Das Projekt "Development of full size electric bus with second generation fuel cells stacks" wird vom Umweltbundesamt gefördert und von Neoplan Bus GmbH durchgeführt. General Information/Objectives: Increasing demand for zero emission transport in densely populated areas is usually provided for by electric systems, which are either limited in range (battery) or require heavy infrastructures (trolleys, trams). The objective of the project is the realisation of a pre-commercial fuel cell powered electric bus with high energy efficiency, which will be environmentally compatible (ZEV vehicle), without range limitation and autonomous. Technical Approach A 35-50 kW PEM hydrogen/air fuel cell will be installed in hybrid combination with an energy buffer, allowing energy recovery when slowing or braking. The energy buffer will consist of an advanced Magneto Dynamic Storage (MDS) system and the energy flows between the fuel cell, the MDS and the electric motor will be managed by a special electronic component (Power Sources Integrator) in order to minimise the global energy consumption. The fuel cell and all its ancilliaries will be packaged in a self contained Power Module that will replace the original ICE in the engine bay of a Neoplan N4114 city bus. A significant task will be the industrialisation of the fuel cell technology, in order to make available a really low-cost, fuel cell capable of being mass produced. Expected Achievements and Exploitation The claimed innovative aspects of this project include: Development of the fuel cell technology, intended as a step forward from existing technology (FEVER Project), developing a stack with a unit power in the range of 10-17 kW, and demonstrating possibilities for cost reduction as low as 300 ECU/kW. Re-design of the fuel cell system (power module), i.e. all auxiliary components and subsystems needed for operating the fuel cells, in order to improve efficiency and significantly reduce weight and volume (2 to 3 times from present state). Particular attention will be paid to the air compression system, which is responsible for over 90 per cent of auxiliary energy consumption. Development of a high pressure, low weight storage system for gaseous hydrogen storage. The particular design and materials selection will enable energy densities similar to those of liquid hydrogen to be reached. The results of these activities will be integrated into an advanced traction system based on flywheels as the energy buffer. It is foreseen that the complete propulsion system will not occupy any useful (payload) space on board; therefore the bus can be considered a real prototype rather than an experimental vehicle and will open the way to series production of fuel cell buses. Prime Contractor: Ansaldo Richerche Srl, Divisione Ricerche; Genova; Italy.
Das Projekt "Teilvorhaben: Steam Reformer for Liquid Fuels" wird vom Umweltbundesamt gefördert und von WS Reformer GmbH durchgeführt. Ziel des Teilprojektes ist die Entwicklung eines Gasprozessormoduls auf Dampfreformierungsbasis in der Klasse 5kWel bzw. 5 Nm3 /h Wasserstoffleistung für den Einsatz in einer Fahrzeug-APU mit den folgenden Eigenschaften: Gewicht ca. 60kg, Volumen ca. 70l, Lebensdauer 5000h, Kraftstoff: Benzin, Diesel, Start-Zeit max. 30min, Kraftstoff- und Luftversorgung integriert, Gasqualität tauglich für HT-PEM, Wirkungsgrad ca. 80Prozent. Als Basis dient der FLOX reformer compact C4. WP 0 umfasst die Aufwendungen für begleitende Umfänge im Projektmanagement und aktive Mitarbeit im executive und general board. InWP 1 unterstützt WS Reformer den WP-Leader FHG-ISE bei der Formulierung des Lastenheftes für das Funktionsmuster (WP1) und den Demonstrator (WP6). Dazu wird ein Prozess-Simulationstool erstellt und die technischen Randbedingungen des Reformers bestimmt. Dann wird ein erster Prototyp, basierend auf Methanol gefertigt und geliefert. Unter Berücksichtigung der besonderen Anforderungen des FLOX reformer compact wird der Projektpartner Fraunhofer ISE in WP5 ein screening potentiell geeigneter Katalysatorsysteme durchführen und Vorschläge für ein Entschwefelungskonzept machen und testen. Basierend auf diesen Daten wird WS Reformer Reaktoren und die thermische Integration auslegen Prototypen für Diesel und Benzin liefern.
