API src

Found 108 results.

Related terms

Ressortforschungsplan 2024, Aktualisierung der Datengrundlage für die Berichterstattungspflichten zu den Übereinkommen von Stockholm und Minamata: POP- und Quecksilber-Emissionen in Luft, Wasser, Boden, Produkte, Abfall

Das Projekt "Ressortforschungsplan 2024, Aktualisierung der Datengrundlage für die Berichterstattungspflichten zu den Übereinkommen von Stockholm und Minamata: POP- und Quecksilber-Emissionen in Luft, Wasser, Boden, Produkte, Abfall" wird/wurde gefördert durch: Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (BMUV) , Umweltbundesamt (UBA). Es wird/wurde ausgeführt durch: Ramboll Deutschland GmbH.Überarbeitung der Quelleninventare, die für die POP-Emissionsberichterstattung genutzt werden, um zusätzlich zu den bereits berichteten Emissionen in die Luft auch Emissionen in Wasser, Boden, Produkte und Abfall berichten zu können. Erhebung dieser Daten für die Quecksilber-Berichterstattung. Hierzu sollen die bereits für andere Zwecke erhobenen Daten gesichtet und genutzt werden. Das Vorhaben entwickelt für die zusätzlich zu erhebenden Daten eine Strategie zur Identifizierung geeignter Datenquellen und deren geeigneter Nutzung für anstehende Berichterstattungen nach Artikel 15 des Stockholm Übereinkommens und Artikel 21 des Minamata Übereinkommens.

Messen geringer Quecksilberkonzentrationen im Abgas von industriellen Prozessen zur Ermittlung neuer Verfahrenskenngrößen für das Standardreferenzverfahren nach EN 13211 (2001) sowie das Alternativverfahren nach CEN/TS 17286 (2019) (Sorbent Traps)

Das Projekt "Messen geringer Quecksilberkonzentrationen im Abgas von industriellen Prozessen zur Ermittlung neuer Verfahrenskenngrößen für das Standardreferenzverfahren nach EN 13211 (2001) sowie das Alternativverfahren nach CEN/TS 17286 (2019) (Sorbent Traps)" wird/wurde gefördert durch: Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (BMUV) , Umweltbundesamt (UBA). Es wird/wurde ausgeführt durch: VDZ Service GmbH.Metallisches Quecksilber und Quecksilberverbindungen können sich bei technischen Prozessen als Gase freisetzen und durch Partikelbindungen und Auswaschungen letztlich in die Nahrungskette (insbesondere als Methylquecksilber) Eingang finden. Einzelmessungen für die Feststellung der Emission sowie das Referenzverfahren für die Kalibrierung kontinuierlicher Messeinrichtungen werden durch die DIN EN 13211:2001 beschrieben. Gleichzeitig wurde ein neues Verfahren in die internationalen Richtlinien in Form der CEN/TS 17286 aufgenommen, welches in den USA entwickelt und seit wenigen Jahren genutzt wird (Sorbent-Trap-Methode). Diese Methode könnte als alternatives Verfahren zur DIN EN 13211 eingesetzt werden, soweit die Validierung für eine Konzentration kleiner 10 mikro g/m3 im Rauchgas erfolgreich ist. Um ein verbessertes SRM-Verfahren in der Emissionsüberwachung rechtssicher und regelkonform einsetzen zu können, sind neue Validierungsmessungen durch zugelassene Messstellen erforderlich. Ziel ist es, die Eignung beider Verfahren für die Überwachung zukünftig geringerer Emissionsgrenzwerte für Quecksilber zu prüfen. Wesentlicher Arbeitsinhalt ist es, dass drei unabhängige §29b Messstellen zeitgleich Quecksilbermessungen nach DIN EN 13211 und CEN/TS 17286 an industriellen Anlagen durchführen. Dabei wird auf ein großes Spektrum in den Abgasmatrices bei zu erwartender geringer Quecksilberemission geachtet. So sollen neue Verfahrenskenngrößen, wie die Nachweis- und Bestimmungsgrenze als auch die Messunsicherheit ermittelt werden. Diese Kenngrößen sollen das Gesamtverfahren der Messung abdecken und aufzeigen, welche Emissionsbegrenzungen mit der jeweiligen Methode überwachbar sind.

