API src

Found 5037 results.

Related terms

REACH: Unterstützung von Akteuren beim Aufbau und Erhalt REACH Expertise

Neuartige Schadstoffe, Umweltmonitoring - Überwachung der Gewässerverschmutzung durch Non-Target-Screening im Rheineinzugsgebiet

Das "Non-Target Screening im Rheineinzugsgebiet" ist eine Initiative, deren Ziel es ist, die Non-Target Screening (NTS) Methodik zwischen den Umweltüberwachungsbehörden im Rheineinzugsgebiet zu harmonisieren. Das Ziel dieser Harmonisierung ist es, eine hohe Vergleichbarkeit der NTS-Daten aus verschiedenen Laboren zu erreichen, um neu auftretende Schadstoffe über die Überwachungsstationen entlang des Rheins und seiner Nebenflüsse hinweg zu detektieren und zu verfolgen. Das Projekt wird von der Internationalen Kommission zum Schutz des Rheins koordiniert und umfasst derzeit Institutionen aus fünf europäischen Ländern. Ein Vorgängerprojekt, genannt "Rhein-Projekt NTS", lief von 2021 bis 2024 und wurde von der Europäischen Union über das LIFE-Programm finanziert. Während dieser frühen Phase wurde eine Plattform für die schnelle, automatisierte, zentralisierte Auswertung und Speicherung von NTS-Daten entwickelt. Diese Plattform wird als NTS-Tool bezeichnet und wird von der deutschen Landesbehörde IT Baden-Württemberg gehostet. Das NTS-Tool umfasst derzeit eine harmonisierte Analysemethode auf Basis der Flüssigchromatographie gekoppelt mit hochauflösender Massenspektrometrie (LC-HRMS), IT-Infrastruktur (Cloud, Terminalserver), die Software enviMass zur Auswertung von NTS-Daten, Qualitätskontrollmaßnahmen basierend auf isotopenmarkierten Standardverbindungen sowie das Datenaggregierungs- und Visualisierungstool (DAV-Tool). Das DAV-Tool ermöglicht es Laborpersonal, nach neuartigen Schadstoffen in allen beteiligten Überwachungsstationen zu suchen. Das NTS-Tool wird im Rahmen des Internationalen Warn- und Alarmplans Rhein (IWAP Rhein) für Warnzwecke genutzt, da die zentrale Datenauswertung es ermöglicht, Schadstoffe schnell zu identifizieren, sodass geeignete Maßnahmen ergriffen werden können, um die öffentliche Gesundheit und die Umwelt zu schützen. Ein weiteres Ziel des Projekts ist der Wissenstransfer über bekannte und unbekannte neuartige Schadstoffe an Expertengruppen und Trinkwasserversorger im Rheineinzugsgebiet. Die Ergebnisse, die mit dem NTS-Tool gewonnen werden, sollen zur Überwachung der im "Rhein 2040"-Programm formulierten Ziele beitragen, einschließlich des 30%-Reduktionsziels für Mikroverunreinigungen, den Zielen des "Null-Schadstoff-Aktionsplans" der EU sowie den individuellen Strategien der Staaten im Rheineinzugsgebiet. Das Rheinüberwachungsprogramm und das Programm „Rhein 2040“ stützen sich auf die NTS-Methode, um neu auftretende chemische Substanzen zu identifizieren.

Ressortforschungsplan 2024, Validierung von ‚New Approach Methods‘ (NAMs) zur Entwicklung einer OECD Test Guideline für die Identifizierung und Bewertung von Endokrinen Disruptoren (ED)

Zahlreiche in vitro Methoden für die Identifizierung von endokrinen Disruptoren (ED) sind in der Prävalidierungsphase; - Es fehlen konkrete Validierungsprojekte, um die prävalidierten Methoden als OECD Test Guidelines zu standardisieren; - Um Chemikalien unter den einschlägigen EU Verordnungen (z.B. REACH, PPP, BP) zu regulieren, müssen die Daten mit standardisierten OECD Test Guidelines erhoben werden. - Insbesondere für neue Endpunkte des Hypophysen-Schilddrüsen Regelkreises (HPT-Achse) fehlen bisher validierte OECD Test Guidelines; - Ziel dieses Projektes ist es daher eine für die Regulation von PPP, BP, REACH-Chemikalien besonders relevante in vitro Methode, die die 'Readiness-Kriterien' für eine Validierung erfüllt, auszuwählen und den Validierungsprozess zu starten und zu koordinieren; - Die Auswahl erfolgt durch die Vernetzung des UBAs mit der französischen PEPPER-Plattform unter Berücksichtigung der Ergebnisse der OECD Thyroid Disruptor Method Expert Group und dem EURION Forschungscluster.´

