API src

Found 85 results.

Related terms

Hydraulischer Modellversuch Odertalsperre

Das Projekt "Hydraulischer Modellversuch Odertalsperre" wird/wurde gefördert durch: Harzwasserwerke GmbH. Es wird/wurde ausgeführt durch: Technische Universität Dresden, Institut für Wasserbau und Technische Hydromechanik.Am Südwestrand des Harzes wurde zwischen 1930 und 1933 bei Bad Lauterberg (Niedersachsen) die Odertalsperre errichtet, die dem Hochwasserschutz, der Energieerzeugung und der Niedrigwasseraufhöhung des Unterlaufes der Oder in Trockenzeiten dient. Die Gesamtanlage besteht neben der 56 m hohen Hauptsperre (Erddamm mit Betonkern) aus einem unterhalb gelegenen Ausgleichsbecken (ca. 200 m x 700 m), das wiederum durch einen 7,5 m hohen Erddamm mit integrierter Wehranlage begrenzt wird. Das Reservoir der Hauptsperre und das Ausgleichsbecken wurden bis Anfang der 1990er Jahre als Pumpspeicherkraftwerk betrieben. Zur sicheren Ableitung extremer Hochwasser existiert am linken Hang der Hauptsperre eine Hochwasserentlastungsanlage (HWE) aus Beton, die nach fast 80 Jahren Schäden aufweist, die einer Sanierung bedürfen. Aus Sicherheitserwägungen soll außerdem die Wehranlage des Ausgleichsbeckens umgebaut werden. Für den Betreiber, die Harzwasserwerke GmbH aus Hildesheim, wurden deshalb von Dezember 2008 bis September 2009 zur Vorbereitung der geplanten Sanierungen hydraulische Modellversuche zur HWE, zur Wehranlage am Abschlussdamm des Ausgleichsbeckens und zum Ausgleichsbecken selbst durchgeführt. Unter Leitung von Prof. Jürgen Stamm erfolgten im Hubert-Engels-Labor des Instituts für Wasserbau und Technische Hydromechanik (IWD) der TU Dresden durch Dipl.-Ing. Holger Haufe und Dipl.-Ing. Thomas Kopp die Untersuchungen an drei Teilmodellen, zwei davon physikalisch im Maßstab M 1:25 für die HWE und M 1:20 für die Wehranlage. Bei dem dritten Teilmodell handelte es sich um ein tiefengemitteltes 2D-hydronumerisches Modell zur Ermittlung der Strömungsverhältnisse im Ausgleichsbecken. Am Teilmodell der HWE wurde im Rahmen mehrerer Versuchsreihen die hydraulische Leistungsfähigkeit und Funktionstüchtigkeit für verschiedene Zustände (vor, während und nach der Sanierung) überprüft und nachgewiesen. Durch Maßstabseffekte bedingte hydraulische Unterschiede zwischen Natur und Modell (Wasser-Luft-Gemischabfluss), die im 'verkleinerten' Modell nicht auftraten, wurden analytische Berechnungen durchgeführt, mit denen nachgewiesen werden konnte, dass die Seitenwände der HWE auch beim vermutlich größten Hochwasser (PMF) nicht überströmt werden. Die Harzwasserwerke GmbH wird voraussichtlich 2010/11 auf Grundlage der Versuchsergebnisse mit den Sanierungsarbeiten beginnen. Die am IWD untersuchten und hydraulisch optimierten Einzelmaßnahmen werden dann zu einer effizienten Bauausführung beitragen und anschließend die Hochwassersicherheit der Odertalsperre für die nächsten Generationen gewährleisten. (Text gekürzt)

Durchlässigkeits- und Fluxmessungen in porösen Aquifern

Das Projekt "Durchlässigkeits- und Fluxmessungen in porösen Aquifern" wird/wurde gefördert durch: Fonds zur Förderung der Wissenschaftlichen Forschung. Es wird/wurde ausgeführt durch: Technische Universität Graz, Institut für Wasserbau und Wasserwirtschaft.Die Kenntnis von hydraulischen Durchlässigkeiten wie auch von Wasser- und Verunreinigungsfluxen in porösen Grundwasserleitern ist von großer Bedeutung in vielen hydrogeologischen Belangen wie z.B. Beregnung, Versickerung, quantitative und qualitative Wasserwirtschaft, Risikoabschätzung bei Verunreinigungen, usw. Derzeit ist keine theoretisch gut fundierte Methode zur Messung horizontaler und vertikaler Durchlässigkeiten in der gesättigten Zone verfügbar und Methoden zur Messung von gesättigten Durchlässigkeiten in der ungesättigten Zone sind beschränkt, zeitaufwendig und fallweise unzuverlässig. Außerdem ist gegenwärtig keine Methode zur direkten Messung vertikaler Wasser- und Verunreinigunsfluxe in porösen Grundwasserleitern oder am Übergang zwischen Grund- und Oberflächengewässern bekannt. Das dargelegte Projekt basiert auf der Entwicklung einer exakten Lösung des Strömungsfeldes für das Ein- oder Auspumpen von Wasser durch eine beliebige Anzahl von unterschiedlichen Filterabschnitten entlang eines ansonsten undurchlässigen Filterrohres bei verschiedenen Randbedingungen. Diese Lösung erlaubt die Ermittlung von Formfaktoren der Strömungsfelder, die zur Berechnung hydraulischer Durchlässigkeiten aus Einpressversuchen nötig sind. Die derzeit angewendeten Formeln können mit der genauen Lösung verglichen und der Einfluss anisotroper Durchlässigkeiten kann miteinbezogen werden. Eine doppelfiltrige Rammsonde wird zur bohrlochfreien Messung horizontaler und vertikaler Durchlässigkeiten in verschiedenen Tiefen unter dem Grundwasserspiegel vogeschlagen. Der Test besteht aus zwei Teilen: (1) Einpressen durch beide Filterabschnitte und (2) Zirkulation zwischen den Filtern. Die gleiche Sondenkonfiguration wird für die direkte und gleichzeitige Messung lokaler, kumulativer, vertikaler Wasser- und Verunreinigungsfluxe nach dem passiven Fluxmeter-Prinzip vorgeschlagen. Ohne zu pumpen werden die beiden Filterabschnitte hiebei durch eine mit Tracern geladene Filtersäule hydraulisch verbunden. Der vertikale Gradient im Testbereich treibt einen Fluss durch den Filter, der kontinuierlich Tracer auswäscht und Verunreinigungen im Filter hinterlässt. Aus der Analyse des Filtermaterials zur Bestimmung der Tracer- und Verunreinigungsmengen nach dem Test werden mit Kenntnis des Strömungsfeldes um die Sonde die Wasser- und Verunreinigungsfluxe bestimmt. Eine kegelförmige, doppelfiltrige Rammsonde wird weiters vorgeschlagen, um gesättigte Durchlässigkeiten sowohl über als auch unter dem Grundwasserspiegel direkt messen zu können. Die Methode basiert auf stationärer, gesättigt/ungesättigt gekoppelter Strömung aus kugelförmigen Hohlräumen. Die Möglichkeit einer transienten einfiltrigen Methode und einer Methode zur Messung anisotroper Durchlässigkeiten wird beurteilt. Die vorgeschlagenen theoretischen Konzepte werden ausgearbeitet und anhand von Laborversuchen überprüft.