Reduktion von Quecksilberemissionen bei der Herstellung von Zement

Das Projekt "Reduktion von Quecksilberemissionen bei der Herstellung von Zement" wird/wurde gefördert durch: Deutsche Bundesstiftung Umwelt. Es wird/wurde ausgeführt durch: Steinmüller Engineering GmbH.Zielsetzung: Die Anwesenheit von Quecksilber bei der Herstellung von Zement(klinker) ist unvermeidlich, es stammt zu ca. 60% aus den Roh- und 40% aus den Brennstoffen. Ein Teil des anfallenden Ofenstaubes muss aus dem Filter vor dem Kamin ausgeschleust werden ('Queckslbersenke'), damit Hg im Prozess nicht überkonzentriert wird. Der aktuelle Stand der Technik beseitigt nicht das Quecksilber-Problem: Der kontaminierte Staub wird gemeinsam mit dem Zementklinker und Additiven zu Zement vermahlen und das Hg später bei Betonkorrosion, Bau-Abriß bzw. -zerfall an die Umwelt freigesetzt, weil Hg im Zement nicht chemisch, sondern nur physikalisch gebunden wird. Es wurden bereits Verfahren entwickelt, bei denen Hg gasförmig aus dem Abgas entfernt und dann an einem Additiv immobilisiert wird. Nachteile: Geringe Abscheideraten (zusätzliche Reinigungsstufe im Abgas nach Filter) oder - bei guten Abscheideratenhohe Investitionskosten, hoher Druckverlust, großes Gewicht und damit schwierig integrierbar in laufende Zementwerke. Die Zielsetzung des Fördervorhabens ist deshalb, sowohl die prozessbedingten Probleme als auch die mit den bekannten Minderungstechniken einhergehenden Nachteile zu lösen und zu beseitigen. Die vorgestellte Technik unterscheidet sich deutlich von den wie vor beschriebenen Techniken und weist mehrere Vorteile auf, die eine Implementierung einer neuen Technik für künftige Hg-Abscheidung im Zementprozess aufgrund niedriger Investitions- und Betriebskosten beschleunigen kann: - Das System arbeitet außerhalb des Produktionsprozesses und vermeidet damit Druck- und Wärmeverluste im Produktionsprozess - Die Installation eines Heißgasfilters in großer Höhe ist nicht erforderlich - Das System arbeitet bei der niedrigst-möglichen Temperatur, die nach Laborversuchen bei ca. 350 Grad C beträgt, bei einem Abscheidegrad von über 90 %. - Das System kann auf dem Erdboden bzw. nah am Staubfilter installiert werden, dadurch ergeben sich kurze Transportwege für den beladenen Filterstaub. - Sowohl die Investitions- als auch die Betriebskosten sind deutlich geringer als bei vergleichbaren Verfahren der Staubbehandlung; somit ergibt sich ein wesentlich günstigeres Verhältnis 'Kosten - Wirkung' - Der gereinigte Filterstaub kann vollständig in den Prozess rückgeführt werden, dies erspart Primärrohstoffe sowie Energie zur Aufbereitung der Rohstoffe. Bei dem neuen Verfahren wird nicht Gas, sondern mit Hg beladener Filterstaub behandelt, der einem Drehherdofen zugeführt wird. Drehherdöfen werden bereits in der Industrie zur schonenden Wärmebehandlung von Pulvern und Stäuben eingesetzt. Der Ofen wird bei der Temperatur betrieben, bei der das Hg nahezu quantitativ in die Gasphase überführt wird. Der Staub darf dabei nicht aufgewirbelt werden, damit nicht der Einsatz eines weiteren Filters erforderlich wird. Der Hg-beladene Rohmehl-Zementstaub wird durch eine Aufgabevorrichtung auf den äußeren Rand des Drehherdofens dosiert, wandert langsam - durch Umlenkschaufeln umgewälzt - auf dem Teller von außen nach innen und wird dabei von unten indirekt bis auf ca. 350 0 C - 400 0 C aufgeheizt. Die Wärme zum Aufheizen soll aus bisher nicht genutzter Abwärme (z.B. aus der Klinkerkühlung) bestehen, sodass als zusätzlicher Effekt auch die Energieeffizienz gesteigert werden kann. Dabei wird das komplette, unterschiedlich chemisch gebundene Quecksilber gasförmig aus dem Staub ausgetrieben und dabei von einer sehr schwachen Schleierluft, die über das Gut hinweg streicht, aus dem Ofen nach oben ausgetragen. Danach lässt sich das Gas nach leichter Abkühlung mit herkömmlicher Abscheidetechnik über z.B. ein bromdotiertes Festbett-Aktivkohlefilter über ein sehr kleines Zusatzgebläse wieder in den Prozess zurückgeben. Der nun ebenfalls nahezu quecksilberfreie Filterstaub kann als zusätzlich gewonnener Rohstoff in den Prozess zurückgeführt, vorzugsweise in den Zyklonvorwärmer. (Text gekürzt)

Messung der nassen Quecksilberdeposition unter dem Kronendach von Wäldern

Quecksilber (Hg) ist ein persistenter toxischer Schadstoff, der über die ⁠ Atmosphäre ⁠ in Ökosysteme eingetragen wird (⁠ Deposition ⁠) und sich dort anreichern kann. Die Publikation zeigt erstmalige Messungen der nassen Hg-Deposition unter dem Kronendach von Wäldern über den Zeitraum eines Jahres in Deutschland. Die erhobenen Daten zur nassen Deposition werden genutzt, um die Prozesse und Dynamiken des Hg-Eintrages in Waldökosystemen besser zu verstehen. Ziel ist es, den Einfluss der Hg-Deposition auf Ökosysteme besser bewerten und ggf. Empfehlungen zur Minderung von Hg-Emissionen ableiten zu können. Veröffentlicht in Texte | 135/2024.

Fraktionierung, Speziierung, Umwandlungsprozesse und Mobilität von Quecksilber in Sedimenten und Schwebstoffen deutscher Fließgewässer

Das Projekt "Fraktionierung, Speziierung, Umwandlungsprozesse und Mobilität von Quecksilber in Sedimenten und Schwebstoffen deutscher Fließgewässer" wird/wurde gefördert durch: Bundesministerium für Digitales und Verkehr. Es wird/wurde ausgeführt durch: Bundesanstalt für Gewässerkunde.Veranlassung Das Projekt soll die BfG handlungsfähiger bei der Bearbeitung aktuell dringlicher Fragestellungen im Bereich Biogeochemie von Hg machen, auf internationalem Niveau vorhandene Wissenslücken zur Hg-Speziierung in Sedimenten und Schwebstoffen schließen und ermöglichen, Sicherheit über mögliche Einflüsse von Unterhaltungsmaßnahmen der WSV und der Länder zu gewinnen, um diese letztlich in Managementvorschläge oder Handlungsanweisungen einfließen zu lassen. Da die routinemäßig praktizierte Messung von Gesamt-Hg-Konzentrationen nicht ausreicht, um verlässliche Risikoabschätzungen und Vorhersagen zum Verhalten von Hg in Fließgewässern machen zu können, wird neben der Entwicklung empfindlicher und robuster Analysemethoden für Methyl-Hg eine Charakterisierung anorganischer Hg-Verbindungen in Sedimenten und Schwebstoffen sowie die Untersuchung der für die Hg-Methylierung relevanten Mikroorganismen an Feldproben und Proben aus Laborexperimenten durchgeführt. Ziele - Untersuchung von Hg-Bindungsformen in Sedimenten/Schwebstoffen und ihrer Mobilität/Bioverfügbarkeit unter wechselnden Umweltbedingungen - Bestimmung des Methyl-Hg-Anteils am Gesamt-Hg-Gehalt in Wasser und Sedimenten/Schwebstoffen - Identifikation von Hotspots für die Methyl-Hg-Bildung in Bundeswasserstraßen - Untersuchung von Mikroorganismengemeinschaften und ihrem Einfluss auf Hg-Speziesumwandlungen - Aufklärung der Umweltfaktoren, die Balance von Hg-Methylierung und Demethylierung kontrollieren - experimentelle Bestimmung des Einflusses von Störungen der Sediment/Wasser-Grenzschicht auf Hg-Spezies-Dynamik Der chemische Zustand von Fließgewässern wird gegenwärtig deutschlandweit als ‘nicht gut’ eingestuft. Ein Grund dafür ist die Überschreitung der EU-Umweltqualitätsnorm für Quecksilber (Hg) in Biota, trotz deutlicher Reduktionen der direkten Hg-Einträge in Fließgewässer in den letzten Jahrzehnten. Die historische Belastung der Gewässersedimente stellt vermutlich eine Hauptursache für die anhaltend erhöhten Hg-Konzentrationen in Biota dar. Die zugrundeliegenden biogeochemischen Prozesse und Transportpfade von Hg (Schwebstoff Sediment Biota) sind jedoch komplex und nur ungenügend verstanden. Welche biogeochemischen Prozesse und Umweltfaktoren führen dazu, dass trotz sinkender Quecksilber-Emissionen die EU-Umweltqualitätsnorm in deutschen Fließgewässern flächendeckend überschritten wird?