Bebauungsplaene Gersheim/Bliesdalheim - Zum Rech

Bebauungspläne und Umringe der Gemeinde Gersheim (Saarland), Ortsteil Bliesdalheim:Bebauungsplan "Zum Rech" der Gemeinde Gersheim, Ortsteil Bliesdalheim

Umweltfreundliche Lösungen für das integrierte Management von Phytophthora infestans und Alternaria solani an Kartoffeln

Kartoffeln (Solanum tuberosum L.) sind für die globale Ernährungssicherheit von entscheidender Bedeutung. Die durch den Oomyceten Phytophthora infestans verursachte Krautfäule (LB) und die durch den Pilz Alternaria solani verursachte Dürrfleckenkrankheit (EB) sind die Hauptkrankheiten, die die Kartoffelproduktion beeinflussen. In Europa verursacht LB jährlich Ertragsverluste von über 1 Mrd. EUR, während EB Ertragsverluste von über 20% verursachen kann. Beide Krankheiten werden derzeit durch mehrfache Anwendung von Fungiziden kontrolliert. Angesichts der potenziell negativen Auswirkungen von Pestiziden auf die Umwelt, der Probleme einer verminderten Wirksamkeit aufgrund einer verminderten Sensitivität und der Streichung vieler Fungizide gemäß der EU-Pestizidrichtlinie (2009/128/EG) besteht ein dringender Bedarf an einer nachhaltigen und integrierten Bekämpfungsstrategie. Angesichts des derzeitigen Schwerpunkts auf einer nachhaltigen landwirtschaftlichen Produktion wird die biologische Bekämpfung von Pathogenen immer bedeutender. In dem Projekt ECOSOL untersuchen wir die Schlüsselkomponenten einer solchen IPM-Strategie, die entwickelt und getestet werden müssen, um ihre erfolgreiche Implementierung vor Ort zu ermöglichen. Mit dem derzeitigen Schwerpunkt auf einer nachhaltigen landwirtschaftlichen Produktion wird die biologische Bekämpfung von Pathogenen immer bedeutender.ECOSOL wird die biologische Kontrolle in IPM-Programme integrieren, um die Krautfäule und Dürrfleckenkrankheit zu kontrollieren. Um dieses Ziel zu erreichen, wird die Wirksamkeit verschiedener BCAs (biological control agents) und PRIs (plant resistent inducers) zur Kontrolle der Krankheit in planta getestet. Das Verständnis der Wirkungsweise ist notwendig, um das stewardship in der Zukunft sicherzustellen. Die Bedeutung von Faktoren wie dem Zeitpunkt der Anwendung und dem Grad der Resistenz des Wirts für die Wirksamkeit von BCAs wird untersucht. Die vielversprechendsten Alternativen zu Pestiziden werden in einer Reihe von teilnehmenden Ländern unter Feldbedingungen getestet, um die Übertragbarkeit sicherzustellen. Wirtsresistenz ist eine wichtige Komponente in jeder IPM-Strategie zur nachhaltigen Bekämpfung von Krautfäule. Sie wird jedoch aufgrund der genetischen Vielfalt in der Pathogenpopulation häufig schnell überwunden. Das Projekt wird daher den Einsatz bestehender und neuer Quellen für Wirtsresistenz optimieren, indem Pathogenmerkmale erfasst und verstanden werden, die dazu führen, dass die Wirtsresistenz in der Praxis überwunden wird.ECOSOL wird Entscheidungsmodelle anpassen, mit dem Ziel der Integration von biologischen Pflanzenschutzmitteln zum Management der Krautfäule und der Dürrfleckenkrankheit. Es werden IPM-Strategien entwickelt, die den optimalen Anwendungszeitpunkt der wirksamsten biologischen Pflanzenschutzmittel und die Wirtsresistenz berücksichtigen, um den Pestizideinsatz nachhaltig zu verringern.