Demonstrationsanlage "Naturstromspeicher in Gaildorf"

Das Unternehmen, welches am 31.08.2011 gegründet wurde, plant den Betrieb einer Demonstrationsanlage, in der ein Windpark mit einem Pumpspeicherkraftwerk kombiniert wird. Hierzu sollen vier Windenergieanlagen mit einer Leistung von jeweils 5 Megawatt errichtet werden. In die Bauwerke dieser Windkraftanlagen werden die Wasserspeicher integriert. Diese oberen Wasserspeicher sollen über eine Druckrohrleitung mit dem Kraftwerk und mit dem Unterbecken, einer bereits vorgesehenen Flutmulde, verbunden werden. Die elektrische Speicherkapazität des Pumpspeicherkraftwerks beträgt 70 Megawattstunden. Durch die Integration des oberen Wasserspeichers in die Bauwerke der Windkraft- anlagen kann auf den Bau eines gesonderten Oberbeckens verzichtet werden. Dadurch entfallen Baumaßnahmen sowie An- und Abtransport der Aushubmasse. Es können ca. 19.000 Lkw-Fahrten mit einem CO 2 -Ausstoß von ca. 400 Tonnen vermieden werden. Weiterhin entfallen Rodungsarbeiten einer Waldfläche von 2 bis 4 Hektar. Die Anlagenkonzeption erlaubt einen hohen Grad der Standardisierung, welcher in der Pumpspeichertechnik bisher nicht bekannt ist. Der Vorteil dieser neuartigen Anlage besteht unter anderem darin, dass die überschüssige regenerativ erzeugte Energie kurzfristig vor Ort gespeichert werden kann statt deren Erzeugung drosseln zu müssen. Die Anlage liefert neben der Stromerzeugung auch die fürdas zukünftige Energiesystem benötigte Flexibilität. Eine Kombination von Windenergieanlage und Wasserspeicher wurde bislang noch nicht umgesetzt. Eine weitere Neuerung stellt die Verwendung von unterirdisch verlegten, biegsamen PE (Polyethylen)-Rohren anstelle der üblichen teilweise oberirdisch verlegten, starren Stahlrohre für die Druckrohrleitungen dar. Dadurch wird die Landschaft geschont. Mit dem angestrebten Ausbau der erneuerbaren Energie wird der Bedarf an Energiespeichern zum Ausgleich von Einspeiseschwankungen zunehmen. Das Vorhaben wird einen Beitrag zur Etablierung solcher Speicher und damit zur besseren Integration der erneuerbaren Energien in das Energiesystem leisten. Branche: Energieversorgung Umweltbereich: Klimaschutz Fördernehmer: Naturstromspeicher Gaildorf GmbH & Co. KG Bundesland: Baden-Württemberg Laufzeit: seit 2014 Status: Laufend

Neubau der 380-kV-Leitung Wahle – Mecklar, Abschnitt B: UW Lamspringe – UW Hardegsen und Anbindungsleitung Pumpspeicherwerk Erzhausen; 11. Planänderung

Gegenüber dem planfestgestellten Sachstand aus der 8. Planänderung ergibt sich Änderungs- bzw. Definitionsbedarf, welcher mit der 11. Planänderung nach Planfeststellungsbeschluss durch die TenneT TSO GmbH beantragt wird. Dadurch, dass die KÜ Erzhausen in einer sog. Stich-Verbindung elektrotechnisch betrachtet eingebaut ist, ergibt sich aus elektrotechnischer Sicht die Notwendigkeit, diese Stichverbindung vom Rest des Netzes abtrennen zu können, um für den Fall von z.B. Reparatur- bzw. Wartungsarbeiten an der KÜA selbst bzw. an den Erdkabeln die Arbeitssicherheit zu gewährleisten. Dies kann ausschließlich innerhalb der KÜA nur durch einen Trenn- und Erdungsschalter inkl. sämtlicher zugehöriger Technik realisiert werden. Diese zusätzlichen Geräte bedeuten zusätzliche Fundamente und somit den Bedarf einer größeren Stellfläche, auf dem bereits erworbenen Grundstück. Der Betriebsweg auf dem KÜA-Gelände wird dementsprechend länger. Gleichwohl hat die Vergrößerung der Stellfläche für die Kabelübergangsanlage zur Folge, dass das KÜA Portal als definierter Endpunkt der Freileitungsanbindung zwischen dem Abzweigmast B027N und der KÜA in seinem Standort verschoben werden muss. Auf den durch das Anlagenlayout definierten Anlagenachsen wird das KÜA-Portal um ca. 6m in südöstliche Richtung verschoben. Der Mast 001 ist bereits errichtet und ändert sich nicht. Aufgrund dieser Standortänderung des KÜA-Portals verschwenkt sich die Leitungsachse und das Spannfeld zwischen Mast 001 und KÜA-Portal verkürzt sich. Die geänderte Leitungsgeometrie erfordert eine geänderte Befestigungsgeometrie der Leiterseile am Portalriegel des KÜA-Portals. Dadurch, dass die Trennschalter elektrisch betrieben und gesteuert sind, wird ein Betriebsgebäude zur Unterbringung der Automatisierungstechnik zwingend erforderlich, was aus dem planfestgestellten KÜ eine aktive KÜA macht. Aus den insgesamt größeren Flächen der KÜA resultieren geringfügig höhere zu versickernde bzw. abzuleitende Niederschlagsmengen. Um die planfestgestellte Trommelfläche, östlich der KÜA in direkter Nähe der Landesstraße L487, herstellen zu können und eine schädliche Verdichtung von Oberboden in diesem Bereich zu verhindern, ist der Abtrag von Oberboden zwingend notwendig. Die Lagerung der Oberbodenmieten ist in direkter örtlicher Nähe zur Trommelfläche, außerhalb von Überschwemmungsflächen, vorgesehen, um weite Transportwege zu vermeiden. Auf Grund der starken Steigung der dauerhaften Zuwegung zur KÜA, welche auch als Baustraße genutzt werden muss, ist es baustellenlogistisch zwingend erforderlich, Baumaterialien, die in großen Transporteinheiten nach Erzhausen geliefert werden, abzuladen, kurzfristig zwischenzulagern und auf kleinere Baustellenfahrzeuge umzuladen. Für diese Vorgänge ist die planfestgestellte Trommelfläche östlich der KÜA in direkter Nähe zur Landesstraße L487 vorgesehen. Dementsprechend wird eine Nutzungserweiterung der Trommelfläche als Umladefläche für Bau- und Bodenmaterialien beantragt. Um, ohne auf die L487 einzubiegen, direkt von der Baustraße-/Zuwegung KÜA auf die Trommel-/Umladefläche zu gelangen, wird eine zusätzliche Zufahrt zu dieser Fläche beantragt. Da sich zwischen Landesstraße und der Trommel-/Umladefläche ein Grünstreifen und ein Graben befindet, dessen temporäre Überbauung mit insgesamt zwei asphaltierten Zufahrten und der erforderlichen Verrohrung des vorhandenen Straßenbegleitgrabens im Bereich dieser Zufahrten der in der 8. Planänderung nicht berücksichtigt wurde, diese aber zwingend als Zu- und Abfahrt von Transport- und Trommelfahrzeugen benötigt werden, wird dies mit der vorliegenden Planänderung nach Planfeststellung nachträglich beantragt. Zusammenfassend ergibt sich somit folgender Änderungs- bzw. Definitionsbedarf: Änderung des passiven Kabelübergangs (KÜ) zur aktiven Kabelübergangsanlage (KÜA) auf Grund der zwingend erforderlichen Hinzunahme einer Trenn- und Erdungsschalterebene; zwei zusätzlich erforderliche Blitzableiter sowie eine zwingend erforderliche Umhausung für Steuerzellen (Betriebsgebäude). Dadurch bedingt ist die Veränderung des Portalstandortes, was wiederum eine Veränderung des Schutzbereichs der durch die Leiterseile überspannten Fläche zur Folge hat. Anpassung des rechnerischen Nachweises der schadfreien Entwässerung des KÜA-Geländes, Feinplanung der Zuwegungsfläche vor der Toranlage der KÜA, Zusätzliche, temporär genutzte Flächen zur Lagerung von Oberbodenmieten im Bereich östlich KÜA in Nähe der L487, Erweiterung der Nutzung der temporären Arbeitsfläche (Trommelfläche) im Bereich L487/Einfahrt Zuwegung KÜA als Umlade-/Baustelleinrichtungsfläche, Temporäre Grabenverrohrungen für die Schaffung einer Zufahrt von der L487 auf die temporär hergestellte und genutzte Arbeits-/Umlade-/Trommelfläche und dementsprechend Nutzung des Straßenseitenraums der L487.