Lausitz Energie Kraftwerke AG - Errichtung und Betrieb einer Anlage zur Herstellung einer Aktivkohle-Wasser-Suspension zur Einspülung in die REA-Wäscher und Änderung der bestehenden Aktivkohledosierung in den Rauchgasstrom vor Elektrofilter am Standort 04575 Neukieritzsch, OT Lippendorf

Gegenstand des Vorhabens ist die Errichtung und der Betrieb einer Anlage zur Herstellung einer Aktivkohle-Wasser-Suspension zur Einspülung in die REA-Wäscher und Änderung der bestehenden Aktivkohledosierung in den Rauchgasstrom vor Elektrofilter (E-Filter) zur weiteren Reduzierung der Quecksilberemissionen im Rauchgas am Standort 04575 Neukieritzsch, OT Lippendorf. Dazu werden vorhandene Aktivkohlelager- und Dosieranlagen für die Dosierung in den Rauchgasstrom vor E-Filter angepasst. Neue Ausrüstungen sind Förderleitungen zur REA, Pufferspeicher und Komponenten zum Herstellen/Einspülen des Aktivkohle-Wasser-Gemisches in die Wäscher der Rauchgasentschwefelungsanlagen.

Messung der nassen Quecksilberdeposition unter dem Kronendach von Wäldern

Quecksilber (Hg) ist ein persistenter toxischer Schadstoff, der über die Atmosphäre in Ökosysteme eingetragen wird (Deposition) und sich dort anreichern kann. Die Publikation zeigt erstmalige Messungen der nassen Hg-Deposition unter dem Kronendach von Wäldern über den Zeitraum eines Jahres in Deutschland. Die erhobenen Daten zur nassen Deposition werden genutzt, um die Prozesse und Dynamiken des Hg-Eintrages in Waldökosystemen besser zu verstehen. Ziel ist es, den Einfluss der Hg-Deposition auf Ökosysteme besser bewerten und ggf. Empfehlungen zur Minderung von Hg-Emissionen ableiten zu können.