Überarbeitung der statistischen Guidance zu OECD Prüfrichtlinien (OECD Series on Testing and Assessment No. 54)

Hintergrund: Datenanforderungen der Europäischen Verordnungen für Industriechemikalien (REACH 1907/2006/EG), Pflanzenschutzmittel (1107/2009/EG), Biozide (528/2012/EG), Tierarzneimittel (2019/6/EG) und der Richtlinie für Arzneimittel (2004/28/EG und 2004/27/EG) basieren auf standardisierten ökotoxikologischen Labor- und Freilandtests., i.d.R. OECD-Prüfrichtlinien. Die Festlegung der statistischen Auswertung der Labordaten erfolgt derzeit in den einzelnen OECD-Prüfrichtlinien mit Hinweis auf die 2006 veröffentlichten Grundprinzipien der statistischen Auswertung für OECD-Prüfrichtlinien im OECD Dokument Nr. 54 'Current approaches in the statistical analysis of ecotoxicity data: a guidance to application'. Die im OECD Dokument Nr. 54 beschriebenen Methoden sind (teilweise) überholt und es fehlen geeignete Methoden für die Auswertung von nicht-normalverteilten Daten. Nicht-normalverteilte Daten kommen standardmäßig in aquatischen Mesokosmen und Freilandstudien an Bodenorganismen und Arthropoden vor, die eine zentrale Rolle in der Zulassung von Chemikalien spielen. Eine Überarbeitung des OECD Dokuments Nr. 54 ist dringend notwendig, weil es direkte Auswirkungen auf die statistische Auswertung aller OECD-Prüfrichtlinien für die Bewertung von Auswirkungen auf Nichtzielorganismen hat. Forschungsziele sind: 1. Aktualisierung von OECD Dokument Nr. 54 - Aufnahme fehlender Methoden-Prüfung und Aktualisierung enthaltener Methoden, 2. Überführung des OECD Dokument Nr. 54 in ein OECD Guidance Dokument (verbindlicher) - Ermöglichung direkter Verweise zu bestehenden OECD-Prüfrichtlinien und der Vereinheitlichung statistischer Verfahrensweisen innerhalb bestehender OECD Prüfrichtlinien sowie eine präzisierte Ableitung der abgeleiteten Endpunkte zur Verbesserung der Risikobewertung für Chemikalien.

Energy Savings 2020: How to triple the impact of energy saving policies in Europe?

Europe needs to triple the impact of its energy efficiency policies to achieve its 2020 targets set last year, according to a new study written by Ecofys and the Fraunhofer ISI. The study reveals that the potential exists to reach the 20 percent energy saving by 2020 goal cost-efficiently, cutting energy bills by € 78 billion for European consumers and businesses annually by 2020. However, current EU policy is delivering only one-third of the potential cost-effective savings measures. Increased energy savings will also warrant easier and less expensive achievement of a 20 percent share of renewables in the EU energy mix in 2020. The study was commissioned jointly by the European Climate Foundation (ECF) and the Regulatory Assistance Project (RAP).

Vertiefung des Verständnisses des aquatischen Methankreislaufs durch innovative isotopische Ansätze und Untersuchung der Methanoxidation