Nutzung der Wasserkraft

Die Kraft des Wassers zu nutzen hat eine lange Tradition und ist bis heute als erneuerbare Energiequelle von Bedeutung. Gleichzeitig hat die Energiegewinnung aus Flüssen vielfältige sozioökonomische und ökologische Wirkungen, die es zu beachten gilt. Vom Wasser zum Strom Das physikalische Grundprinzip der Wasserkraftnutzung ist, die Bewegungsenergie und die potenzielle Energie des Wassers in nutzbare Energie umzuwandeln. Der Energiegewinn aus Wasserkraft ist umso höher, je mehr Wasser aus möglichst großer Fallhöhe auf die Schaufeln einer Turbine oder eines Wasserrads trifft. Bergige Landschaften mit viel Wasser aus Niederschlägen sind daher besonders für die Wasserkraftnutzung geeignet. Bei der Erzeugung von Wasserkraft wird zwischen Laufwasserkraftwerken und Speicherkraftwerken unterschieden. Ein Laufwasserkraftwerk nutzt die augenblicklich verfügbare Wassermenge eines Flusses oder Bachs. Speicherkraftwerke halten das Wasser zurück. Es wird dann zu Zeiten höheren Strombedarfes durch die Turbinen geleitet. Pumpspeicherkraftwerke sind eine Sonderform der Speicherkraftwerke. Hierbei wird Wasser in ein höher gelegenes Speicherbecken gepumpt, um es bei Strombedarf nutzen zu können. Auswirkungen der Wasserkraftnutzung auf die Gewässerökologie Die Wasserkraftnutzung greift erheblich in Natur und Landschaft ein. Aus der Berichterstattung zur EU-⁠ Wasserrahmenrichtlinie ⁠ ist bekannt, dass in 37 Prozent aller berichteten ⁠ Wasserkörper ⁠ – das sind über 51.000 Flusskilometer – die Wasserkraftnutzung Gewässer signifikant belastet. Dadurch werden die Gewässerschutzziele – der gute ökologische Zustand – nahezu vollständig verfehlt. Zu den gravierendsten Auswirkungen der Wasserkraft auf die Gewässer und Auen zählen: Die Unterbrechung der biologischen und morphodynamischen Durchgängigkeit der Fließgewässer. So können Wanderfischarten nicht mehr zu ihren Laich- oder Aufwuchslebensräumen gelangen. Die direkte Schädigung von Organismen in den Wasserkraftturbinen. Mehr als 22 Prozent der Fische, die eine Turbine passieren müssen, werden tödlich verletzt. Mehrere aufeinander folgende Wasserkraftwerke an einem Flusslauf können Populationen gefährden. Die Veränderung des Lebensraumes in der ⁠ Aue ⁠ und im Gewässer durch den Gewässeraufstau und unterhalb von Stauwerken durch einen zu geringen Wasserabfluss im verbleibenden Gewässerbett. Wasserkraftanlagen neu zu bauen oder zu betreiben, ist deshalb kritisch zu bewerten. Die Mehrzahl der existierenden Anlagen in Deutschland ist aus ökologischer Sicht dringend modernisierungsbedürftig. In den kommenden Jahren müssen Durchgängigkeit, Mindestwasserführung, hydrologische Situation und Fischschutz verbessert werden – auch um die gesetzlichen Ziele der Wasserrahmenrichtlinie zu erreichen. Leitplanken für die Stromerzeugung aus Wasserkraft und Erneuerbare Energien Gesetz Das Umweltbundesamt empfiehlt folgende Leitplanken für die Stromerzeugung aus Wasserkraft: Strategische Konzepte zur Nutzung der Wasserkraft können Zielkonflikte auflösen. Sie sollen sowohl erschließungswürdige Wasserkraftpotentiale als auch sensible Naturräume berücksichtigen. Nennenswerte Potenziale, um die Klimaschutzziele zu erreichen, liegen in der Modernisierung oder dem Ersatzneubau großer Wasserkraftanlagen (s.u.). In wertvollen und sensiblen Fluss- und Auenlandschaften können die negativen Folgen der Wasserkraftnutzung ihren positiven Beitrag für den ⁠ Klimaschutz ⁠ überwiegen. Bei der Festlegung von Maßnahmen an Wasserkraftstandorten sollte das gesamte betroffene Flussgebiet berücksichtigt werden, insbesondere wenn mehrere Wasserkraftwerke am Flusslauf aufeinander folgen. Es sollten alle geeigneten Maßnahmen umgesetzt werden, die Umweltauswirkungen mindern: Anlagen zum Fischauf- und -abstieg, zum Fischschutz , morphologische Verbesserungsmaßnahmen und die Sicherstellung eines ökologisch wirksamen Mindestwasserabflusses. Die Bund-Länderarbeitsgemeinschaft Wasser hat dazu eine „ Empfehlung zur Ermittlung einer ökologisch begründeten Mindestwasserführung in Ausleitungsstrecken von Wasserkraftanlagen “ veröffentlicht. Mit dem „Gesetz zu Sofortmaßnahmen für einen beschleunigten Ausbau der erneuerbaren Energien und weiteren Maßnahmen im Stromsektor“ wurde dem Ausbau der erneuerbaren Energien ein überragendes öffentliches Interesse eingeräumt. Im Rahmen der Abwägung verschiedener Interessen und Schutzgüter erhalten die erneuerbaren Energien damit ein besonders hohes Gewicht. Insgesamt verfolgt das EEG dennoch einen einheitlichen Ansatz, um ⁠ Klima ⁠-, Umwelt- und Naturschutz miteinander zu verbinden. Wichtige Belange sollen nicht gegeneinander ausgespielt werden. Zur Frage wie weit das überragende Interesse reicht hat das Umweltbundesamt ein Factsheet erstellt. Wasserkraftnutzung in Deutschland Die Wasserkraft ist mit einem Anteil von etwa 15 Prozent an der weltweiten Stromversorgung eine bedeutende erneuerbare Energiequelle. Im globalen