Das Projekt "Teilprojekt C" wird vom Umweltbundesamt gefördert und von Henkel AG & Co. KGaA durchgeführt. Die überwiegenden Produkte unseres täglichen Lebens werden mit Hilfe von Klebstoffen hergestellt, die traditionell 'ein Leben lang' halten sollten. Ökologische und ökonomische Aspekte erfordern aber zwingend neue Klebstofffunktionen für eine nachhaltige Kreislaufwirtschaft. Ziel des Vorhabens ist die Etablierung der neuen Plattformtechnologie des elektrischen Entklebens auf 'Knopfdruck' (Debond-on-Command). Die Biohybrid-Klebstoffe ermöglichen den Technologiesprung durch Schaltung der Adhäsion an der Klebegrenzfläche und zeigen die enormen Potentiale der industriellen Bioökonomie. Die Konvergenz von Biotechnologie, Polymerchemie, Ingenieurs- und Informationswissenschaften führt zu neuartigen Produkten, wie 'Smart Tags' die per Smartphone abgelöst werden können und Verfahren, die erweiterte Reparatur- und Rezyklierungsstrategien ermöglichen. Ausgehend von Aminosäuren, als biologischer Feedstock, werden über einen wasserbasierten Prozess Klebstoffe zugänglich, die schaltbar zu einer starken Reduktion der Klebkraft befähigt sind. Die neu zugängliche Funktion wird an der elektrischen Abschaltung der Klebkraft einer Metall/Glas -Verklebung an einem Prototyp im Mobiltelefon-Format dargelegt. Die Potentiale der Verwertung im Bereich 'Smart Packaging' werden anhand integrierter 'bonding/debonding'-Bauelemente, die auf nicht-leitfähige Substrate gedruckt werden, erhoben. Die Kombination mit Energieträgern, Mikrochips und sensorischen Elementen könnte integriertes Schalten der Adhäsion durch Fingerabdruck oder ferngesteuert über WLAN erlauben. Die Einkopplung von Smart-Device-Elektronik in Materialien über elektrisch-schaltbare Klebstoffe, eröffnet neue Zukunftsfelder und die industrielle Bioökonomie von morgen lässt die Klebstoffherstellung über weiße Biotechnologieprozesse möglich erscheinen.
Das Projekt "Teilvorhaben: Entwicklung und Optimierung von Hydrazin-Festphase und Analyseverfahren zur Bestimmung von ZEN in pflanzlichen Ölen" wird vom Umweltbundesamt gefördert und von Bundesanstalt für Materialforschung und -prüfung (BAM), Abteilung 1 Analytische Chemie; Referenzmaterialien, Fachbereich 1.7 - Lebensmittelanalytik durchgeführt. Ziel des Verbundprojektes ist die Entwicklung, Optimierung und Validierung eines normungsfähigen HPLC-Fluoreszenz (FLD) Verfahrens zur quantitativen Analyse von Zearalenon (ZEN) in pflanzlichen Ölen. Ziel des Teilvorhabens (BAM) ist die Entwicklung und Optimierung des HPLC-FLD basierten Analyseverfahren. Kernziel der wiss.-techn. Verfahrensentwicklung ist die Etablierung einer robusten, anwenderfreundlichen Festphasenkartusche (SPE) zur Extraktion und zum clean-up. Als Festphase soll ein für ZEN selektives Hydrazin-funktionalisiertes Polymerharz zum Einsatz kommen, das für diesen Zweck konzipiert, hergestellt und optimiert wird. Arbeitsplanung: Zur Erreichung der Ziele des Teilvorhabens A sind drei Arbeitspakete vorgesehen, die sich mit der (AP 1) Entwicklung eines Hydrazin-funktionalisierten Polymerharzes, (AP 2) mit der entsprechenden SPE-Kartuschen-Entwicklung sowie (AP 3) mit der chem.-analyt. Verfahrensentwicklung beschäftigten. AP 1 bildet die Grundlage der weiteren Arbeiten und wird zusammen mit einem Spezialisten für Festphasen-Entwicklungen (Unterauftrag) durchgeführt. Mit den in AP 2 herzustellenden SPE-Prototypen (500 Stück) werden sowohl die Verfahrensentwicklungen (AP 3) als auch die Validierungsversuche (AP 4 und 5) durchgeführt. Das für Teilvorhaben A abschließende AP 3 beinhaltet chem.-analyt. Verfahrensoptimierungen hinsichtlich Extraktion, clean-up und instrumenteller Analyse. Ergebnisverwertung: Die angestrebte Ergebnisverwertung des Verbundprojektes ist es, das validierte Analyseverfahren als Normentwurf beim DIN mit Ziel dem einzureichen, dieses auch in die europäische Normung zu überführen. In Teilvorhaben A wird eine wissenschaftliche Verwertung sowie ein wiss./wirt. Anschluss angestrebt. Wissenschaftliche Verwertung insbesondere durch Publikation der Ergebnisse in Fachjournalen, den wiss./wirt. Anschluss durch Kooperation mit KMU zur Überführung der SPE-Prototypen zu marktfähigen Produkten.
