Plant uptake of phosphate (P) in complex forest ecosystems relies to a great extent on microbial mineralization of P from organic and inorganic sources but the relative contributions of the microbial communities to P cycling and allocation in forest soils is not yet very well understood. Within this project we will focus on two interactions that could elucidate key processes of microbial P dynamics in forest sites. We want to clarify the importance of both fungal-fungal and bacterial-fungal interactions for P dynamics in forest soils that are transitioning from P acquiring (efficient mobilization of P from primary and secondary minerals) into P recycling systems (highly efficient cycling of P). We want to reveal furthermore the relative contributions of saprotrophic and ectomycorrhizal fungi to P cycling and allocation. Following a hierarchical approach we want to investigate: (I) the fungal-fungal interaction between saprotrophic and ectomycorrhizal fungi at the plot scale by a systematical exclusion of ectomycorrhizal fungi in the field; (II) elucidate the P dynamics in the mycosphere at the small scale (mm to cm scale) by the use of trenching experiments. (III) investigate the regulation of bacterial as well as fungal P cycling in a microcosm experiment and evaluate the particular microbial uptake, allocation and cycling of P in the mycosphere by the use of several chemical and microbiological approaches. The trenching experiments will be performed on the study sites: Bad Brückenau, Conventwald, Vessertal, Mitterfels and Lüss in close proximity to beech trees (Fagus sylvatica L.). The microcosm experiment will be performed under controlled conditions in the lab.
The focus of this project is to analyse the observed surface freshwater fluxes through improved estimates of evaporation and precipitation and their individual error characteristics in the HOAPS climatology and its ground validation in climate-related hotspots of the Atlantic Ocean. To enable that in a consistent manner we propose to establish an error characterization of the HOAPS evaporation data by triple collocations with ship and buoy measurements and between individual satellites and to improve the error characterization of the HOAPS precipitation by analysing available shipboard disdrometer data using point to area statistics. After these improvements, an analysis of the spatio-temporal variability of the surface fresh water balance E-P over the Atlantic Ocean is planned, especially with respect to the Hadley circulation and the hotspot regions of interest to related WPs. Also the atmospheric water transport shall be analysed in order to find the source or target region of local fresh water imbalances. And finally, a consistent inter-comparison of the upcoming global ocean surface salinity fields from SMOS with freshwater fluxes from the HOAPS climatology is proposed.
Bulk stable isotope ratios, primarily of carbon (δ13C) and nitrogen (δ15N), are increasingly used to examine predator-prey interactions and food web structure. We compiled δ13C and δ15N values of marine taxa from 56 published sources to support investigations on trophic interactions in mesopelagic food webs and assess the importance of mesopelagic organisms in the marine ecosystem. A total of 2095 records were collected, representing 8716 individual organisms from 349 unique species or genera sampled across the central and Northeast Atlantic, and the Mediterranean Sea, between 1905 and 2020. Records include 185 benthic and pelagic fish, 47 cephalopods, 31 marine mammals, 30 crustaceans, 26 elasmobranchs, 16 seabirds, 4 marine turtles, 4 jelly fish, 3 copepods, 2 salps, in addition to data from several organisms only identified to higher taxonomic ranks (family or above). The dataset includes isotopic ratios measured in the tissues or in the whole body of individual organisms, or mean values (and standard deviations) from pooled samples. Because lipids have more negative δ13C values relative to other major biochemical compounds in plant and animal tissues (DeNiro & Epstein, 1977), many studies correct for the lipid effect by extracting lipids from samples before analysis, or a posteriori, through mathematical corrections (Post, 2002). Therefore, δ13C values were reported as uncorrected, lipid-extracted, or mathematically-corrected. When available, the total organic carbon to nitrogen ratio (C:N) was included. For each data record, we also provided the sampling location, geographic coordinates, month and year of sample collection, method of sample collection, taxonomic ranks (phylum, class, order, family), number and size (or size range) of sampled organisms, as well as the reference and DOI of the original data source, for further details on the samples analysed and/or the analytical techniques used.