Organische Bodensubstanz (SOM) ist nicht passiv, sondern ein ständiger Fluss von Materie (oder Kohlenstoff - C) und Energie (E). Diesen Fluss treiben von Boden(mikro)biota erzeugte Gradienten an, was sie zu einem integralen Bestandteil desselben macht. Er ermöglicht den Mikrobiota sich durch Selbstorganisation einem Fließgleichgewicht anzunähern und es entstehen zeitlich und räumlich geordnete, dissipative Prozesse und/oder Strukturen (DS). Vermutlich nähern sich die Flüsse und Transferraten einem thermodynamischen Optimum, wie es z. B. das Maximum-Power-Prinzip (MPP) formuliert. Durch diese Prozesse wird E in qualitativ (Entropie vs. Enthalpie) unterschiedliche Pools verteilt: a) Wärme, b) sequestrierte SOM, c) bioverfügbare SOM, d) Biomasse. Die Organismen nutzen jedoch nur einen Teil der E des Substrates. Diese bioverfügbare E hängt von dessen energetischen Eigenschaften, seinem Status im Boden (z. B. Sorption) und der Nutzung zusätzlicher SOM-Komponenten (Priming) ab. Unser Ziel ist es zu verstehen, wie eine E-Zugabe das Auftreten von und/oder den Wechsel zwischen DS (Prozesszuständen) im Boden steuert. Dazu werden die DS durch Experimente mit unterschiedlichen Substratzugaben untersucht. Dies sind 1) einmalige, 2) wiederholte, 3) kontinuierliche Zugaben. Während 1) die Umwandlungsphasen zwischen DS zeigt, führt 2) zu oszillierenden Strukturen, welche die Resilienz der DS zeigen und 3) ermöglicht, die DS in ihren Eigenschaften nahe dem stationären Zustand zu untersuchen. Stationäre Zustände erleichtern die Prüfung thermodynamischer Optimierungsprinzipien (z. B. MPP) und lassen sich besser mit Modellen der irreversiblen Thermodynamik beschreiben. Die Kombination von Stoff- und E-Bilanzen mit kalorimetrischen Messungen ist das geeignete Instrument zur Untersuchung DS, da diese als dynamische Stoff- und E-Flüsse zu verstehen sind. Die bioverfügbare E ist ein entscheidender Faktor für die Aufrechterhaltung bestehender oder die Etablierung neuer DS. Sie hängt von thermodynamischen molekularen Substrateigenschaften und der Nutzung von OBS-Komponenten (Priming) ab und wird durch Wechselwirkungen zwischen Substrat und Boden modifiziert Dies wird mit den o.a. Ansätzen 1-3 in Mikrokosmos-, Kalorespirometer- und kontinuierlichen Röhrenreaktorversuchen untersucht. Zum Erhalt vollständiger Bilanzen werden z.T. werden 13C-markierte Substrate verwendet. Aus den Ergebnissen werden QSAR-Modelle abgeleitet (weitere Parameter aus quantenchemischer Modellierung), um die bioverfügbare E zu schätzen. Durch thermokinetische Modellierung aller Ergebnisse werden Gibbs-E und Entropieänderungen der Substratumsätze berechnet. Es wird erwartet, dass eine modellgestützte Abschätzung der C- und E-Retention durch die Bodenbiota, die Bestimmung der Nutzungseffizienz von C und E und die Abschätzung der Speicherung von OM im Boden erreicht werden kann. Insgesamt trägt dies zu einem besseren Verständnis und Management des C-Budgets von Böden bei.
Das Projekt zielt darauf ab, die signalvermittelten Cross-Kingdom-Interaktionen zwischen der marinen Grünalge Ulva mutabilis und ihren assoziierten Bakterien zu verstehen. Morphogene wie das Thallusin werden von Bakterien abgegeben und induzieren vielfältige algale Entwicklungen. Thallusin Derivate sollen synthetisiert werden, um ihre quantitativen Struktur-Aktivitäts-Beziehungen zu untersuchen und Thallusin durch bildgebende Verfahren in Ulva zu lokalisieren. Zentrale Gene und Metabolite werden durch vergleichende Transkriptom- und Metabolomanalyse in der Thallusin-Homöostase identifiziert. Im Fokus steht dabei auch die Bedeutung von Thallusin für wirtschaftlich relevante Algen-Aquakulturen.