Das Projekt "Bionik (2): Adhäsion und Ablösung von Ölen auf Kutikulaoberflächen spezialisierter Insekten - Potenziale für oleodynamische technische Innovationen" wird vom Umweltbundesamt gefördert und von Deutsche Institute für Textil- und Faserforschung Denkendorf durchgeführt. Das Vorbild für unsere bionische Entwicklung sind Wildbienen, die nicht etwa Nektar, sondern Öl aus Blüten sammeln. Diese Bienen sind an ihren Beinen mit hoch spezialisieren 'Werkzeugen' ausgestattet, mit denen sie das Öl aus den Blütendrüsen schaben, es dann in dichte Haarpolster auf ihren Hinterbienen umladen und so ins Nest eintragen. Dort wird das Öl mit Kämmen wieder entladen und mit Pollen vermischt an die Larven verfüttert oder als Imprägnierung auf die Wände der Brutzellen verstrichen. Aus Sicht der technischen Anwendung sind diese Fähigkeiten zum verklebungsfreien Be- und Entladen des Öles und der verlustfreie Transport von höchstem Interesse. Wie die Analysen zeigten, sind die Haarpolster wasserabweisend und halten Speiseöle und Motorenöle beim Zentrifugieren auch noch bei hohen Umdrehungszahlen. Selbst dann, wenn wir die Oberfläche der Haare mit einem Überzug so verändern, dass sie Öl abweisend sind, hält das Haarpolster die Öle noch fest. Das liegt nach bisherigen Erkenntnissen an der Geometrie der Haarpolster auf den Hinterbeinen. Diese Transportstruktur ist ein Leichtbau aus verzweigten Haaren, die ein regelmäßiges 3D-Gitter bilden, in dem die Öle fest gehalten, aber von der Biene auch leicht entladen werden können. Bei technischen Oberflächen sind Strukturen mit der kombinierten Fähigkeit Öle aufzunehmen, zu halten und wieder vollständig abzulösen bisher nicht bekannt. Vielmehr verändern Ölfilme, die sich mehr oder weniger ungewollt auf Oberflächen ablagern, dramatisch deren Eigenschaften. Als Grundlage für die bionische Entwicklung wurden zunächst bei der Biene die entscheidenden Strukturparameter identifiziert und anschließend in eine technische Spezifikation übertragen. Die Untersuchung von Strukturanalogien ergab, dass für die Entwicklung innovative, dreidimensionale Abstandstextilien mit verzweigten Filamenten ein sehr großes Umsetzungspotential aufweisen. Mit 3D-Gestricken und integrierten Spezialgarnen wurde eine textiler Prototyp erzeugt, dessen Geometrie und Funktionsprinzip dem natürlichen Vorbild nahe kommt. Durch die Behandlung der Strukturen mit hydrophoben Faserbeschichtungen konnte deren Ölaufnahmekapazität und Regenerationsfähigkeit nochmals gesteigert werden. Die Vielfältigkeit der Struktur- und Oberflächenparameter zeigt ein hohes Potential, die erreichte Funktion der Prototypen durch Variationen bis zu der des Vorbildes zu steigern. Die Anwendungsfelder umfassen unter anderem wieder verwendbare Systeme für die Aufnahme von Öl bei Unfällen und Havarien auf dem Land und auf der See, als auch für Produktionshilfsmittel, wie beispielsweise Schmieröle, in der industriellen Fertigung.