Vergleich zählen China, Kanada, Brasilien, USA, Russland und Indien zu den größten Erzeugern von Strom aus Wasserkraft. In Europa sind Norwegen, Frankreich, Schweden, Türkei und Italien die größten Produzenten. In Deutschland wird Wasserkraft vorwiegend in den abfluss- und gefällereichen Regionen der Mittelgebirge, der Voralpen und Alpen sowie an allen größeren Flüssen genutzt. Daher werden über 80 Prozent des Wasserkraftstroms in Bayern und Baden-Württemberg erzeugt. Etwa 86 Prozent des gesamten Leistungsvermögens der großen Wasserkraftanlagen liegt an neun großen Flüssen vor: Inn, Rhein, Donau, Isar, Lech, Mosel, Main, Neckar und Iller. Wasserkraftanlagen in Deutschland Gegenwärtig werden in Deutschland etwa 8.300 Wasserkraftanlagen betrieben. Vor allem kleine Anlagen mit einer installierten Leistung von höchstens einem Megawatt dominieren den Anlagenbestand mit 95 Prozent; ihr Anteil an der Stromerzeugung ist jedoch gering (s.u.). Den verbleibenden Anteil teilen sich große Wasserkraftanlagen mit einer installierten Leistung über einem Megawatt (436 Anlagen) und Pumpspeicherkraftwerke (31 Anlagen). Die Nutzung der Wasserkraft erfolgt in Deutschland vor allem über Laufwasserkraftwerke. Speicherkraftwerke haben demgegenüber einen viel geringeren Anteil von etwa 2,5 Prozent. Stromproduktion aus Wasserkraft in Deutschland In das öffentliche Stromnetz speisen etwa 7.300 Wasserkraftanlagen ein. Sie decken über die Jahre je nach Wasserführung 2,9 bis 3,8 Prozent des jährlichen Bruttostromverbrauchs bei. Über 90 Prozent des Wasserkraftstromes stammt aus großen Wasserkraftanlagen. Der Anteil der Wasserkraft an der Stromerzeugung aus erneuerbaren Energien ist über die Jahre gesunken und liegt gegenwärtig noch bei ca. 8 Prozent. Dieser Anteil wird in Zukunft weiter sinken, da die Potenziale der Wasserkraftnutzung in Deutschland weitgehend erschlossen sind, während andere erneuerbare Energieträger größere Potenziale aufweisen und weiter ausgebaut werden. Darüber hinaus kann sich die durch den ⁠ Klimawandel ⁠ bedingte Zunahme von Trockenperioden negativ auf den Energieertrag von Wasserkraftanlagen auswirken. Aktuelle Zahlen zur Wasserkraftnutzung werden regelmäßig von der Arbeitsgruppe Erneuerbare Energien-Statistik (AGEE-Stat) veröffentlicht. Über die Umsetzung des Erneuerbare-Energien-Gesetzes (EEG) im Bereich Wasserkraft unterrichten die EEG-Erfahrungsberichte . Anlagendaten sind über das Marktstammdatenregister der Bundesnetzagentur recherchierbar. Wasserkraftpotenzial in Deutschland Das technisch-ökologische Potenzial der Wasserkraftnutzung in Deutschland wird auf etwa 25 Terawattstunden (⁠ TWh ⁠) Strom pro Jahr beziffert. In den vergangenen zehn Jahren wurden bereits bis zu 23 TWh Strom pro Jahr aus Wasserkraft gewonnen. Damit ist das Wasserkraftpotenzial zu großen Teilen erschlossen. Zwischenzeitlich haben viele Bundesländer die Potenziale der Energiegewinnung aus Wasserkraft weiter konkretisiert. Dafür wurden fast 40.000 Standorte bestehender Querbauwerke und Wasserkraftanlagen sowie auch frei fließende Gewässerstrecken in Hinblick auf noch zu erschließende Wasserkraftpotenziale analysiert. Auf dieser Basis gehen die Länder derzeit von einem grundsätzlich noch erschließbaren Wasserkraftpotenzial von 1,3 bis 1,4 TWh aus. Etwa 70 Prozent dieses Potenzials entfallen auf die Modernisierung bestehender Wasserkraftanlagen. Die Rolle der Wasserkraft bei der Energiewende In den letzten Jahren wurden die Rahmenbedingungen einer vollständig auf erneuerbaren Energien basierenden Stromversorgung in Deutschland in verschiedenen Studien analysiert, so auch in der Studie " RESCUE – Wege in eine ressourcenschonende Treibhausgasneutralität " des Umweltbundesamtes. Sowohl die progressiven als auch die konservativen Szenarien unterscheiden sich hinsichtlich der künftigen Entwicklung der Wasserkraft nur geringfügig. Demnach wird die Wasserkraft keinen großen Beitrag zur deutschen ⁠Bruttostromerzeugung⁠ leisten. Alle Szenarien zeigen einheitlich, dass die Wasserkraft ihr technisch-ökologisches Potenzial im Großen und Ganzen bereits ausschöpft. Wasserkraft und Klimawandel Bei der Abschätzung der zukünftigen Stromerzeugung aus Wasserkraft ist der ⁠Klimawandel⁠ mit zu betrachten, denn die Höhe des Stromertrags hängt u.a. von der Wassermenge ab. Das Umweltbundesamt hat die möglichen Effekte des Klimawandels auf die Ertragssituation der Wasserkraft untersuchen lassen . Demnach kann bis zur Hälfte des 21. Jahrhunderts mit einer Mindererzeugung aus Wasserkraft um ein bis vier Prozent und für den Zeitraum danach um bis zu 15 Prozent gerechnet werden. So zeigen Berechnungen an ausgewählten Wasserkraftanlagen an Hochrhein, Lech und Main Schwankungen in der Stromerzeugung von plus/minus neun Prozent in Abhängigkeit des Wasserdargebots. Um mögliche Mindererzeugungen der Wasserkraft zu kompensieren, empfiehlt es sich, die Anlagen zu optimieren und die Vorhersagemodelle für den Oberflächenabfluss