Schwermetall-Emissionen

Hochwirksame Staubminderungsmaßnahmen und die Stilllegung veralteter Produktionsstätten in den neuen Bundesländern führten seit 1990 zu einer erheblichen Minderung der verbrennungsbedingten Schwermetall-Emissionen. Entwicklung seit 1990 Die Emissionen der wichtigsten Schwermetalle (Cadmium, Blei und Quecksilber) sanken seit 1990 deutlich. Die Werte zeigen überwiegend Reduktionen von über 60 bis über 90 %. Der Großteil der hier betrachteten Reduktion erfolgte dabei in den frühen 1990-er Jahren, wobei wesentliche Reduktionen auch schon vor 1990 stattfanden. Vor allem die dabei angewandten hochwirksamen Staub- und Schwefeldioxid (SO 2 ) -Minderungsmaßnahmen führten zu einer erheblichen Verringerung der Schwermetallemissionen zunächst in den alten und, nach der Wiedervereinigung, auch in den neuen Ländern, einhergehend mit Stilllegungen veralteter Produktionsstätten. In den letzten Jahren sieht man, bis auf wenige Ausnahmen, kaum weitere Verringerungen der Schwermetall-Emissionen (siehe Abb. und Tab. „Entwicklung der Schwermetall-Emissionen“). Während die Blei-Emissionen bis zum endgültigen Verbot von verbleitem Benzin im Jahre 1997 rapide zurückgingen, folgten Zink, Kupfer und Selen im Wesentlichen der Entwicklung der Fahrleistungen im Verkehrssektor, die im langfristigen Trend seit 1990 anstieg. Entwicklung der Schwermetall-Emissionen Quelle: Umweltbundesamt Diagramm als PDF Tab: Entwicklung der Schwermetall-Emissionen Quelle: Umweltbundesamt Tabelle als PDF zur vergrößerten Darstellung Herkunft der Schwermetall-Emissionen Schwermetalle finden sich – in unterschiedlichem Umfang – in den staub- und gasförmigen Emissionen fast aller Verbrennungs- und vieler Produktionsprozesse. Die in den Einsatzstoffen teils als Spurenelemente, teils als Hauptbestandteile enthaltenen Schwermetalle werden staubförmig oder gasförmig emittiert. Die Gesamtstaubemissionen aus diesen Quellen bestehen zwar in der Regel überwiegend aus relativ ungefährlichen Oxiden, Sulfaten und Karbonaten von Aluminium, Eisen, Kalzium, Silizium und Magnesium; durch toxische Inhaltsstoffe wie Cadmium, Blei oder Quecksilber können diese Emissionen jedoch ein hohes Gefährdungspotenzial erreichen. Verursacher Die wichtigste Quelle der meisten Schwermetalle ist der Brennstoffeinsatz im Energie-Bereich. Bei Arsen, Quecksilber und Nickel hat die Energiewirtschaft den größten Anteil, gefolgt von den prozessbedingten Emissionen der Industrie, vor allem aus der Herstellung von Metallen. Cadmium stammt sogar größtenteils aus der Metall-Herstellung. Blei-, Chrom-, Kupfer- und Zink- Emissionen werden überwiegend durch den Abrieb von Bremsen und Reifen im Verkehrsbereich beeinflusst: die Trends korrelieren hier direkt mit der jährlichen ⁠ Fahrleistung ⁠. Selen hingegen stammt hauptsächlich aus der Mineralischen Industrie, gefolgt von den stationären und mobilen Quellen der Kategorie Energie. Andere Quellen müssen noch untersucht werden, es wird jedoch erwartet, dass sie die Gesamtentwicklung kaum beeinflussen. Verpflichtungen Das 1998er Aarhus Protokoll über Schwermetalle unter dem CLRTAP ist Ende 2003 in Kraft getreten. Es wurde im Dezember 2012 revidiert und an den Stand der Technik angepasst. Es zielt auf drei besonders schädliche Metalle ab: Cadmium, Blei und Quecksilber. Laut einer der grundlegenden Verpflichtungen muss Deutschland seine Emissionen für diese drei Metalle unter das Niveau von 1990 reduzieren. Das Protokoll betrachtet die Emissionen aus industriellen Quellen (zum Beispiel Eisen- und Stahlindustrie, NE-Metall-Industrie), Verbrennungsprozessen (Stromerzeugung, Straßenverkehr) und aus Müllverbrennungsanlagen. Es definiert Grenzwerte für Emissionen aus stationären Quellen (zum Beispiel Kraftwerken) und verlangt die besten verfügbaren Techniken (BVT) für diese Quellen zu nutzen, etwa spezielle Filter oder Wäscher für die stationäre Verbrennung oder Quecksilber-freie Herstellungsprozesse. Das Protokoll verpflichtet die Vertragsparteien weiterhin zur Abschaffung von verbleitem Benzin. Es führt auch Maßnahmen zur Senkung von Schwermetall-Emissionen aus Produkten auf (zum Beispiel Quecksilber in Batterien) und schlägt Management-Maßnahmen für andere quecksilberhaltige Produkte wie elektrische Komponenten (Thermostate, Schalter), Messgeräte (Thermometer, Manometer, Barometer), Leuchtstofflampen, Amalgam, ⁠ Pestizide ⁠ und Farben vor. Viele dieser Maßnahmen wurden in Deutschland jedoch schon deutlich früher umgesetzt, so dass bereits in den frühen 90er Jahren deutliche Reduktionen der wichtigen Schwermetalle zu verzeichnen sind.

