rückt eine dauerhafte, technische Dichtheit ins Zentrum aktueller WP-Entwicklungen. Im Rahmen eines Fraunhofer Plattformprojekts sollen in WP-Resilienz in enger Kooperation mit der Industrie (Hersteller für Haus-WP und Klimagerätehersteller für Schienenfahrzeuge) Methoden zur künstlichen/ beschleunigten Alterung, zielgerichteten Fehlstellenanalyse und Lebensdauerprognose von Propan-Kältekreisen entwickelt werden. Zudem soll eine vereinheitliche Datenbasis für die Risikobewertung von Kältekreisen im Hinblick auf Leckagen und damit verbunden ausströmendes Kältemittel geschaffen werden. Neben Leckagen sollen auch Risiken basierend auf Zündquellen und Unfälle in die Datenbank aufgenommen werden. Durch die zentralen Ergebnisse des Vorhabens soll der Industrie eine Methodik zur Verfügung gestellt werden, um das komplexe Zusammenspiel von Schwingungsanregungen durch den Kompressor, Eigenspannungen nach dem Herstellungsprozess sowie Temperatur- und Druckschwankungen und variierende Umwelteinflüsse (z.B. korrosive Atmosphären) wissenschaftlich und anwendungsnah zu bewerten, wodurch erstmals eine belastbare Lebensdauerabschätzung von hermetischen Kältekreisen möglich wird. Zusätzlich sollen detaillierte Untersuchungen von leckbehafteten Bauteilen eine übersichtliche Datengrundlage zur Durchführung von Risikobewertungen für Kältekreise ermöglichen, die zur Einhaltung gesetzlicher Vorgaben ist.
Aktuell wird die Wärmeversorgung deutscher Haushalte maßgeblich durch Öl- und Gasheizungen bewerkstelligt, was eine starke Abhängigkeit von fossilen Ressourcen bedeutet. Durch ihre Effizienz verhalten sich elektrische Wärmepumpen (WP) deutlich klimafreundlicher und können, wenn mit Strom aus regenerativen Energiequellen betrieben, maßgeblich zur Dekarbonisierung der Wärmeversorgung beitragen. Zusätzlich wird die Nutzung umweltfreundlicher Kältemittel wie z.B. Propan (R290) oder Butan (R600) zunehmend gesetzlich gefördert. Durch die hohe Entzündlichkeit dieser Kältemittel rückt eine dauerhafte, technische Dichtheit ins Zentrum aktueller WP-Entwicklungen. Im Rahmen eines Fraunhofer Plattformprojekts sollen in WP-Resilienz in enger Kooperation mit der Industrie (Hersteller für Haus-WP und Klimagerätehersteller für Schienenfahrzeuge) Methoden zur künstlichen/ beschleunigten Alterung, zielgerichteten Fehlstellenanalyse und Lebensdauerprognose von Propan-Kältekreisen entwickelt werden. Zudem soll eine vereinheitliche Datenbasis für die Risikobewertung von Kältekreisen im Hinblick auf Leckagen und damit verbunden ausströmendes Kältemittel geschaffen werden. Neben Leckagen sollen auch Risiken basierend auf Zündquellen und Unfälle in die Datenbank aufgenommen werden. Durch die zentralen Ergebnisse des Vorhabens soll der Industrie eine Methodik zur Verfügung gestellt werden, um das komplexe Zusammenspiel von Schwingungsanregungen durch den Kompressor, Eigenspannungen nach dem Herstellungsprozess sowie Temperatur- und Druckschwankungen und variierende Umwelteinflüsse (z.B. korrosive Atmosphären) wissenschaftlich und anwendungsnah zu bewerten, wodurch erstmals eine belastbare Lebensdauerabschätzung von hermetischen Kältekreisen möglich wird. Zusätzlich sollen detaillierte Untersuchungen von leckbehafteten Bauteilen eine übersichtliche Datengrundlage zur Durchführung von Risikobewertungen für Kältekreise ermöglichen, die zur Einhaltung gesetzlicher Vorgaben ist.
Origin | Count |
---|---|
Bund | 413 |
Land | 63 |
Wissenschaft | 4 |
Type | Count |
---|---|
Chemische Verbindung | 170 |
Ereignis | 1 |
Förderprogramm | 156 |
Text | 80 |
Umweltprüfung | 60 |
unbekannt | 13 |
License | Count |
---|---|
geschlossen | 254 |
offen | 167 |
unbekannt | 59 |
Language | Count |
---|---|
Deutsch | 464 |
Englisch | 35 |
Resource type | Count |
---|---|
Archiv | 58 |
Datei | 60 |
Dokument | 123 |
Keine | 315 |
Webseite | 45 |
Topic | Count |
---|---|
Boden | 219 |
Lebewesen und Lebensräume | 189 |
Luft | 186 |
Mensch und Umwelt | 480 |
Wasser | 168 |
Weitere | 266 |