weiter zu verbessern. Kraftwerk Griesheim 1 Wasserkraftwerk bei Griesheim im Main von oberstrom fotografiert. Quelle: Stephan Naumann / UBA Wasserkraftwerk bei Griesheim im Main von oberstrom fotografiert. Kraftwerk Griesheim 2 Wasserkraftwerk bei Griesheim im Main von unterstrom fotografiert. Quelle: Stephan Naumann / UBA Wasserkraftwerk bei Griesheim im Main von unterstrom fotografiert. Kraftwerk Unkelmühle Wasserkraftanlage in der Sieg (Unkelmühle). Quelle: Stephan Naumann / UBA Wasserkraftanlage in der Sieg (Unkelmühle). Wasserkraft Demo Demonstration der Nutzung von Wasserkraft. Quelle: Stephan Naumann / UBA Demonstration der Nutzung von Wasserkraft. Wasserkraftanlage Öblitz Wasserkraftanlage in der Saale bei Öblitz. Quelle: Stephan Naumann / UBA Wasserkraftanlage in der Saale bei Öblitz. Wasserkraftanlage Saale Wasserkraftanlage in der Saale unterhalb von Jena. Quelle: Stephan Naumann Wasserkraftanlage in der Saale unterhalb von Jena. Wasserkraftwerk Bayerischer Wald Wasserkraftnutzung im Bayerischen Wald. Quelle: Stephan Naumann Wasserkraftnutzung im Bayerischen Wald. Wehranlage Tuebingen Ausleitungswehr für die Wasserkraftnutzung bei Tübingen. Quelle: Stephan Naumann Ausleitungswehr für die Wasserkraftnutzung bei Tübingen. Kraftwerk Griesheim 1 Kraftwerk Griesheim 2 Kraftwerk Unkelmühle Wasserkraft Demo Wasserkraftanlage Öblitz Wasserkraftanlage Saale Wasserkraftwerk Bayerischer Wald Wehranlage Tuebingen Literatur Anderer Pia, Dumont Ulrich, Linnenweber Christof, Schneider Bernd (2009): Das Wasserkraftpotenzial in Rheinland-Pfalz. In: KW Korrespondenz Wasserwirtschaft 2009 (2) Nr. 4. 223-227. Anderer, Pia; Heimerl, Stephan; Raffalski, Niklas; Wolf-Schumann, Ulrich (2018): Potenzialstudie Wasserkraft in Nordrhein-Westfalen. WasserWirtschaft 5 – 2018. 33-39. ⁠ BMU ⁠ (Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit) (2010): Potentialermittlung für den Ausbau der Wasserkraftnutzung in Deutschland als Grundlage für die Entwicklung einer geeigneten Ausbaustrategie. Aachen. 2010. Helbig, Ulf; Stiller, Felix (2020): Potentialstudie WKA Brandenburg. Institut für Wasserbau und technische Hydromechanik TU Dresden. Vortrag. (Unveröffentlicht). International Hydropower Association (IHA) 2022: Hydropower Status Report. Sector trends and insights. Kraus Ulrich, Kind Olaf, Spänhoff Bernd (2011): Wasserkraftnutzung in Sachsen – aktueller Stand und Perspektiven. 34. Dresdner Wasserbaukolloquium 2011: Wasserkraft – mehr Wirkungsgrad + mehr Ökologie = mehr Zukunft. Dresdner Wasserbauliche Mitteilungen. 11-18. LANUV (Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen) [Hrsg.] (2017): Potenzialstudie Erneuerbare Energien NRW Teil 5 – Wasserkraft. LANUV-Fachbericht 40. Pia Anderer, Edith Massmann (Ingenieurbüro Floecksmühle GmbH), Dr. Stephan Heimerl, Dr. Beate Kohler (Fichtner Water & Transportation GmbH), Ulrich Wolf-Schumann, Birgit Schumann (Hydrotec Ingenieurgesellschaft für Wasser und Umwelt mbH). Recklinghausen 2017. LfU - Bayerisches Landesamt für Umwelt (2020). Energieatlas Bayern. https://www.energieatlas.bayern.de/thema_wasser/daten.html . Zugriff am 04.05.2021. MWAG - Ministerium für Wirtschaft, Arbeit und Tourismus Mecklenburg-Vorpommern [Hrsg.] (2011): Landesatlas Erneuerbare Energien Mecklenburg-Vorpommern 2011. Projektbearbeitung: Energie-Umwelt-Beratung e.V./Institut Rostock. Schwerin – Neubrandenburg. Naumann, S. (2022): Aktueller Gewässerzustand und Wasserkraftnutzung. In Korrespondenz Wasserwirtschaft 2022 (15) Nr. 12. 743-748. Radinger, J., van Treeck R., Wolter C. (2021). Evident but context-dependent mortality of fish passing hydroelectric turbines. conservation biology. Volume36, Issue3. DOI: 10.1111/cobi.13870. Reiss, J.; Becker, A.; Heimerl S. (2017): Ergebnisse der Wasserkraftpotenzialermittlung in Baden-Württemberg. In: WasserWirtschaft 10/2017. 18-23. Theobald, Stephan (2011): Analyse der hessischen Wasserkraftnutzung und Entwicklung eines Planungswerkzeuges „WKA-Aspekte“. Universität Kassel. Fachgebiet Wasserbau und Wasserwirtschaft. Erläuterungsbericht i.A. Hessisches Ministerium für Umwelt, Energie, Landwirtschaft und Verbraucherschutz, Wiesbaden. August 2011. TMWAT - Thüringer Ministerium für Wirtschaft, Arbeit und Technologie [Hrsg.] (2011): Neue Energie für Thüringen Ergebnisse der Potenzialanalyse. Thüringer Bestands- und Potenzialatlas für erneuerbare Energien. Studie im Auftrag des Thüringer Ministeriums für Wirtschaft, Arbeit und Technologie 2010–2011. ⁠ UBA ⁠ - Umweltbundesamt [Hrsg.] (1998): Umweltverträglichkeit kleiner Wasserkraftwerke – Zielkonflikte zwischen ⁠ Klima ⁠- und Gewässerschutz. Meyerhoff J., Petschow U.. Institut für ökologische Wirtschaftsforschung GmbH, Berlin, UFOPLAN 202 05 321, UBA-FB 97-093, In: UBA Texte 13/98, 1-150. UBA -Umweltbundesamt [Hrsg.] (2001): Wasserkraftanlagen als erneuerbare Energiequelle –rechtliche und ökologische Aspekte. BUNGE T. et. al.. In: UBA Texte 01/01, 1-88.