Emissionen von Wärmekraftwerken und anderen Verbrennungsanlagen

Deutschland verpflichtete sich 2003 mit der Zeichnung des PRTR-Protokolls dazu, ein Register über Schadstofffreisetzungen und -transporte aufzubauen. Hierzu berichten viele Industriebetriebe jährlich dem UBA über Schadstoffemissionen und die Verbringung von Abwässern und Abfällen. Das UBA bereitet diese Daten in einer Datenbank für Bürgerinnen und Bürger auf. Umweltbelastende Emissionen aus Wärmekraftwerken und anderen Verbrennungsanlagen Wärmekraftwerke und andere Verbrennungsanlagen, die mit fossilen Brennstoffen (insbesondere Steinkohle, Braunkohle, Erdgas) oder biogenen Brennstoffen betrieben werden, sind bedeutende Verursacher von umweltbelastenden Emissionen. Sie sind verantwortlich für einen erheblichen Teil des Ausstoßes an Kohlendioxid (CO₂), Stickstoffoxiden (NO x ) und Schwefeloxiden (SO x ). Die Kohleverbrennung ist zudem die wichtigste Emissionsquelle für das Schwermetall Quecksilber (Hg). Das Schadstofffreisetzungs- und -verbringungsregister (PRTR) in Deutschland Industriebetriebe müssen jährlich dem Umweltbundesamt (⁠ UBA ⁠) sowohl über ihre Emissionen in Luft, Wasser und Boden berichten, als auch darüber, wie viele Schadstoffe sie in externe Abwasserbehandlungsanlagen weiterleiten und wie viele gefährliche Abfälle sie entsorgen. Die Betriebe müssen nicht über jeden Ausstoß und jede Entsorgung berichten, sondern nur dann, wenn der Schadstoffausstoß einen bestimmten Schwellenwert oder der Abfall eine gewisse Mengenschwelle überschreitet. In diesem Artikel werden Wärmekraftwerke und andere Verbrennungsanlagen mit einer Feuerungswärmeleistung von über 50 Megawatt (⁠ MW ⁠), die von Anhang I, Nummer 1.c) der Europäischen ⁠ PRTR ⁠-Verordnung erfasst werden, betrachtet. Das Umweltbundesamt (UBA) sammelt die von Industriebetrieben gemeldeten Daten in einer Datenbank: dem Schadstofffreisetzungs- und -verbringungsregister PRTR ( P ollutant R elease and T ransfer R egister). Das UBA leitet die Daten dann an die Europäische Kommission weiter und macht sie im Internet unter der Adresse https://thru.de der Öffentlichkeit frei zugänglich. Es gibt drei Rechtsgrundlagen für die PRTR-Berichterstattung: das PRTR-Protokoll der Wirtschaftskommission der Vereinten Nationen für Europa (⁠ UN ⁠ ECE) vom 21. Mai 2003, die Europäische Verordnung 166/2006/EG vom 18. Januar 2006 und das deutsche PRTR-Gesetz vom 6. Juni 2007, das durch Artikel 1 des Gesetzes vom 9. Dezember 2020 geändert worden ist. Erfasst werden im PRTR industrielle Tätigkeiten in insgesamt neun Sektoren. Einer davon ist der Energiesektor, zu dem die hier dargestellten Wärmekraftwerke und andere Verbrennungsanlagen gehören. Für das aktuelle Berichtsjahr 2022 waren in Deutschland insgesamt 140 Betriebe mit einer Feuerungswärmeleistung von mehr als 50 Megawatt (MW) und mit Luftemissionen nach PRTR berichtspflichtig (siehe Karte „Standorte von PRTR-berichtspflichtigen Kraftwerken mit Luftemissionen im Jahr 2022“). Die Aussagekraft des PRTR ist jedoch begrenzt. Drei Beispiele: Energieerzeuger müssen nicht über den eingesetzten Brennstoff informieren; die PRTR-Daten lassen sich also nicht etwa nach Braun- oder Steinkohle aufschlüsseln. Unternehmen berichten nicht über Kohlendioxid (CO₂)- oder Schadstoffemissionen einer einzelnen Industrieanlage oder eines Kessels, sondern über die Gesamtheit aller Anlagen einer „Betriebseinrichtung“. Unter einer Betriebseinrichtung versteht man eine oder mehrere Anlagen am gleichen Standort, die von einer natürlichen oder juristischen Person betrieben werden. Das PRTR gibt Auskunft über die Emissionsmengen der einzelnen Betriebseinrichtungen, nicht aber zu den installierten Kapazitäten und deren Effizienz oder Umweltstandards. Kohlendioxid-Emissionen in die Luft Kohlendioxid (CO₂)-Emissionen entstehen vor allem bei der Verbrennung fossiler Energieträger. Somit gehören Wärmekraftwerke und andere stationäre Verbrennungsanlagen zu den bedeutenden Quellen dieses Treibhausgases. Dies ist auch im ⁠ PRTR ⁠ erkennbar. Nicht jeder Betreiber muss CO₂-Emissionen melden. Für die Freisetzung von CO₂ in die Luft gilt im PRTR ein Schwellenwert von 100.000 Tonnen pro Jahr (t/Jahr). Erst wenn ein Betrieb diesen Wert überschreitet, muss er dem Umweltbundesamt die CO₂-Emissionsfracht melden. In den Jahren 2007 bis 2022 meldeten jeweils zwischen 120 und 156 Betreiber von Wärmekraftwerken und andere Verbrennungsanlagen CO₂-Emissionen an das PRTR. Das Jahr 2009 fiel in der Zeitreihe hinsichtlich der freigesetzten Mengen heraus, da in diesem Jahr aufgrund der Wirtschaftskrise und der daraus folgenden geringeren Nachfrage nach Strom und Wärme weniger Brennstoffe in den Anlagen eingesetzt wurden. Der zeitweilige Anstieg der Emissionsfrachten nach 2009 ist der wirtschaftlichen Erholung geschuldet. Im Berichtszeitraum war die Zahl meldender Wärmekraftwerke und anderer Verbrennungsanlagen im Jahr 2021 mit 120 Betrieben am niedrigsten; wohingegen die niedrigste berichtete Gesamtemissionsfracht mit 178 Kilotonnen aus dem Jahr 2020 stammt. Von 2016 bis 2020 ging die Anzahl meldender Wärmekraftwerke und anderer Verbrennungsanlagen sowie der Anteil der berichteten Gesamtemissionsfracht stetig zurück (siehe Abb. „Kohlendioxid-Emissionen aus Kraftwerken in die Luft und Zahl der im PRTR meldenden Kraftwerke“). In den Jahren 2021 und 2022 stieg dagegen der Einsatz von Stein- und Braunkohlen in Großfeuerungsanlagen wieder an, während der Erdgaseinsatz aufgrund der deutlich gestiegenen Gaspreise abnahm. Das führte in der Summe zu einer merklichen Erhöhung der CO₂ Emissionen. Die Anzahl der CO₂-meldenden Kraftwerke stieg 2022 im Vergleich zum Vorjahr um 1 Anlage. Hier wirken zwei gegenläufige Effekte: Zum einen fallen einige Erdgasanlagen aufgrund des verringerten Brennstoffeinsatzes unter den Schwellenwert für die CO₂-Berichtspflicht im PRTR von 100.000 Tonnen pro Jahr. Zum anderen wurden bereits abgeschaltete Kohlekraftwerke krisenbedingt als befristete Strommarktrückkehrer wieder in Betrieb genommen. Die Frachtangaben zu CO₂ im PRTR basieren größtenteils auf Berechnungen der Betreiber. Als Grundlage dienen Brennstoffanalysen zur Bestimmung des Kohlenstoffgehaltes. CO₂ Messungen im Abgas werden nur selten vorgenommen. Die Karte „Standorte von PRTR-berichtspflichtigen