Das Projekt "Demand-Response mit Wasserbetten (DRWB)" wird vom Umweltbundesamt gefördert und von Technische Universität Hamburg-Harburg, Institut für Telematik E-17 durchgeführt. Ziel der Bundesregierung ist es, dass bis zum Jahr 2050 mindestens 80% des deutschen Stromverbrauchs aus erneuerbaren Energien zu produzieren werden. Der meiste Strom wird aus Wind- und Solarfarmen stammen, die wetterabhängig zeitweise Leistung deutlich über oder unter dem Bedarf produzieren werden. Demand-Response-Ansätze tragen zur Ausbalancierung von Produktion und Verbrauch bei, indem elektrische Lasten Ihre Leistungsaufnahme an die aktuelle Verfügbarkeit von Leistung anpassen. Das ist insbesondere bei Geräten mit thermischen Energiespeichern möglich, wie beispielsweise Heißwasserboiler oder Wasserbetten in Haushalten, bei denen die Wärmeproduktion aus Strom in anwendungsspezifischen Grenzen zeitlich verschoben werden kann. Dabei haben z. B. die ca. 1 Million Wasserbetten in Deutschland Heizungen mit einer Gesamtleistung von etwa 250 MW die in der Größenordnung von 0,1% des deutschen Stromverbrauchs verursachen. In diesem Projekt wird untersucht, welchen Beitrag Demand-Response-Verfahren für Wasserbetten zur Energiewende leisten können. Es ist ein Problem der multikriteriellen Optimierung. Neben der Maximierung der Wirkung für die Ausbalancierung von Stromproduktion und -verbrauch müssen der Gesamtenergiebedarf und die zusätzlichen Kosten minimiert sowie die Benutzeranforderungen erfüllt werden. Wasserbetten sollen eigenständige Geräte bleiben, die heute ohne neue Infrastrukturen der Stromanbieter oder Netzbetreiber eingesetzt werden können. Die erweiterte Temperaturregelung muss sicherstellen, dass die Wassertemperatur im engen Komfortbereich ist, wenn Menschen im Bett liegen. Da anders als bei großen industriellen Lasten der Strombedarf und damit die Wirkung eines einzelnen Gerätes für Demand-Response klein ist, müssen auch die dafür anfallenden Kosten für Herstellung, Installation und Betrieb minimiert werden. Einen Beitrag dazu wird eine durch die Regelung ermöglichte Reduzierung des Gesamtenergiebedarfs erbringen. Die Wasserbetten müssen für die Benutzer ohne großen Aufwand konfigurierbar sein und dürfen keine Daten über deren Verhalten Preis geben. Im Projekt wird ein Konzept für Demand-Response mit Wasserbetten entwickelt und simulativ sowie mit einem Prototyp untersucht. Als Prototyp wird ein reales Wasserbett um ein universelles Mess- und Regelmodul ergänzt. Mit ihm wird ein thermisches Modell für Wasserbetten entwickelt und validiert. Unterschiedliche Temperatur-Regelalgorithmen für Demand-Response und die Reduzierung des Gesamtenergiebedarfs werden entwickelt. Sie werden mit dem Prototyp erprobt und simulativ verglichen. Dabei wird auch der Aufwand für die Integration in Stromnetze, die Schätzbarkeit der Lastprofile und für das Stromnetz problematische große gleichzeitige Laständerungen vieler Wasserbetten betrachtet.
