API src

Found 5029 results.

Related terms

Pflanzen- und Landnutzung der früheisenzeitlichen Kulturen in der borealen Zone an der mittleren Kama und denen Auswirkungen auf die Umwelt

Zusammen mit politischen und sozioökonomischen Ursachen sind Klima- und andere Umweltveränderungen die Auslöser kulturellen Wandels. Ein solches Zusammenspiel von Mensch und Umwelt ist besonders stark in Gebieten mit harschen Klimabedingungen. Ein außergewöhnliches Beispiel für solche Wechselwirkungen sind die Kulturen der frühen Eisenzeit in der Borealen Zone an der mittleren Kama im europäischen Vorural. Archäologen haben zwei Hypothesen entwickelt, um die Entwicklung der Früheisenzeitlichen Kulturen zu erklären: (i) günstige Bedingungen, die während des römischen Klimaoptimums im 3. Jahrhundert v. Chr. begannen, führten an der mittleren Kama zu einer raschen Entwicklung der Wirtschaft und Bevölkerungszahl und einer kulturellen Transformation von der Ananyino zur Glyadenovo-Kultur; (ii) die im 4. bis 5. Jahrhundert n. Chr. begonnene Klimaabkühlung verminderte die biologische Produktivität der Landschaft, was eine Konkurrenz um Weiden und Acherflächen auslöste. Dies führte zur Abwanderung von Teilen der Glyadenovo-Bevölkerung aus der Region und zu Transformationen hin zur Nevolino- und Lomovatovo-Kultur. Ich möchte diese Hypothesen anhand paläoökologischer Rekonstruktionen testen. Dafür plane ich die Pflanzen- und Landnutzung der früheisenzeitlichen Gesellschaften in der Region der mittleren Kama sowie ihre Auswirkungen auf Vegetation und Landschaft zu rekonstruieren. Die Forschung wird anhand von radiokarbondatierten on-site und off-site Archiven durchgeführt. Die Multi-Proxy-Analysen werden traditionelle (Palynologie, Glühverlust, Archäobotanik, Anthrakologie, Holzanatomie) und innovative Methoden (Nicht-Pollen-Palynomorphen-Analyse, Makrocharcoal-Analyse, Isotopenstudien) kombinieren. Basierend auf Pollendaten werden Landbedeckungsrekonstruktionen unter Verwendung der Modelle REVEALS, LOVE und dem Multiple Scenario Approach durchgeführt. Die Best-Modern-Analog-Technik wird zur Abschätzung der Klima- und Waldbedeckungsänderung angewendet. Die erhaltenen Daten werden in Bezug auf die Forschungshypothesen ausgewertet. Zum Ende des Projekts werden wir den zeitlichen Verlauf der Pflanzen- und Landnutzung der früheisenzeitlichen Kulturen rekonstruieren, die Wechselwirkungen zwischen Mensch und Umwelt und die Rolle des Klimawandels bei menschlichen Migrationsprozessen bewerten. Die Ergebnisse werden zu unserem Verständnis der Subsistenzwirtschaft der Früheisenzeitlichen Kulturen in der borealen Zone und ihrer Auswirkungen auf die Umwelt beitragen.

Langfristige Nachwirkungen („legacy“) und Grenzen der Trockentoleranz von Buchen/Fichten-Beständen Teil B - Wassertransport entlang des Boden-Pflanze-Atmosphäre-Kontinuums unter letalem Trockenstress