Energieaufsicht Sicherheit der Energieversorgung Genehmigung des Netzbetriebes Belieferung von Kunden mit Energie Transport von Strom und Gas Versorgungssicherheit Gasspeicher Krisenvorsorge Dokumente

Die Kontrolle der Sicherheit und Zuverlässigkeit der Energieversorgung und der Leitungsnetze gehört auf Grundlage von § 49 des Energiewirtschaftsgesetzes (EnWG) zu den Aufgaben der Energieaufsicht. Zuständig dafür ist das Ministerium für Wissenschaft, Energie, Klimaschutz und Umwelt (MWU). Das Energierecht setzt dabei vor allem auf die Eigenverantwortung. Deshalb legen die technischen Fachverbände der Energiewirtschaft (zum Beispiel der VDE Verband der Elektrotechnik Elektronik Informationstechnik e.V. und der DVGW Deutscher Verein des Gas- und Wasserfaches e.V. ) die Anforderungen an die Ausstattung und technische Sicherheit Anlagentechnik im Sinne anerkannter Regeln der Technik fest. Die Energieaufsicht wird in der Regel nur anlassbezogen tätig. Ihr obliegt keine formalisierte Überwachung im Zuge einer konkreten Anlagen- oder Komponentengenehmigung. Wer den Betrieb eines Energieversorgungsnetzes für Elektrizität und Gas aufnehmen möchte, benötigt gemäß § 4 EnWG eine Genehmigung der nach Landesrecht zuständigen Behörde. Für in Sachsen-Anhalt gelegene Netze ist diese Behörde das Ministerium für Wissenschaft, Energie, Klimaschutz und Umwelt (MWU). Mit der Beantragung muss der Nachweis erbracht werden, dass das Unternehmen die personelle, technische und wirtschaftliche Leistungsfähigkeit und Zuverlässigkeit besitzt, den Netzbetrieb entsprechend den Vorschriften des EnWG auf Dauer zu gewährleisten. Welche Antragsunterlagen einzureichen sind, entnehmen Sie bitte dem nebenstehenden Merkblatt zur Beantragung der Genehmigung des Netzbetriebes nach § 4 EnWG (PDF, 263KB). Wer vorsätzlich oder fahrlässig ohne Genehmigung nach § 4 Abs. 1 EnWG ein Energieversorgungsnetz betreibt, begeht eine Ordnungswidrigkeit, die nach § 95 EnWG mit einer Geldbuße geahndet wird. Energieversorgungsunternehmen, die Kunden mit Energie beliefern, ohne dabei ein Netz zu betreiben, benötigen keine Netzgenehmigung. Beliefern sie Haushaltskunden, sind gemäß § 5 EnWG die Aufnahme und Beendigung der Tätigkeit sowie Änderungen ihrer Firma bei der Bundesnetzagentur unverzüglich anzuzeigen. Die eigentliche Belieferung von Kunden, der Verkauf von Strom und Gas, unterliegt dem freien Markt. Jeder kann sich seinen Strom- oder Gasanbieter frei wählen und dabei zum Beispiel auf den Preis und die Herkunft der Energie achten. Anders ist das beim Transport von Strom und Gas durch die Leitungsnetze. Diese Netze gehören einzelnen Netzbetreibern, die nicht frei gewählt werden können. Aus diesem Grund werden die Höhe der Netzentgelte durch die Bundesnetzagentur und die Landesregulierungsbehörde kontrolliert. Die Strom- und Gasnetze werden durch die Netzbetreiber sicher betrieben. Dadurch ist die Versorgungssicherheit im Strom- und Gasbereich sehr hoch. Zum Ausdruck kommt das beispielsweise im SAIDI-Wert (System Average Interruption Duration Index). Dieser Wert gibt die durchschnittliche Ausfalldauer je versorgtem Verbraucher an. Zuletzt lag der SAIDI-Wert bei nur 12,8 Minuten im Strom- und 1,26 Minuten im Gasbereich. Die SAIDI-Werte werden durch die Bundesnetzagentur erhoben und auf deren Webseite für Strom und Gas veröffentlicht. Während Strom nur in sehr kleinem Maß (in Pumpspeicherkraftwerken oder Batterien) gespeichert werden kann, lässt sich Erdgas sehr gut speichern. Dies erfolgt meist in unterirdischen Speichern, beispielsweise ehemaligen Gaslagerstätten oder in großen Hohlräumen in Salzlagerstätten, den sogenannten Kavernen. In Sachsen-Anhalt befinden sich Gasspeicher für 32.400 Terawattstunden (TWh), das sind 14 Prozent der bundesdeutschen Vorräte. Die in Deutschland insgesamt gespeicherte Gasmenge entspricht etwa 28 Prozent des deutschen Jahresverbrauchs. Nur noch etwa 8 Prozent des hier verbrauchten Erdgases stammen aus deutscher Förderung. Die Gasversorgung in Deutschland ist jedoch wegen der vielen Importquellen sehr sicher. Die Speicherung ist vor allem deshalb notwendig, weil im Winter an Tagen mit besonders hohem Wärmebedarf zusätzlich zu den Importen auch im Sommer eingespeichertes Gas in die Gasleitungen eingespeist werden muss. Durch Wettereinflüsse, technische Störungen, Unfälle oder Handlungen Dritter kann die Energieversorgung gestört werden. Die Betreiber von Strom- und Gasnetzen bereiten sich auf solche Störfälle vor und haben rund um die Uhr Einsatzpersonal und Material verfügbar.