Das Projekt "GO-Bio 2: AGRO-PROTECT: Weiterentwicklung einer Antikörper-vermittelten Resistenz Plattform" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Molekularbiologie und Angewandte Oekologie durchgeführt. Die Weltbevölkerung wird nach Schätzungen der Bevölkerungsabteilung der Vereinigten Nationen noch bis 2025 auf über 8 Milliarden steigen. Gleichzeitig soll es zu einer Reduktion der Agrarfläche um bis zu 30 Prozent kommen. Es wird bis dahin nicht wie im Moment ein Verteilungsproblem, sondern ein Mangel an Nahrungsmitteln vorliegen. Neue Agrarfläche wird nur sehr begrenzt erschlossen werden können und ist zumeist ökologisch z.B. durch Brandrodung von Urwaldgebieten nicht vertretbar. Eine Lösung bietet die Grüne Biotechnologie. Insbesondere durch Generierung von Trocken-, Salz- und Pathogenresistenten Nutzpflanzen. Wir haben eine innovative, patentierte Plattform entwickelt, mit deren Hilfe man Pflanzen unempfindlich gegen Schadpilze machen kann, um einen Beitrag zur Lösung solcher Probleme zu leisten. Die Plattform umfasst die Entwicklung von Antikörper vermittelten Pathogen resistenten Nutz- und Zierpflanzen. Dabei werden antifugale Peptide/Proteine mit Antikörperfragmenten fusioniert und in der Zielpflanze exprimiert, was zu einer Resistenz der Nutzung gegen das Pathogen führt. Diese Serviceleistung soll durch die neu zu gründende Agro-Protect GmbH Saatgut Unternehmen, wie Monsanto, Syngenta, DSV, Bayer und BASF angeboten werden. In der Phase I dieses Antrages soll ein Prototyp (Phytophthora infestans resistente Kartoffelpflanze) entwickelt werden, um diesen dann den oben aufgeführten Firmen zum Kauf bzw. in Lizenz (Sortenschutz) anzubieten (Phase II). Die erwarteten Einnahmen sollen zur Finanzierung der Entwicklung weiterer pathogen resistenter Pflanzen und damit zur Schaffung neuer innovativer, zukunftssicherer Arbeitsplätze in Deutschland verwendet werden. Die Produktion des Saatguts und der Vertrieb an den Landwirt soll in der Anfangsphase durch bestehende Netzwerke der Saatgut Firmen weltweit übernommen werden. Das Geschäftsmodel verschafft allen Beteiligten der Wertschöpfungskette und dem Endverbraucher Vorteile. Saatguthersteller können mit geringerer Resistenzbildung rechnen. Dem Landwirt werden höhere Ertragssicherheit, günstigere Produktionskosten und geringere Resistenzbildung garantiert. Und der Endverbraucher kann mit geringeren Kontaminationen von Spritzmitteln und Mykotoxinen rechnen.
Das Projekt "Kombiniertes Rechner-/Mess-System zur Ueberwachung und Prognose kurzfr. Transportvorgaenge in Kuestengewaessern und Randmeeren (Projektleitung, wissensch. Koord. und Modellentwicklungen)" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Zentrum für Meeres- und Klimaforschung, Institut für Meereskunde (IfM) durchgeführt. Es soll ein kombiniertes Rechner-/Messsystem bis zum Stadium eines anwendungsreifen Prototyps entwickelt werden, um Transportvorgaenge in Kuestengewaessern und Randmeeren operationell zu ueberwachen und vorherzusagen. Das Institut wird neben der internationalen wissenschaftlichen Koordination des Gesamtprojektes auch einige grundlegende Aufgaben im Bereich der Verbindung von Mess- und Modelldaten sowie bei der Modellentwicklung von Vorhersagealgorithmen im Rechnersystem uebernehmen. Dieses Vorhaben wird im Rahmen von EUROMAR in enger Zusammenarbeit mit den Projektpartnern Hydromod und Preussag durchgefuehrt, um ein marktfaehiges Produkt zu erstellen. Der Prototyp soll mit aktuellen Messdaten jederzeit ein aktuelles Bild von den Stroemungs- und Transportverhaeltnissen vermitteln und sogar kurzfristige Prognoserechnungen durchfuehren koennen.