Das „Kranzberg Forest Roof Project“ (KROOF) wird seit 2013 als Paket von drei Einzelanträgen durch die DFG gefördert. Die Expertise der beteiligten Gruppen deckt die Waldwachstumskunde, Ökophysiologie und Rhizosphärenökologie ab. Über das Weave-Programm ist die Universität Innsbruck beteiligt. In der ersten Förderperiode (KROOF 1) wurde in einem adulten Buchen/Fichten-Mischbestand in Süddeutschland ein Austrocknungsexperiment mit ca. 100 Bäumen konzipiert und die Auswirkungen mehrjähriger Sommertrockenheit auf Bäume und ihrer Ektomykorrhizen erfasst. Vergleichend wurde die Anpassung an langjährige Trockenheit an fünf Standorten entlang eines Niederschlagsgradienten untersucht. In der zweiten Förderperiode (KROOF 2) stand die Erholung der Bäume und Bestände im Zentrum. In der nun beantragten dritten Förderperiode sollen die durch Trockenheit vorbehandelten Bäume einer erneuten, potenziell letalen Trockenheit ausgesetzt werden. Damit soll geklärt werden, ob die Bestände durch die vorangegangene Trockenheit angepasst, d.h. weniger empfindlich, gegenüber dem erneuten Trockenstress sind, oder ob sie früher an die Grenzen ihrer Trockentoleranz stoßen und früher letale Schädigungen erleiden als erstmals trockengestresste Bäume. Durch die erneute Austrocknung sollen Mechanismen der Trockentoleranz und Prozesse des Absterbens der Bäume erarbeitet werden. Folgende Hypothesen stehen im Mittelpunkt: „Mixing“-Hypothese: Mischbestände profitieren von struktureller Heterogenität und asynchroner Ressourcennutzung bei Trockenheit. „Weakest link“-Hypothese: Die Anpassung an Wassermangel wird bei extremer Trockenheit durch den Zusammenbruch des schwächsten Glieds im Wassertransport entlang des Boden-Pflanze-Atmosphäre-Kontinuum außer Kraft gesetzt. „Legacy“-Hypothese: Baum-Boden-Systeme, die einer früheren, intensiven Trockenheit ausgesetzt waren, kommen besser mit erneuter Trockenheit zurecht als solche die zum ersten Mal extreme Trockenheit erleiden. Der Schwerpunkt liegt auf ökophysiologischen Untersuchungen zum Wassertransport und -verbrauch von Bäumen und Beständen, wobei auch der Wasserverlust über die Rinde einbezogen wird. Mechanismen und Vulnerabilität des Wassertransports an der Boden/Wurzel-Schnittstelle und innerhalb des Baumes werden zeitlich und räumlich detailliert untersucht, unter besonderer Berücksichtigung der Auswirkungen vorangegangener Trockenheit („Legacy“) und des Einflusses der Ressourcennutzung in Rein- und Mischbeständen.

Transregio (TRR) 410: neuartige Ökosysteme in wiedervernässten Niedermoorlandschaften, Teilprojekt A01: Wurzeln der Torfbildung in Niedermooren

Wir werden die Wurzelauf- und -abbau in wiedervernässten Niedermooren quantifizieren und sie mit abiotischen und biotischen Faktoren in Verbindung bringen, um einen Beitrag zum kausalen Verständnis von Torfbildung, Treibhausgasen und Nährstoffkreisläufen zu leisten. Falls Braunmoose auftreten, werden auch deren Biomasseauf- und -abbau quantifiziert. Neben Jahresumsätzen wird A1 durch den Einsatz von automatisierten Minirhizotronen an den Kernstandorten eine noch nie dagewesene zeitliche Auflösung bei der Bestimmung der Wurzeldynamik erreichen.

Großräumige Integrierte Gesamt-Analyse des tiefengeothermischen Potentials und seiner synergetischen Nutzung im Großraum München, Teilprojekt: TUM: Bewertungsmodell und Management zur synergetischen Reservoirnutzung

Service Request under framework contract of ETIREACH Consortium for services on technical, scientific, health, environmental and socio-economic questions concerning the implementation of REACH Regulation, Service Request on Scoping Study on Safety Data Sheets

REACH Baseline Study: improvement of the satistical coverage of the Risk and Quality indicator system

Forschergruppe (FOR) 5094: Dynamik des tiefen Untergrundes von Hochenergiestränden, Teilprojekt Spurenelemente und Metallisotope: Transformation und Fraktionierung