Methan (CH4) ist ein potentes Treibhausgas, das zur globalen Erwärmung beiträgt und eine wichtige Rolle in der Atmosphärenchemie spielt. Aquatische Systeme wurden kürzlich als bedeutende Quellen von CH4 identifiziert, die bis zu 50 % zu den globalen CH4-Emissionen ausmachen. Es besteht jedoch weiterhin erhebliche Unsicherheit über das Ausmaß dieser Emissionen, insbesondere über deren räumliche und zeitliche Treiber. Dies gilt besonders für CH4-Emissionen aus den aquatischen Systemen der Arktis, die bisher kaum untersucht wurden. Um das Verständnis des globalen CH4-Budgets zu verbessern, ist es daher entscheidend die Quellen von CH4 in aquatischen Systemen genau zu charakterisieren und zu klassifizieren. Aktuelle Methoden zur Klassifizierung von CH4-Quellen nutzen stabile Isotopenverhältnisse wie stabile Kohlenstoff- (delta13C) und Wasserstoff- (delta2H) Isotopenwerte von CH4 (13C vs. 2H Diagramme) sowie geochemische Bernard-Verhältnisse, welche die molaren Verhältnisse von CH4 zu Ethan und Propan gegen delta13C-CH4 Werte darstellt (Bernard-Diagramme). Beide Diagramme werden verwendet, da verschiedene CH4-Quellen durch spezifische Bereiche von delta13C- und delta2H-CH4-Werten sowie Bernard-Verhältnissen charakterisiert sind. Eine wesentliche Einschränkung ergibt sich aus der CH4-Oxidation (MOx) durch methanotrophe Bakterien, die in aquatischen Umgebungen weit verbreitet sind. Dieser Prozess verändert die CH4-Konzentrationen und stabilen Isotopenwerte sowie die Ethan- und Propankonzentrationen, wobei die Oxidation dieser Gase bezüglich der CH4-Quellenklassifizierung bisher unberücksichtigt bleibt. Dies kann zu einer erschwerten Klassifizierung von CH4-Quellen bis hin zu Fehlinterpretationen führen. Ein vielversprechender neuer Parameter, um die Klassifizierung von CH4-Quellen in dieser Hinsicht zu verbessern, ist der sogenannte Delta(2,13)-Parameter, der auf den delta13C- und delta2H-Werten von CH4 basiert, jedoch zusätzlich für die durch MOx verursachte Isotopenfraktionierung korrigiert. Derzeit beeinträchtigen jedoch die begrenzte Nutzung des Delta(2,13) Parameters sowie fehlendes Wissen über potenzielle Einflussfaktoren seine Zuverlässigkeit und erfordern eine systematische Untersuchung. Das Ziel von AMIOX ist es, das Verständnis des aquatischen CH4-Kreislaufs zu vertiefen, indem die Klassifizierung von CH4-Quellen und -Senken in gemäßigten und arktischen aquatischen Systemen verbessert wird. Dies soll durch die Einführung des neuen Delta(2,13)-Parameters in Kombination mit Bernard- und 13C vs. 2H-CH4 Diagrammen erreicht werden. Um diese Ziele zu erreichen, werde ich den Einfluss von MOx auf die Delta(2,13)-Werte und Bernard-Verhältnisse durch drei weit verbreitete methanotrophe Spezies in Laborstudien unter verschiedenen Umweltbedingungen untersuchen. Schließlich werde ich die erworbenen Erkenntnisse im Feld anwenden, um das Verständnis des CH4-Kreislaufs in Seen in gemäßigten Breiten in Deutschland und arktischen Seen in Grönland zu verbessern.

Performanzen der Wald-Governance Regionaler Regime - Eine umfassende,vergleichende Analyse

Globalisierung, Internationalisierung und eine zunehmende Anzahl grenzüberschreitender Umweltherausforderungen wie Klimawandel und Biodiversität haben politische Akteure dazu veranlasst, die Notwendigkeit einer Forstpolitik über die nationale Ebene hinausanzuerkennen. Dies spiegelt sich auch in der Forschung mit einer zunehmenden Anzahl von Studien zum internationalen Forstregime wider. Diese Arbeiten haben gezeigt, dass das internationale Regime fragmentiert ist und nur begrenzt zur effektiven Wald Governance beiträgt. Während die internationale Ebene häufig untersucht wird, wissen wir weniger über die Governance-Performanz regionaler Regime, die sich mit Forstpolitik befassen, obwohl es auf regionaler Ebene insgesamt 76 verschiedene Regime gibt, für die die Europäische Union oder Congo Basin Forest Partnership prominente Beispiele sind. Angesichts der begrenzten Wirksamkeit des internationalen Forstregimes wird die vergleichende und umfassende Untersuchung verschiedener regionaler Regime zur WaldGovernance und ihrer Unterschiede und Ähnlichkeiten in der Leistung umso wichtiger. Durch einen vergleichenden Ansatz trägt dieses Projekt dazu bei, Wissenslücken über regionale Regime zu schließen. Zu diesem Zweck werden drei Forschungsfragen zu dreiDimensionen von Leistung, Output, Outcome und Impact der Wald Governance in regionalen Regimen untersucht. Dies sind: Unterscheiden sich regionale Regime in Bezug auf Art und Umfang der von ihnen produzierten Outputs im Bereich der Wald Governance(Anzahl der Politiken, Entscheidungen, etc. die ein regionales Regime verabschiedet), und wie können beobachtete Unterschiede erklärt werden? Erzielen einige regionale Regime eine bessere Leistung in Bezug auf das Outcomes von Wald Governance (Aktivitätenbasierend auf den Outputs des regionalen Regimes) und warum? Wann erreichen regionale Regime einen hohen Impact im Bereich der Wald Governance (Problemlösung) und wie können Unterschiede in dieser Hinsicht erklärt werden?