Kraftwerken mit Kohlendioxid-Emissionen in die Luft 2022“ erfasst alle 121 Betriebe, die im Jahr 2022 mehr als 100.000 Tonnen CO₂ in die Luft freisetzten. Die Signaturen in der Karte zeigen die Größenordnung der jeweils vom Betrieb freigesetzten CO₂-Menge: 80 dieser Betriebe setzten jeweils zwischen > 100 und 1.000 Kilotonnen (kt) CO₂ frei, 33 dieser Betriebe emittierten zwischen 1.001 und 5.000 kt CO₂, sieben Betriebe setzten zwischen 5.001 und 20.000 kt CO₂ frei und ein Betrieb sogar mehr als 20.000 kt CO₂. Kohlendioxid-Emissionen aus Kraftwerken in die Luft und Zahl der im PRTR meldenden Kraftwerke Quelle: Umweltbundesamt Diagramm als PDF Diagramm als Excel mit Daten Karte: Standorte von PRTR-berichtspflichtigen Kraftwerken mit Kohlendioxid-Emissionen in die Luft Quelle: Umweltbundesamt Stickstoffoxid-Emissionen in die Luft Stickstoffoxide (Stickstoffmonoxid und Stickstoffdioxid, gerechnet als Stickstoffdioxid und abgekürzt mit NO x , schädigen die Gesundheit von Mensch, Tier und Vegetation in vielfacher Weise. Im Vordergrund steht die stark oxidierende Wirkung von Stickstoffdioxid (NO 2 ). Außerdem tragen einige Stickstoffoxide als Vorläuferstoffe zur Bildung von bodennahem Ozon und sekundärem Feinstaub bei, wirken überdüngend und versauernd und schädigen dadurch auch mittelbar die Vegetation und den Boden. Berichtspflichtig im ⁠ PRTR ⁠ sind NO x -Emissionen in die Luft ab einem Schwellenwert von größer 100.000 Kilogramm pro Jahr (kg/Jahr). In den Jahren von 2007 bis 2022 ging die Anzahl Stickstoffoxid-Emissionen meldender Betriebe von 157 auf 100 Wärmekraftwerke und andere Verbrennungsanlagen zurück. Seit 2013 ist ein Rückgang der berichteten NO x -Gesamtemissionen im PRTR von 209 Kilotonnen (kt) auf 115 Kilotonnen (kt) in 2022 zu beobachten. Der auffallende niedrige Wert berichteter NO x -Gesamtemissionen iHv. 101 Kilotonnen (kt) im Jahr 2020 ist der besonderen Situation dieses Jahres geschuldet. Einerseits nahm der Stromverbrauch aufgrund der Corona-Pandemie ab und der Stromexport verringerte sich. Andererseits legte die Stromerzeugung aus erneuerbaren Energieträgern zu. Das führte in der Summe zu einem erheblichen Rückgang des Kohleeinsatzes. Im Jahr 2021 führte die wirtschaftliche Erholung und die geringe Stromerzeugung aus Windenergie zu einer Erhöhung der Brennstoffeinsätze und entsprechend zu einer Emissionssteigerung. Im Jahr 2022 kam es nochmals zu einer Erhöhung der berichteten Gesamtemissionsfracht um rund 5 % (siehe Abb. „Stickstoffoxid-Emissionen aus Kraftwerken in die Luft und Zahl der im PRTR meldenden Kraftwerke“). Der Anstieg im Jahr 2022 lässt sich im Wesentlichen mit dem Brennstoffwechsel von Gas zu Kohle erklären. Außerdem vervielfachte sich der Einsatz von Ölprodukten, ebenfalls als Ersatz für Erdgas. Flüssige Brennstoffe weisen höhere spezifische NO x Emissionen auf, als Erdgas. Dennoch dämpft die NO X Grenzwertverschärfung im Zuge der Novelle der 13. ⁠ BImSchV ⁠ den Emissionsanstieg. Im Jahr 2022 sind die spezifischen Emissionsfaktoren für alle Brennstoffe gesunken. Die Frachtangaben zu NO x im PRTR basieren größtenteils auf Messungen der Betreiber. Die Karte „Standorte von PRTR-berichtspflichtigen Kraftwerken mit Stickstoffoxid-Emissionen in die Luft 2022“ erfasst alle 100 Betriebe, die im Jahr 2022 mehr als 100 t Stickstoffoxid (t NO x ) in die Luft freisetzten. Die Signaturen in der Karte zeigen die jeweilige Größenordnung der vom Betrieb in die Luft freigesetzten Stickstoffoxid-Mengen: 37 Betriebe setzten zwischen > 100 und 200 t NO x frei, 23 Betriebe emittierten jeweils zwischen 201 und 500 t NO x , 20 Betriebe emittierten zwischen 501 und 1.000 t NO x , die beachtliche Anzahl von 16 Betrieben stießen zwischen 1.000 und 10.000 t NO x aus und vier Betriebe meldeten eine Freisetzung von mehr als 10.000 t NO x . Stickstoffoxid-Emissionen aus Kraftwerken in die Luft und Zahl der im PRTR meldenden Kraftwerke Quelle: Umweltbundesamt Diagramm als PDF Diagramm als Excel mit Daten Karte: Standorte von PRTR-berichtspflichtigen Kraftwerken mit Stickstoffoxid-Emissionen in die Luft Quelle: Umweltbundesamt Schwefeloxid-Emissionen in die Luft Schwefeloxide (wie zum Beispiel SO 2 , im Folgenden nur SO x genannt) entstehen überwiegend bei Verbrennungsvorgängen fossiler Energieträger wie zum Beispiel Kohle. Schwefeloxide können Schleimhäute und Augen reizen und Atemwegsprobleme verursachen. Sie können zudem aufgrund von Ablagerung in Ökosystemen eine ⁠ Versauerung ⁠ von Böden und Gewässern bewirken. Der Schwellenwert für im ⁠ PRTR ⁠ berichtspflichtige SO x -Emissionen in die Luft beträgt größer 150.000 Kilogramm pro Jahr (kg/Jahr). In den Jahren von 2007 bis 2022 meldeten jeweils zwischen 42 und 80 Wärmekraftwerke und andere Verbrennungsanlagen Schwefeloxidemissionsfrachten. In den Jahren 2007 und 2013 war der höchste Stand der Gesamtfrachten mit jeweils 157 Kilotonnen (kt) zu verzeichnen. Die Zahl meldender Wärmekraftwerke und anderen Verbrennungsanlagen ist seit 2013 kontinuierlich rückläufig und erreichte 2020 mit 42 meldenden Betrieben den niedrigsten Stand. Das Jahr 2020 stellt zudem mit berichteten 54 Kilotonnen (kt) das Jahr mit der niedrigsten Gesamtemissionsfracht in der Zeitreihe dar. Der auffallende niedrige Wert berichteter SO x -Gesamtemissionen im Jahr 2020 hat verschiedene Ursachen. Aufgrund der Corona-Pandemie nahm der Stromverbrauch merklich ab. Die Stromerzeugung sank noch stärker, da weniger Strom exportiert wurde. Der Einsatz von Stein- und Braunkohlen ging spürbar zurück. Dagegen stieg der Einsatz von emissionsärmerem Erdgas aufgrund von unterjährig gesunkenen Gaspreisen und vergleichsweise hohen CO₂ Zertifikatspreisen leicht an. Die Stromerzeugung aus erneuerbaren Energieträgern nahm ebenfalls zu. 2022 nahm im Vergleich zum vorangegangen Jahr 2021 die Anzahl meldender Wärmekraftwerke und anderen Verbrennungsanlagen um rund 10 % zu, der Anteil der berichteten Gesamtemissionsfracht hingegen um rund 2 % ab (siehe Abb. “Schwefeloxid-Emissionen aus Kraftwerken in die Luft und Zahl der im PRTR meldenden Kraftwerke“). Der Hauptgrund für den Emissionsrückgang im Jahr 2022 sind die strengeren Grenzwerte und die höheren Schwefelabscheidegrade in der novellierten Fassung der 13. ⁠ BImSchV ⁠ aus dem Jahr 2021. Bei Betrachtung der gesamten