Durch DynaDeep soll ein Verständnis der Funktionsweise und Relevanz des Land-Meer Übergangs im Untergrund von Hochenergiestränden gewonnen werden. Wir nehmen an, dass dieser einen hoch dynamischen Bioreaktor und ein einzigartiges mikrobiologisches Habitat darstellt und Netto-Stoffflüsse in Richtung Meer stark beeinflusst. Um dieses Ziel zu erreichen, werden sechs Teilprojekte gemeinsam Felduntersuchungen und experimentelle Arbeiten durchführen und diese mit mathematischen Modellen integrativ kombinieren. P4 wird die Dynamik von Spurenmetallen und Metallisotopen im Zusammenhang mit biogeochemischen Prozessen im subterranen Ästuar (STE) auf Spiekeroog untersuchen. Wir werden die Hypothese testen, dass überlappende Redoxzonen, dynamische Änderungen mikrobieller Aktivität und räumlich-zeitliche Änderungen in Redox- und Salinitätsgrenzflächen eindeutige Spurenmetall- und Isotopensignaturen in hochenergetischen Stränden generieren. P4 wird Spurenmetallkonzentrationen (Fe, Mn, Co, Mo, Re, Tl, U, V, Seltenerdelemente) und Fe und Mo Isotope in (Poren-)Wasser und Sedimenten messen. Regelmäßige Feldprobenahmen werden Einblick in die räumlich-zeitlichen Änderungen von Spurenmetall- und Metallisotopen-Mustern unter sich ändernden Randbedingungen liefern. Inkubationsexperimente im Labor sollen genutzt werden, um die Mobilisations-, Retentions- und Fraktionierungsraten zu bestimmen, um die physikochemischen und mikrobiellen Änderungen im Detail zu verstehen, die diese Reaktionen im tiefen bis flachen Untergrund des STEs auf Spiekeroog antreiben. Spurenmetalle und zusätzlich Hauptionen, Nährstoffe und Gesamtalkalinität werden für mathematische Modellierungen (P1, P6), Bestimmung von Reaktionsraten (P2) und biogeochemische Studien in P3 und P5 zur Verfügung gestellt. Gemeinsam sollen die Daten genutzt werden, um zu beurteilen, wie die Transformation und Fraktionierung von Spurenmetallen und Metallisotopen mit der Quelle und dem Alter des Wassers, den Redoxbedingungen und den Eigenschaften von organischer Substanz und der mikrobiellen Gemeinschaft zusammenhängen.

Kombination der Niederschlagsschätzung von opportunistischen Sensoren und geostationären Satelliten

Der Umsetzungsplan der COP27 enthält eine sehr klare Aussage. "Ein Drittel der Welt, darunter 60% von Afrika, hat keinen Zugang zu Frühwarn- und Klimainformationsdiensten". Dies gilt vor allem für niederschlagsbezogene Warnungen. Der Grund dafür ist das fast vollständige Fehlen von Wetterradaren auf in Afrika und die mangelnde Dichte von Niederschlagsmessstationen. Im Gegensatz dazu sind geostationäre Satelliten (GEOsat) und potentiell auch kommerzielle Richtfunkstrecken (CML) und Satelliten-Mikrowellenverbindungen (SML) nahezu in Echtzeit verfügbar und können zur Niederschlagsschätzung verwendet werden. Die quantitative Niederschlagsschätzung (QPE) aus GEOsat-Daten ist jedoch aufgrund der indirekten Beziehung zwischen der Niederschlagsmenge und den tatsächlichen Messungen, die im sichtbaren und infraroten Spektrum durchgeführt werden, eine Herausforderung. Für die QPE aus SML- und CML-Daten, insbesondere auf der Grundlage groß angelegter CML-Studien in Europa, wurde gezeigt, dass sie mit der QPE aus Radar- und Regenmessern gleichwertig sein kann. In Ermangelung von Referenzdaten, wie es in Entwicklungsländern häufig der Fall ist, sind die bestehenden maßgeschneiderten semi-empirischen Prozessierungsmethoden jedoch oft nicht direkt anwendbar. GEOsat-Daten haben das Potenzial, die CML/SML-Prozessierung in diesen Regionen zu unterstützen, und umgekehrt könnte die CML/SML-QPE zur Anpassung der GEOsat-QPE verwendet werden. Das übergeordnete Ziel des Projekts MERGOSAT ist daher die Entwicklung neuartiger Methoden zur Erstellung verbesserter Echtzeit-Niederschlagskarten für datenarme Regionen durch eine Kombination von GEOsat-Daten und CML/SML-QPE. Um dieses Ziel zu erreichen, werden wir uns auf drei Aspekte konzentrieren: 1) Schaffung einer Grundlage für allgemeinere CML/SML-QPE-Modelle durch Verbesserung des Verständnisses der Prozesse die die EM-Ausbreitung von CML und SML beeinflussen. 2) Entwicklung geeigneter CML/SML-QPE-Modelle, die in datenarmen Regionen anwendbar sind, aufbauend auf den neuen Erkenntnissen über WAA und DSD und unter innovativer Nutzung von GEOsat-Daten. 3) Verbesserung der GEOsat-QPE mit DeepLearning-Methoden und Entwicklung eines neuen Verfahrens, das die Zusammenführung mit CML/SML-Daten mit sub-stündlicher Auflösung ermöglicht. Wir werden unsere Forschung auf unser umfangreiches Archiv von CML-Daten, auch aus Afrika, und die zunehmende Verfügbarkeit von SML-Daten stützen. Zusätzliche Daten aus Feldexperimenten werden mit modernsten Simulationen der EM-Ausbreitung kombiniert. Darüber hinaus werden wir neueste Techniken des DeepLearnings und unsere Hochleistungs-Recheninfrastruktur nutzen. In Kombination mit den erweiterten Fähigkeiten des kürzlich gestarteten MTG GEOsat wird uns dies ermöglichen, unsere Ziele erfolgreich anzugehen und die methodische Grundlage zu schaffen, die erforderlich ist, um datenarme Regionen mit verbesserten und zuverlässigen Niederschlagsinformationen nahezu in Echtzeit zu versorgen.