Energiespeicher Riedl

Die Donaukraftwerk Jochenstein AG hat mit Datum vom 04.09.2012 für das Vorhaben Energiespeicher Riedl die Durchführung des Planfeststellungsverfahrens nach § 68 WHG (i.V.m. Art. 72 ff BayVwVfG) beantragt. Dieser war bereits Gegenstand einer öffentlichen Auslegung im Jahr 2016, in deren Zusammenhang bereits Stellungnahmen abgegeben werden konnten und abgegeben wurden. Mit Datum vom 20.06.2022 wurden überarbeitete Planunterlagen vorgelegt. Die Ergänzungen/Änderungen sind mit blauer Farbe gekennzeichnet. Im Wesentlichen lassen sich die seit 2016 vorgenommenen Änderungen und Aktualisierungen wie folgt beschreiben: Das Vorhaben, insbesondere die baulichen Anlagen, die Anlagentechnik, das Betriebskonzept und die anlagebedingten dauerhaften Flächeninanspruchnahmen, ist gegenüber dem Planungsstand zur öffentlichen Auslegung 2016 unverändert. Die Antragsunterlagen zum Vorhaben wurden jedoch in den vergangenen Jahren wegen Nachforderungen der Fachbehörden, zur Aktualisierung der Datengrundlagen und wegen Änderungen der rechtlichen bzw. fachlichen Anforderungen aktualisiert. Diese ergänzenden Planunterlagen umfassen insbesondere neue immissionsschutzfachliche Prognosen, aber auch sonstige Aktualisierungen. Die Struktur der Antragsunterlagen wurde gegenüber der Fassung der öffentlichen Auslegung im Jahr 2016 grundsätzlich beibehalten und nur im Einzelfall angepasst oder ergänzt. Eine Übersicht über entfallene, neue oder aktualisierte Antragsunterlagen gibt das in den Antragsunterlagen enthaltene Dokumentenverzeichnis. Neue oder aktualisierte Antragsunterlagen der Papierfassung sind zusätzlich am Ordnerrücken und am jeweiligen Registerblatt blau markiert. Die nunmehr veröffentlichten und ausgelegten geänderten Unterlagen enthalten insbesondere die Beschreibung und Bewertung der Umweltauswirkungen auf die Schutzgüter gemäß UVPG. Darunter sind insbesondere folgende aktualisierte bzw. neu erstellte Gutachten: - Immissionsschutzfachliche Prognosen - UVP-Bericht - Artenschutzrechtliche Fachgutachten - FFH-Verträglichkeitsuntersuchungen (FFH-VU) - Fachbeitrag Wasserrahmenrichtlinie (WRRL) - Landschaftspflegerischer Begleitplan (LBP). Hinweis: Es werden auch die nicht geänderten Unterlagen ausgelegt. Gegenstand der ergänzenden Öffentlichkeitsbeteiligung sind jedoch nur die geänderten Antragsunterlagen. Die bisher im Verfahren abgegebenen entscheidungserheblichen fachbehördlichen Stellungnahmen werden mit den Planunterlagen ausgelegt, § 19 Abs. 1 Nr. 6, Abs. 2 Nr. 2 UVPG. Zu der geänderten Planung werden die Fachstellen erneut beteiligt. Da es sich um wesentlich geänderte und ergänzte Antragsunterlagen handelt, erfolgt eine erneute Öffentlichkeitsbeteiligung. Die Öffentlichkeit wird hiermit unterrichtet, dass die Planunterlagen einen UVP-Bericht enthalten, § 19 Abs. 1 Nr. 5 UVPG. Das Vorhaben wird auf Antrag der Trägerin des Vorhabens nach § 5 Abs.1 Nr. 1 / § 7 Abs. 3 / § 9 Abs. 4 UVPG einer Umweltverträglichkeitsprüfung unterzogen. Diese Feststellung ist nach § 5 Abs. 3 UVPG nicht selbständig anfechtbar. Die Trägerin des Vorhabens hat die Durchführung einer Umweltverträglichkeitsprüfung nach § 7 Abs. 3 Satz 1 UVPG beantragt. Die Anhörungs-/Planfeststellungsbehörde hat das Entfallen der Vorprüfung als zweckmäßig erachtet, da das Vorhaben nach ihrer Einschätzung erhebliche nachteilige Umweltauswirkungen haben kann, die bei der Zulassungsentscheidung zu berücksichtigen wären. Gemäß § 7 Abs. 3 Satz 2 UVPG besteht unter diesen Vo-raussetzungen die Pflicht zur Durchführung einer Umweltverträglichkeitsprüfung ohne vorherige Durchführung einer Vorprüfung. Eine grenzüberschreitende Behörden- und Öffentlichkeitsbeteiligung in der Republik Österreich nach den §§ 55 f UVPG wird durchgeführt. Gegenstand des Vorhabens 1. Die Donaukraftwerk Jochenstein AG plant die Errichtung und den Betrieb eines Pumpspeicherkraftwerkes im Landkreis Passau, Markt Untergriesbach nahe des bestehenden Wasserkraftwerkes Jochenstein zwischen den Ortsteilen Gottsdorf, Riedl und Jochenstein zur Speicherung von Wasser aus der Donau zur Erzeugung elektrischer Energie (Energiespeicher Riedl). Für die beantragte Maßnahme wird ein wasserrechtliches Planfeststellungsverfahren nach §§ 68, 70 WHG, Art. 69 BayWG i.V.m. Art. 73ff BayVwVfG durchgeführt. Nach § 70 WHG i.V.m. Art. 69 BayWG gelten zur Durchführung des Planfeststellungsverfahrens Art. 72 bis 78 BayVwVfG. Da hier auch die Verpflichtung zur Durchführung einer Umweltverträglichkeitsprüfung besteht, muss das Verfahren den Anforderungen des Gesetzes über die Umweltverträglichkeitsprüfung entsprechen. Das Vorhaben umfasst im Wesentlichen:  Speichersee (Oberbecken) in der „Riedler Mulde“ nordwestlich des Ortsteiles Riedl und südwestlich des Ortsteiles Gottsdorf - Verlegung des Aubaches - Auflassung Fischteiche auf der Fl.Nr. 1233 der Gemarkung Gottsdorf - teilweiser Neuerrichtung der Gemeindeverbindungsstraße Gottsdorf – Riedl - teilweiser Neuerrichtung bzw. bauzeitlicher Verlegung der Gemeindeverbindungsstraße Riedlerhof – Riedl - Errichtung von Parkplätzen und Zufahrten  Hochdruckseitige Triebwasserführung bestehend aus - Ein- und Auslaufbauwerk Speichersee rechtsufrig auf dem Trenndamm zwischen Doppelschleuse und Kraftwerksblock im Stauraum Jochenstein - Schrägschacht und Schrägstollen als Verbindung der Kraftstation mit dem Speichersee nebst Verschluss- und Zugangseinrichtungen - Verteilrohrleitungen  Kraftstation (Schachtkraftwerk) auf dem Werksgelände der Donaukraftwerk Jochenstein AG bestehend aus - Maschinenschacht - Krafthausgebäude - Kabelkanal und Energieableitung - Errichtung von Parkplätzen und Zufahrten - Errichtung und Betrieb einer Elektroumspannanlage (Anhang 1 Nr. 1.8 der 4. BImSchV) am Krafthaus  Niederdruckseitige Triebwasserführung bestehend aus - Verteilrohrleitungen - Niederdruckstollen - Ein- und Auslaufbauwerk Donau  Brücke über die Schleusenunterhäupter des Wasserkraftwerkes Jochenstein  Baustelleneinrichtungs- und Zwischenlagerflächen  Vorübergehende Einrichtungen zur Baustromversorgung und Bauabwicklung, verschiedene bauzeitliche Maßnahmen. Wegen der geplanten Gewässerbenutzung (§ 9 Abs. 1 Nr. 1 und Nr. 4 WHG) der Donau für einen Turbinen- /Pumpbetrieb mit einer Leistung von 300 MW, die nach § 8 WHG der wasserrechtlichen Gestattung bedarf, soll eine hydraulische Verbindung zwischen der Donau und dem Speichersee über einen unterirdischen Triebwasserweg her-gestellt werden. Der Speichersee mit einer Fläche von 24 ha und einem Speicherinhalt von 4,85 Mio. m3 und die Donau sollen durch Stollen zu einer Kraftstation als Schachtbauwerk im Talbodenbereich des Ortsteiles Jochenstein verbunden werden, in der je zwei Pumpen und Turbinen aufgestellt sind. Das Wasser für das Vorhaben soll der Donau aus dem Stauraum Jochenstein am rechten Ufer des Trenndamms des bestehenden Wasserkraftwerkes Jochenstein über ein Ein-/Auslaufbauwerk entnommen (bis zu einem maximalen Volumenstrom von 85 m3/s, § 9 Abs. 1 Nr. 1 WHG) bzw. zurückge-geben werden (bis zu einem maximalen Volumenstrom von 114 m3/s, § 9 Abs. 1 Nr. 4 WHG). Die erzeugte elektrische Energie wird in einem unterirdischen Kabelkanal in die bestehende Schaltanlage des Wasserkraftwerkes Jochenstein eingespeist. Des Weiteren sind aus Anlass der Durchführung des Vorhabens zur Planfeststellung beantragt:  Errichtung Weiher „Mühlberg“ (mit einer Oberfläche von ca. 5.900 m2) nördlich des Speichersees auf den Flurnummern 1213, 1230, 1244, 1214 der Gemarkung Gottsdorf  Teilweise Neuerrichtung und Verlegung öffentlicher Wege im Markt Untergriesbach  Anhebung der bestehenden Kran- und Kabelbrücken am Schleusenoberhaupt des Wasserkraftwerkes Jochenstein  Landschaftspflegerische und gewässerökologische Maßnahmen auf deutschem Staatsgebiet in der Stadt Passau, der Gemeinde Thyrnau, dem Markt Obernzell sowie dem Markt Untergriesbach  Rodung von Waldflächen im Bereich des Speichersees. Hinweis: Auf österreichischem Staatsgebiet wurden gewässerökologische Maßnahmen für die Stauräume Jochenstein und Aschach beantragt. Ebenfalls beantragt wurde die erforderlichen wasserrechtlichen Bewilligungen und Erlaubnisse für die mit dem Vorhaben verbundenen wasserrechtlichen Benutzungstatbestände zu erteilen (§ 9 WHG, § 8 WHG) sowie die erforderlichen straßenrechtlichen Verfügungen auszusprechen. Die geplante Maßnahme, Errichtung eines Pumpspeichersees, unterliegt als Gewässerausbau nach §§ 67, 68, 70 WHG, Art. 69 BayWG und Art. 73 ff BayVwVfG der Planfeststellungspflicht. Das Vorhaben wird nach § 5 Abs.1 Nr. 1 / § 7 Abs. 3 / § 9 Abs. 4 UVPG einer Umweltverträglichkeitsprüfung unterzogen. Diese Feststellung ist nach § 5 Abs. 3 UVPG nicht selbständig anfechtbar.