Zeitreihe von 2007 bis 2022 ist jedoch ein Rückgang berichteter Gesamtemissionsfrachten von rund 59 % zu verzeichnen. Der Emissionsrückgang im Zeitraum 2007 bis 2020 ist ähnlich wie bei Stickstoffoxiden im Wesentlichen auf den sinkenden Kohleeinsatz in Wärmekraftwerken zurückzuführen. Besonders stark ging der Steinkohleeinsatz zurück, aber auch der Braunkohleeinsatz verringerte sich signifikant. Dabei verlief die Entwicklung in den einzelnen Revieren unterschiedlich. Am deutlichsten sank der Einsatz der rheinischen Braunkohle. Die mitteldeutsche Braunkohle ging dagegen nur leicht zurück. Aufgrund der unterschiedlichen Schwefelgehalte in den verschiedenen Revieren (rheinische Braunkohle niedriger Schwefelgehalt, mitteldeutsche Braunkohle hoher Schwefelgehalt) korreliert die Emissionsminderung nicht direkt mit der Entwicklung der Brennstoffeinsätze. In den Jahren 2021 und 2022 wurde aufgrund des Kernkraftausstieges und der Gaskriese wieder mehr Stein- und Braunkohle eingesetzt. Dennoch wirkt die gesetzliche Grenzwertverschärfung 2022 deutlich emissionsmindernd. Die Frachtangaben zu SO x im PRTR basieren größtenteils auf Messungen der Betreiber. Die Karte „Standorte von PRTR-berichtspflichtigen Kraftwerken mit Schwefeloxid-Emissionen in die Luft 2022“ erfasst alle 50 Betriebe, die im Jahr 2022 mehr als 150 Tonnen Schwefeloxid (t SO x ) in die Luft freisetzten. Die Signaturen in der Karte zeigen die jeweilige Größenordnung der vom Betrieb in die Luft freigesetzten Schwefeloxid-Mengen: 25 Betriebe setzten zwischen > 150 und 500 t SO x frei, 13 Betriebe emittierten jeweils zwischen 501 und 1.000 t SO x , 11 Betriebe setzten zwischen 1.001 und 10.000 t SO x frei und ein Betrieb meldete eine Freisetzung von mehr als 10.000 t SO x . Schwefeloxid-Emissionen aus Kraftwerken in die Luft und Zahl der im PRTR meldenden Kraftwerke Quelle: Umweltbundesamt Diagramm als PDF Diagramm als Excel mit Daten Karte: Standorte von PRTR-berichtspflichtigen Kraftwerken mit Schwefeloxid-Emissionen in die Luft Quelle: Umweltbundesamt Quecksilber-Emissionen in die Luft Das zur Gruppe der Schwermetalle gehörende Quecksilber (Hg) wird hauptsächlich frei, wenn Energieerzeuger fossile Brennstoffe wie Kohle für die Energieerzeugung verbrennen. Quecksilber und seine Verbindungen sind für Lebewesen teilweise sehr giftig. Die stärkste Giftwirkung geht von Methylquecksilber aus. Diese Verbindung reichert sich besonders in Fischen und Schalentieren an und gelangt so auch in unsere Nahrungskette. Die Zahl der Wärmekraftwerke und anderen Verbrennungsanlagen, die Hg-Emissionen in die Luft an das ⁠ PRTR ⁠ meldeten, pendelte in den Jahren 2007 bis 2022 zwischen 19 und 56. Ein Betreiber muss nur dann berichten, wenn er mehr als 10 Kilogramm Quecksilber pro Jahr (kg/Jahr) in die Luft emittiert. Im Jahr 2009 gingen die Emissionen aufgrund der gesunkenen Nachfrage nach Strom und Wärme zurück. Der Anstieg der Emissionsfrachten von 2009 auf 2010 ist der wirtschaftlichen Erholung geschuldet. Die Zahl meldender Wärmekraftwerke und anderen Verbrennungsanlagen und die berichtete Gesamtemissionsfracht erreichte im Jahr 2020 mit 19 Betrieben bzw. mit 2,37 Tonnen Jahresfracht den niedrigsten Stand innerhalb der Zeitreihe 2007 bis 2022, was den oben genannten Besonderheiten des Jahres 2020 geschuldet ist. Bei Betrachtung der gesamten Zeitreihe von 2007 bis 2022 ist von 2016 bis 2020 ein deutlicher Rückgang der berichteten Gesamtemissionsfrachten um rund 50% zu verzeichnen (siehe Abb. „Quecksilber-Emissionen aus Kraftwerken in die Luft und Zahl der im PRTR meldenden Kraftwerke“). Für den Rückgang der gemeldeten Gesamtemissionsfracht bis 2020 gibt es hauptsächlich zwei Gründe: Den wesentlichen Anteil hat der deutliche Rückgang der Kohleverstromung. Weiterhin trägt die Einführung eines auf das Jahr bezogenen Quecksilbergrenzwertes dazu bei, der erstmals für das Jahr 2019 anzuwenden war, und der deutlich strenger ist als der bisherige und weiterhin parallel geltende auf den einzelnen Tag bezogene Grenzwert. Diese neue Anforderung bewirkt, dass vor allem die Kraftwerke im mitteldeutschen Braunkohlerevier – hier liegen deutlich höhere Gehalte an Quecksilber in der Rohbraunkohle vor als im rheinischen Revier – erhebliche Anstrengungen für eine weitergehende Quecksilberemissionsminderung unternehmen mussten. Infolgedessen kommt es im mitteldeutschen Revier zu einer deutlichen Minderung der spezifischen Quecksilberemissionen. Aber auch im Lausitzer Revier gingen in den Jahren 2019 und 2020 die spezifischen Quecksilberemissionen zurück. Die Gründe für den Rückgang der Anzahl meldender Wärmekraftwerke und anderen Verbrennungsanlagen sind zum einen Anlagenstilllegungen aber auch der verringerte Steinkohleeinsatz in den verbliebenen Anlagen, der dazu führt, dass einige Anlagen unter die Abschneidegrenze fallen. Der Emissionsanstieg den Jahren 2021 und 2022 ist im Wesentlichen auf den angestiegenen Braun- und Steinkohleeinsatz zurückzuführen. Daraus ergibt sich auch eine höhere Anzahl der meldenden Steinkohlenkraftwerke, die den Schwellenwert überschreiten. Im Jahr 2022 wurden im Zuge der Umsetzung der BVT Schlussfolgerungen die gesetzlichen Anforderungen nochmals deutlich verschärft. Von daher kommt es trotz einer Erhöhung des Kohleeinsatzes in Großfeuerungsanlagen von über 8 % nur zu einer leichten Zunahme der Quecksilberemissionen von 0,3 %. Der größte Teil der Betreiber ermittelt die Hg-Luftemissionen über Messungen, ein Teil jedoch auch über Berechnungen. Die Karte „Standorte von PRTR-berichtspflichtigen Kraftwerken mit Quecksilber-Emissionen in die Luft 2022“ erfasst die 23 Betriebe, die nach eigenen Angaben im Jahr 2022 mehr als 10 Kilogramm Quecksilber (kg Hg) in die Luft freisetzten. Die Signaturen in der Karte zeigen die jeweilige Größenordnung der vom Betrieb in die Luft freigesetzten Menge an Quecksilber: 11 Betriebe setzten zwischen > 10 und 20 kg Hg frei, 4 Betriebe emittierten zwischen 21 und 100 kg Hg, 8 Betriebe setzten zwischen 101 und 500 kg Hg. Quecksilber-Emissionen aus Kraftwerken in die Luft und Zahl der im PRTR meldenden Kraftwerke Quelle: Umweltbundesamt Diagramm als PDF Diagramm als Excel mit Daten Karte: Standorte von PRTR-berichtspflichtigen Kraftwerken mit Quecksilber-Emissionen in die Luft Quelle: Umweltbundesamt