Großräumige Integrierte Gesamt-Analyse des tiefengeothermischen Potentials und seiner synergetischen Nutzung im Großraum München, Teilprojekt: SWM: Reservoirmanagement, 3Dseismische Erkundung und Interpretation, Extended Reach Drilling-Konzept, Abbau Nicht-Technischer Barrieren

Forschergruppe (FOR) 5116: Kommunikation in der Wirtspflanzen-Mikroben-Interaktion durch extrazelluläre RNA

Aktuelle Studien haben gezeigt, dass extrazelluläre (ex) RNAs zwischen Wirtspflanzen und Mikroben während einer Infektion in beide Richtungen transportiert werden können. Diese exRNAs können erhebliche Auswirkungen auf die Entstehung und den Verlauf der Interaktion haben. Während der organismenübergreifende (cross-Kingdom, ck) RNA-Transfer von Mikroben auf die Pflanze Gene der Wirtsimmunität hemmen kann, können RNAs der Wirtspflanze die Expression von virulenz- oder pathogenitätsbezogenen Genen behindern. Bislang sind jedoch nur einige wenige exRNAs (die Spitze des Eisbergs) charakterisiert worden, so dass die Funktion(en) der großen Mehrheit der exRNAs unerforscht sind. Auf mechanistischer Ebene können die exRNAs sowohl der Pflanze als auch des Pathogens als reine RNAs transportiert werden, an RNA-bindende Proteine (RBPs) gebunden sein oder mit membranumschlossenen extrazellulären Vesikeln (EVs, evRNAs) assoziiert sein. Wie RNAs für den Transport ausgewählt und sortiert werden und wie sie auf Empfängerzellen, z. B. in anderen Organismen, übertragen werden, ist nicht gut verstanden. Unsere zentrale Hypothese ist, dass die Kommunikation über exRNA ein häufiges Phänomen bei verschiedenen Interaktionen zwischen Pflanzen und Mikroben ist und auf konservierten biologischen Mechanismen beruht. Die Aufklärung dieser Mechanismen birgt daher ein hohes Potenzial zur Verbesserung der Produktivität und Gesundheit von Pflanzen. Dieses Konsortium hat das gemeinsame Ziel, ein mechanistisches Verständnis der exRNA-Kommunikation zwischen Pflanzenwirten und pathogenen wie auch nützlichen Mikroben zu entwickeln. Konkret planen wir, (i) die Wege des ckRNA-Transfers zwischen Pflanzen (einschließlich der experimentellen Modellpflanze Arabidopsis thaliana und wichtiger Nutzpflanzenarten) und verschiedenen pathogenen oder nützlichen Mikroben (Bakterien und Pilze) zu untersuchen, (ii) die Schlüsselfaktoren zu entdecken, die an der Auswahl, der Sortierung und dem Transport von exRNAs und ckRNA-Transfer beteiligt sind, und (iii) die molekularen Ziele und funktionellen Auswirkungen von exRNAs und ckRNA-Transfer in Empfängerzellen zu identifizieren. Um dieses Ziel zu erreichen, vereint das Konsortium Experten mit Expertisen auf den Gebieten der nicht-kodierenden RNA, des RNA-Transports, der RNA-Protein-Interaktion, der RNA-vermittelten organismenübergreifenden Kommunikation und der EV-Biologie, darunter Pflanzenpathologen, Mykologen, Molekular- und Zellbiologen, Biochemiker und Bioinformatiker.

1 2 3 4 5501 502 503