Happurg - Uniper Kraftwerke GmbH - Planfeststellung der Sanierungsmaßnahme am Oberbecken des Pumpspeicherkraftwerkes

Die Fa. Uniper Kraftwerke GmbH plant das Oberbecken des Pumpspeicherkraftwerkes Happurg umfassend zu sanieren und als Teil des Kraftwerkes in Betrieb zu nehmen. Als Sanierungsmaßnahme ist im Wesentlichen eine Untergrundsanierung im Bereich der Versturzzone (Beckensohle) sowie die Herstellung eines Kontrollganges sowie eines zweischaligen kontrollierten Dichtsystems geplant. Für die beantragte Maßnahme wird ein wasserrechtliches Planfeststellungsverfahren nach §§ 68, 70 WHG, Art. 69 BayWG i. V. m. Art. 73 ff BayVwVfG durchgeführt. Das Vorhaben wurde auf Antrag der Vorhabensträgerin einer Umweltverträglichkeitsprüfung nach § 5 Abs. 1 Nr. 1/§ 7 Abs. 3 UVPG unterzogen. Die Planfeststellungsbehörde erachtete das Entfallen der Vorprüfung für zweckmäßig. Die Antragsunterlagen enthalten einen Bericht zu den voraussichtlichen Umweltauswirkungen des Vorhabens (UVP-Bericht) gemäß § 16 UVPG.

Wofür brauchen wir Speicher? Neue Karte zum Thema Energiespeicher jetzt online

Der Ertrag erneuerbarer Energien schwankt. Daher benötigen wir unter anderem geeignete Energiespeicher. Stromspeicher basieren immer auf dem Prinzip der Energieumwandlung. Die elektrische Energie wird je nach Speichertyp erst bei Bedarf freigesetzt. Eine Übersicht gibt die neue Karte zum Thema Energiespeicher. Zur Netzstabilisierung und Dämpfung der Schwankungen im Energiesystem ist vor allem bei den Erneuerbaren Energien eine Pufferung durch geeignete Energiespeichermedien von Bedeutung. In Baden-Württemberg werden hierzu beispielsweise Pumpspeicher als große, zentrale Speicheranlagen für die Mittel- bis Langfristspeicherung betrieben. Zu einer Anlage gehören ein oder mehrere Ober- und Unterbecken, die mit Pumpen und Turbinen über Rohre oder Stollen miteinander verbunden sind. Wasserreservoire wie Seen, Becken und Flüsse werden sozusagen zur Speicherbatterie. Wird der Strom benötigt, kann das Wasser abgelassen werden, es treibt dann Turbinen an, die wiederum Strom erzeugen. Die Reaktionszeit moderner Pumpspeicherkraftwerke ist dabei extrem kurz. Innerhalb von weniger als zwei Minuten sind sie von Stillstand auf Volllast gebracht. Bild zeigt: Pumpleitungen der Pumpspeichers Forbach. Bildnachweis: altix5/stock.adobe.com Batteriespeicher hingegen können als kleinere Energiespeicher mit geringeren Kapazitäten durch kurzzeitige Speicherung und Netzstabilisierung zur Versorgungssicherheit beitragen – insbesondere, wenn sie direkt dort stehen, wo der überschüssige Strom anfällt. Diese Aufgabe erfüllen heute oft Lithium-Ionen-Batterien, die in Kombination mit modernen Photovoltaikanlagen errichtet werden können. Um die Wichtigkeit des Themas Speicher zu unterstreichen sind im Energieatlas Baden-Württemberg auf einer neuen übersichtlichen Karte der Stand der Batteriespeicher in Baden-Württemberg und die Lage der Pumpspeicher dargestellt. Die Karte zeigt die aggregierten Daten des Marktstammdatenregisters (MaStR). Es handelt es sich um die Summe aller bei der Bundesnetzagentur aufgeführten Batteriespeicher. Diese Speicher sind je nach Gebietsebene addiert. Zusätzlich ist die Anzahl der durch das Speicherförderprogramm in Baden-Württemberg geförderten netzdienlichen PV-Speicher angegeben. Die neue Karte finden Sie im Energiatlas .

380 kV-Leitung Wahle-Mecklar Teilabschnitt B: UW Lamspringe – UW Hardegsen und Anbindungsleitung Pumpspeicherwerk Erzhausen; Planänderung zur 8. Planänderung zum Planfeststellungsbeschluss vom 28.11.2017

Die vorliegende Ergänzung zur 8. Planänderung umfasst folgende Änderungen gegenüber dem Planfeststellungsbeschluss vom 28.11.2017 sowie dem Planänderungsbeschluss zur 8. Planänderung vom 20.05.2022: - Verlegung der Erdkabel zwischen dem Ersatzneubau der Schaltanlage und dem Pumpspeicherwerk (Trassenabschnitt B) in Kabelschutzrohren - Lage des Verlaufs des Trassenabschnitts B innerhalb der beantragten Flurstücke - Grabenbauweise mit temporärem Verbau (Rückbau mit Grabenverfüllung) - Querung der Landstraße L487 in offener Grabenbauweise - Anpassung der betroffenen temporären und dauerhaft in Anspruch genommenen Flächen gemäß Grunderwerbsverzeichnis Die Ergänzungen ergeben sich aus der veränderten Lage der Kabelendverschlüsse auf dem Gelände der Schaltanlage Erzhausen, wodurch sich ein veränderter Trassenverlauf zwischen der Schaltanlage und der Anbindung an das Pumpspeicherkraftwerk Erzhausen ergibt. Zudem soll die Bauweise der Querung der Landesstraße L487 angepasst werden. Die Verlegung des Erdkabels soll die L487 in offener Bauweise, statt wie bisher geplant im geschlossenem Bohrpressverfahren, queren. Dieses Verfahren soll eine Beschädigung von Bauteilen des Pumpspeicherkraftwerks unterhalb der Straße ausschließen. Die Grabenbauweise mit temporärem Verbau ist bedingt durch die beengten Platzverhältnisse, der geforderten Grabentiefe sowie der veränderten Lage des Trassenverlaufs.

1 2 3 4 57 8 9