Quecksilberbelastung von Umweltproben

Die Quecksilberemissionen sind in Deutschland zwischen 1985 und 1995 um zwei Drittel zurückgegangen. Als Folge dieser Reduzierung hat sich der Zustand der Umwelt verbessert. Die Quecksilberbelastung von Fichtentrieben aus dem saarländischen Warndt ist seit Ende der 1980er stark zurückgegangen. Ein vergleichbarer Trend lässt sich für Silbermöweneier von der Nordsee beobachten. In Möweneiern von der Ostsee ist dagegen ein leichter Anstieg zu verzeichnen. Abnehmende Quecksilbergehalte finden sich auch in Brassen aus Rhein, Elbe und Mulde, während die Belastung von Brassen aus Saar und Saale seit Mitte der 1990er Jahre etwas zugenommen hat. Die Quecksilbergehalte in Fichtentrieben aus dem saarländischen Warndt sind seit Ende der 1980er Jahre um etwa 70% zurückgegangen. Auch in Silbermöweneiern aus dem Schleswig-Holsteinischen Wattenmeer kann zwischen 1988 und 2010 ein etwa 70%-er Rückgang der Quecksilberbelastung festgestellt werden. Ein vergleichbarer Trend lässt sich für Eier von der Insel Mellum beobachten (Abnahme um etwa 50%). Für die in 2011 gefundenen hohen Quecksilberkonzentrationen gibt es bisher keine Erklärung; dieser Befund wurde in Eiproben des Jahres 2012 bestätigt. Dagegen stiegen die Quecksilberkonzentrationen in Möweneiern von der Ostseeinsel Heuwiese in den letzten Jahren leicht an und lagen 2012 um etwa 3% über den Werten von 1993. Insgesamt stellen die derzeit in Silbermöweneiern nachgewiesenen Quecksilbergehalte keine außergewöhnlich hohen Belastungen mehr dar. Auch bei Brassen aus Rhein, Elbe und Mulde ist seit Mitte der 1990er Jahre eine Abnahme der Quecksilberbelastung zu beobachten. Dagegen findet sich bei Brassen aus Saar und Saale ein schwacher gegenläufiger Trend. Abbildung 3 zeigt dies exemplarisch für die Brassen aus den Elbe-Nebenflüssen Saale und Mulde. Alle Daten zur Ergebnisbeschreibung anzeigen Brassen aller Probenahmeflächen wiesen 2020 Quecksilbergehalte weit unterhalb des für Lebensmittel festgelegten Höchstwertes von 500 ng/g Frischgewicht (FG) auf. Die strengere Umweltqualitätsnorm für Biota (20 ng/g FG) wurde dagegen von allen Proben deutlich überschritten. Aktualisiert am: 11.01.2022 Datenrecherche Datenrecherche Datenrecherche Datenrecherche Datenrecherche Datenrecherche Datenrecherche Datenrecherche Datenrecherche Datenrecherche

1 2 3 4 59 10 11