Schwerpunktprogramm (SPP) 2322: Systemökologie von Böden - das Mikrobiom und die Randbedingungen modulieren die Energieentladung, Teilprojekt: Energiestrukturen - Energie hält dissipative Strukturen in Bodensystemen aufrecht

Organische Bodensubstanz (SOM) ist nicht passiv, sondern ein ständiger Fluss von Materie (oder Kohlenstoff - C) und Energie (E). Diesen Fluss treiben von Boden(mikro)biota erzeugte Gradienten an, was sie zu einem integralen Bestandteil desselben macht. Er ermöglicht den Mikrobiota sich durch Selbstorganisation einem Fließgleichgewicht anzunähern und es entstehen zeitlich und räumlich geordnete, dissipative Prozesse und/oder Strukturen (DS). Vermutlich nähern sich die Flüsse und Transferraten einem thermodynamischen Optimum, wie es z. B. das Maximum-Power-Prinzip (MPP) formuliert. Durch diese Prozesse wird E in qualitativ (Entropie vs. Enthalpie) unterschiedliche Pools verteilt: a) Wärme, b) sequestrierte SOM, c) bioverfügbare SOM, d) Biomasse. Die Organismen nutzen jedoch nur einen Teil der E des Substrates. Diese bioverfügbare E hängt von dessen energetischen Eigenschaften, seinem Status im Boden (z. B. Sorption) und der Nutzung zusätzlicher SOM-Komponenten (Priming) ab. Unser Ziel ist es zu verstehen, wie eine E-Zugabe das Auftreten von und/oder den Wechsel zwischen DS (Prozesszuständen) im Boden steuert. Dazu werden die DS durch Experimente mit unterschiedlichen Substratzugaben untersucht. Dies sind 1) einmalige, 2) wiederholte, 3) kontinuierliche Zugaben. Während 1) die Umwandlungsphasen zwischen DS zeigt, führt 2) zu oszillierenden Strukturen, welche die Resilienz der DS zeigen und 3) ermöglicht, die DS in ihren Eigenschaften nahe dem stationären Zustand zu untersuchen. Stationäre Zustände erleichtern die Prüfung thermodynamischer Optimierungsprinzipien (z. B. MPP) und lassen sich besser mit Modellen der irreversiblen Thermodynamik beschreiben. Die Kombination von Stoff- und E-Bilanzen mit kalorimetrischen Messungen ist das geeignete Instrument zur Untersuchung DS, da diese als dynamische Stoff- und E-Flüsse zu verstehen sind. Die bioverfügbare E ist ein entscheidender Faktor für die Aufrechterhaltung bestehender oder die Etablierung neuer DS. Sie hängt von thermodynamischen molekularen Substrateigenschaften und der Nutzung von OBS-Komponenten (Priming) ab und wird durch Wechselwirkungen zwischen Substrat und Boden modifiziert Dies wird mit den o.a. Ansätzen 1-3 in Mikrokosmos-, Kalorespirometer- und kontinuierlichen Röhrenreaktorversuchen untersucht. Zum Erhalt vollständiger Bilanzen werden z.T. werden 13C-markierte Substrate verwendet. Aus den Ergebnissen werden QSAR-Modelle abgeleitet (weitere Parameter aus quantenchemischer Modellierung), um die bioverfügbare E zu schätzen. Durch thermokinetische Modellierung aller Ergebnisse werden Gibbs-E und Entropieänderungen der Substratumsätze berechnet. Es wird erwartet, dass eine modellgestützte Abschätzung der C- und E-Retention durch die Bodenbiota, die Bestimmung der Nutzungseffizienz von C und E und die Abschätzung der Speicherung von OM im Boden erreicht werden kann. Insgesamt trägt dies zu einem besseren Verständnis und Management des C-Budgets von Böden bei.

1 2 3 4 5502 503 504