This subproject aims at the development of spectral electrical impedance tomography (EIT) as a non-destructive tool for the imaging, characterization and monitoring of root structure and function in the subsoil at the field scale. The approach takes advantage of the capacitive properties of the soil-root interface associated with induced electrical polarization processes at the root membrane. These give rise to a characteristic electrical signature (impedance spectrum), which is measurable in an imaging framework using EIT. In the first project phase, the methodology is developed by means of controlled rhizotron experiments in the laboratory. The goal is to establish quantitative relationships between characteristics of the measured impedance spectra and parameters describing root system morphology, root growth and activity in dependence on root type, soil type and structure (with/without biopores), as well as ambient conditions. Parallel to this work, sophisticated EIT inversion algorithms, which take the natural characteristics of root system architecture into account when solving the inherent inverse problem, will be developed and tested in numerical experiments. Thus the project will provide an understanding of electrical impedance spectra in terms of root structure and function, as well as specifically adapted EIT inversion algorithms for the imaging and monitoring of root dynamics. The method will be applied at the field scale (central field trial in Klein-Altendorf), where non-destructive tools for the imaging and monitoring of subsoil root dynamics are strongly desired, but at present still lacking.
Checking the persistence of a chemical in the environment is extremely important. Regulations like REACH, the European one on chemicals, require the measurements or estimates of the half-life of the chemical in water, sediment, and soil. The use of non-testing methods, like quantitative structure-activity relationship (QSAR) models, is encouraged because it reduces costs and time. To our knowledge, there are very few freely available models for these properties and some are for specific chemical classes. Here, we present three new semi-quantitative models, one for each of the required environmental compartments (water, sediment, and soil). Using literature and REACH registration data, we developed three new counter-propagation artificial neural network models using the CPANNatNIC tool. We calculated the VEGA descriptors, and selected the relevant ones using an internal method in R based on the forward selection technique. The best model for each compartment was implemented in two open-source stand-alone tools, the VEGA platform, and the JANUS tool (https://www.vegahub.eu/). These models were also used by ECHA to build their PBT profiler available in the OECD QSAR toolbox (https://qsartoolbox.org/). Screening and prioritization are also our main target. The models perform well, with R2 always above 0.8 in training and validation. The only exception is the validation set of the soil compartment, with R2 0.68, that is above 0.8 only for compounds inside the applicability domain (automatically calculated by the system). The root mean square error (RMSE) is good, 0.34 or less in log units (again, for soil validation it is higher but it reaches 0.21 when considering only the compounds in the applicability domain). Compared with one of the most widely used tools, BIOWIN3, the proposed models give better results in terms of R2 and RMSE. For the classification, the performance is better for water and soil, and comparable or lower for sediment. © 2022 Elsevier
ExITox-2 hat zum Ziel eine integrierte Teststrategie (IATA) zu entwickeln, die Tierversuche mit wiederholter inhalativer Verabreichung ersetzt. Der in ExITox-1 entwickelte Read across Ansatz soll weiterentwickelt werden. Neben der Gruppe der Vinylester sollen in ExITox-2 vier neue Gruppen, die Lungenfibrose bzw. Lungenentzündung verursachen, getestet werden. Neue Aspekte sind: i) Integration von in vitro Daten aus Toxv21; ii) Abschätzung der Toxikokinetik mit Hilfe von PBPK- und QSAR Modellen; iii) Unterscheidung von Genexpressionsveränderungen bei geringen und hohen Dosen; iv) Analyse der microRNA; v) Bestätigung der Genexpressionsänderungen durch RTqPCR. Zur besseren Darstellung der Ergebnisse werden Mastersignalwege entwickelt, um zellspezifische Antworten von generellen Stressantworten zu unterscheiden. Die Integration dieser Ergebnisse in eine Test- und Bewertungsstrategie (IATA) soll zur Einschätzung der Toxizität einer inhalierbaren Chemikalie ohne Tierversuch führen. AP1 Stoffauswahl: Zwei Stoffgruppen sollen zu 'Fibrosis' und 'Inflammation' ausgewählt werden (M1.2), sowie Literaturdaten zu den Leitstoffen und Analoga identifiziert werden (M1.3). AP5 Bioinformatik Für 'Hyperplasie', 'Fibrose' und 'Entzündung' werden master pathways erstellt (M 5.1). Differentiell exprimierte Gene (DEG) werden bestimmt (M 5.2). Mit Hilfe der upstream Analyse werden gewebespezifische Masterregulatoren identifiziert (M 5.5). Daraus werden RAX spezifische Profile erstellt (M 5.6). AP6: Transfer der experimentellen Daten und Modelle in die IATA. Es werden die biologischen Profile innerhalb der Stoffgruppe (intra-group) und unter den Stoffgruppen (inter-group) verglichen (M 6.2), sowie zur Ermittlung von AOP und generellen Stressantworten die Stoffgruppen-spezifischen Profile mit den Daten aus M5.1 abgeglichen (M 6.3). Die Ergebnisse des Projektes werden in eine Bewertungsstrategie (IATA) integriert (M 6.4).