Das Projekt "Teilprojekt GWS" wird vom Umweltbundesamt gefördert und von GWS Gesellschaft für wirtschaftliche Strukturforschung mbH durchgeführt. Das Vorhaben erforscht und entwickelt wissenschaftliche Grundlagen für ein systemisches Monitoring und die Modellierung der Bioökonomie (BÖ) in Deutschland. (1) Entwicklung eines Rahmens für ein systemisches Monitoring. Die Erwartungen an die BÖ durch Politik, Wirtschaft, NGOs und Wissenschaft werden systematisiert. Wichtige Kriterien und Indikatoren werden abgeleitet. (2) Entwicklung eines systemischen Modellierungs- und Bewertungsansatzes. Ein Modell-System zur mehrskaligen Analyse und Bewertung der BÖ wird entwickelt. Stoffstrommodelle, IO-Datenbasen, ökonometrische und Modelle zu Land- und Wassernutzung werden verknüpft. Fußabdrücke der BÖ zu Land-, Forstwirtschaft, Wasser, Treibhausgasen sowie Sozioökonomie werden bestimmt. (3) Analyse der Schlüsselfaktoren für die Transformation der BÖ. Trend bestimmende Faktoren werden analysiert: Landwirtschaftliche Produktionssysteme, Ernährung, energetische und stoffliche Verwendung von Biomasse, Kreislaufwirtschaft und Kaskadennutzung sowie neue Technologien. (4) Modellierung der Entwicklung der BÖ und ihrer umweltbezogenen und sozio-ökonomischen Auswirkungen. Vergangene Trends und Status quo werden modellgestützt analysiert. Kontrafaktische Modellierung wird exploriert, um die historischen Effekte der BÖ abzuschätzen. Künftige Trends und ihre Auswirkungen werden modelliert. (5) Integration von Indikatoren und Daten der Zertifizierung und Ökobilanzierung. Für ein Monitoring werden Nutzungsmöglichkeiten und Erweiterungsoptionen der in Zertifizierungsverfahren und bei der Produktökobilanzierung erhobenen Daten und Indikatoren geprüft. (6) Entwicklung eines Monitoringsystems. Ein prototypischer Monitoring Bericht zur BÖ in Dtld wird erstellt. Eine interaktive Webseite zur Exploration von Daten und Charakteristika der BÖ wird entwickelt. (7) Management und Koordination. Der Austausch mit den anderen Dimensionen zum Aufbau des BÖ Monitoring wird über verschiedene Gremien, Projekttreffen und Statuskonferenzen organisiert.
Das Projekt "Teilprojekt 1" wird vom Umweltbundesamt gefördert und von Leibniz Universität Hannover, Institut für Gartenbauliche Produktionssysteme, Abteilung Phytomedizin durchgeführt. Im Rahmen eines Verbundprojektes zwischen dem Unternehmen Neudorff, Emmerthal und der Leibniz Universität Hannover sollen neue und innovative Lichtfallensysteme zur Überwachung und Bekämpfung von Schadinsekten in Gewächshäusern entwickelt werden. Die Fallensysteme bauen auf neuster LED-Technik auf, bei denen die Fallen insektenspezifisch elektronisch gesteuert und dem jeweiligen Befallsmuster angepasst werden. Das zu entwickelnde Fallensystem kann in Gewächshausbetrieben mobil oder stationär eingesetzt werden. Die Fallen werden auf der Basis von flexibel schaltbaren LED-Systemen entwickelt. Das Monitoring der Insekten erfolgt mit Hilfe von computerbildanalytischen Algorithmen. Die selektive Wirkung der Farb-LEDs auf Insekten und die Ausbringung von entomopathogenen Pilzen wird mithilfe von Verhaltensstudien in Gewächshäusern ermittelt. Tests der zu entwickelten Prototypen unter Praxisbedingungen runden die Arbeiten ab.
Origin | Count |
---|---|
Bund | 3981 |
Type | Count |
---|---|
Förderprogramm | 3981 |
License | Count |
---|---|
offen | 3981 |
Language | Count |
---|---|
Deutsch | 3981 |
Englisch | 371 |
Resource type | Count |
---|---|
Keine | 1991 |
Webseite | 1990 |
Topic | Count |
---|---|
Boden | 2304 |
Lebewesen & Lebensräume | 2201 |
Luft | 2181 |
Mensch & Umwelt | 3981 |
Wasser | 1593 |
Weitere | 3981 |