Das Ziel des Forschungsvorhabens besteht darin, die unterschiedlichen Demokratiemuster (patterns of democracy) sowie die Leistungsbilanzen von politischen Systemen (policy performance) in 10 mittel- und osteuropäischen Ländern im Zeitraum von 1995 bis 2005 empirisch zu identifizieren und analytisch zu verbinden. Theoretisch gehen wir dabei von der 'institutions do matter'-Annahme aus. In Weiterentwicklung des Ansatzes von Arend Lijphart (1999) schlagen wir ein dreidimensionales Demokratiemodel vor, das institutionelle wie akteursbezogene Strukturmerkmale verbindet. Demokratische Systeme sind institutionell durch zwei Dimensionen definiert: das Wahlsystem (elektorale Entscheidungsregel) und das Regierungssystem, hier definiert als die Vetomacht außerparlamentarischer Institutionen gegenüber Regierung und Parlament (legislative Entscheidungsregel). Da Politiken nicht allein in institutionellen Rahmenbedingungen entstehen, sondern in diesen von Akteuren beschlossen und umgesetzt werden, untersucht die dritte Dimension die Akteurskonstellation in Regierung und Parlament. Die durch diese drei Dimensionen definierten Demokratiemuster werden mit policy-Mustern in den Politikfeldern Wirtschaft, Soziales und Umwelt in Beziehung gesetzt. Empirisch soll der Einfluss der Demokratiemuster auf die Leistungsbilanz von politischen Systemen vor dem Hintergrund der historischen Entwicklungen (legacies) und der internationalen Einbindung der einzelnen mittel- und osteuropäischen Länder erklärt werden. Insofern werden die traditionellen Analysen über Politikperformanz in westlichen Ländern um die für Mittel- und Osteuropa bedeutenden Fragen 'does history matter' bzw. 'does globalization matter' ergänzt. Methodisch basiert das Forschungsvorhaben auf der Anwendung der makro-quantitativen Vielländeranalyse (Aggregatdatenanalyse). Eingang in die Analyse finden jene Länder der Mittel- und Osteuropa, die empirisch vergleichbar sind (most similar systems design).
Dieses F&E-Vorhaben soll ein zu den gängigen PBT-Screeningmethoden alternatives Konzept für die Suche nach potentiellen PBT-Stoffen zur weiteren regulatorischen Bearbeitung unter REACH erbringen. Das Konzept soll insbesondere auch Stoffe erfassen, die durch reguläre Screeningmethoden nicht erfasst werden. Das entwickelte Konzept soll in Form eines geeigneten Algorithmus praktisch umgesetzt und getestet werden, wobei nicht die Erstellung eines neuen Softwarepakets für Screenings vorgesehen ist. In diesem Vorhaben soll lediglich ein einsatzbereites 'Proof-of-Concept' des Algorithmus erstellt werden. Es ist auch Aufgabe innerhalb des Projekts zu ermitteln, welche Art von Ansatz oder welche Kombination von Ansätzen für die Erfüllung der Screeningaufgabe am geeignetsten ist. Möglichkeiten wären z.B. (Experten-)Regelsätze, Neuronale Netzwerke, Genetische Algorithmen, Chemical Mapping/Clustering, Strukturalarme, (Q)SARs oder Kombinationen dieser Ansätze.
| Origin | Count |
|---|---|
| Bund | 46 |
| Type | Count |
|---|---|
| Förderprogramm | 44 |
| unbekannt | 2 |
| License | Count |
|---|---|
| geschlossen | 1 |
| offen | 44 |
| unbekannt | 1 |
| Language | Count |
|---|---|
| Deutsch | 37 |
| Englisch | 21 |
| Resource type | Count |
|---|---|
| Keine | 28 |
| Webseite | 18 |
| Topic | Count |
|---|---|
| Boden | 26 |
| Lebewesen und Lebensräume | 42 |
| Luft | 22 |
| Mensch und Umwelt | 46 |
| Wasser | 21 |
| Weitere | 46 |