API src

Found 13 results.

Barley dwarfs acting big in agronomy. Identification of genes and characterization of proteins involved in dwarfism, lodging resistance and crop yield

Das Projekt "Barley dwarfs acting big in agronomy. Identification of genes and characterization of proteins involved in dwarfism, lodging resistance and crop yield" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.Barley (Hordeum vulgare) is an important cereal grain which serves as major animal fodder crop as well as basis for malt beverages or staple food. Currently barley is ranked fourth in terms of quantity of cereal crops produced worldwide. In times of a constantly growing world population in conjunction with an unforeseeable climate change and groundwater depletion, the accumulation of knowledge concerning cereal growth and rate of yield gain is important. The Nordic Genetic Resource Center holds a major collection of barley mutants produced by irradiation or chemical treatment. One phenotypic group of barley varieties are dwarf mutants (erectoides, brachytic, semidwarf, uzu). They are characterized by a compact spike and high rate of yield while the straw is short and stiff, enhancing the lodging resistance of the plant. Obviously they are of applied interest, but they are also of scientific interest as virtually nothing is known about the genes behind the development of plant dwarfism. The aim of this project is to identify and isolate the genes carrying the mutations by using state of the art techniques for gene cloning at the Carlsberg Laboratory. The identified genes will be connected with the mutant phenotype to reveal the gene function in general. One or two genes will be overexpressed and the resulting recombinant proteins will be biochemically and structurally characterized. The insights how the mutation effects the protein will display the protein function in particular. Identified genes and their mutant alleles will be tested in the barley breeding program of the Carlsberg brewery.

Schwerpunktprogramm (SPP) 1530: Flowering time control: from natural variation to crop improvement, Is the immune system required to adapt to flowering time change?

Das Projekt "Schwerpunktprogramm (SPP) 1530: Flowering time control: from natural variation to crop improvement, Is the immune system required to adapt to flowering time change?" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Köln, Biozentrum, Botanisches Institut.For effective crop improvement, breeders must be able to select on relevant phenotypic traits without compromising yield. This project proposes to investigate the evolutionary consequences of flowering time modifications on a second trait of major importance for plant breeding: immunity. This will have implications both for understanding cross-talks between flowering time and defense network and for developing efficient breeding strategies. There is clear evidence that plant maturity influences levels and effectiveness of defense. Theoretical models actually predict that changes in life-history can modulate the balance between costs and benefits of immunity. Simultaneously, actors of the immune system have often been observed to alter flowering time. Two alternative and possibly complementary hypotheses can explain this link: genetic constraints due to the pleiotropic action of players in either systems, or co-evolution, if flowering-time changes modulate the cost-benefit balance of immunity. We will conduct field assays in Arabidopsis thaliana, using constructed lines as well as recombinant inbred lines and natural accessions, to differentiate the action of the two explanatory hypotheses. Using transcriptome analyses, we will identify defense genes associating with flowering time modification (f-t-a defense genes). We will quantify their expression along the assay and test whether it varies with both flowering time and fitness. We will further test whether flowering time and immunity interact to determine yield in tomato and potato.

Schwerpunktprogramm (SPP) 1530: Flowering time control: from natural variation to crop improvement, Genomic dissection of floral transition in Brassica napus towards crop improvement by life cycle adaptation and hybrid yield increase

Das Projekt "Schwerpunktprogramm (SPP) 1530: Flowering time control: from natural variation to crop improvement, Genomic dissection of floral transition in Brassica napus towards crop improvement by life cycle adaptation and hybrid yield increase" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Christian-Albrechts-Universität zu Kiel, Institut für Pflanzenbau und Pflanzenzüchtung, Lehrstuhl Pflanzenzüchtung.Rapeseed (Brassica napus L.) suffers from low genetic variation due to the short history of this species. Breeders try to broaden the genetic basis by gene introgression from non-adapted material from other geographic regions of the world. However, use of these materials is hampered, among others, by non-adapted flowering time (FTi). Here an integrated project is proposed to get a deeper understanding of FTi by global expression analysis and cloning of major FTi regulators. Candidate genes will be mapped by recombination mapping and, in collaboration with other groups, by association mapping. As a proof of concept study, relevant sequences will be mapped to recombinant lines carrying exotic rapeseed introgressions. The 2nd part of the project will study the relevance of 4 FTi genes for heterosis. Assuming that sequence variation within these genes will have an impact on seed yield and biomass heterosis, mutants will be identified by TILLING. The mutants will be analyzed and crosses will be made to determine heterosis of F1 hybrids in the 2nd funding period.

Schwerpunktprogramm (SPP) 1530: Flowering time control: from natural variation to crop improvement, Directing floral timing through genetic variation in the plant circadian clock

Das Projekt "Schwerpunktprogramm (SPP) 1530: Flowering time control: from natural variation to crop improvement, Directing floral timing through genetic variation in the plant circadian clock" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: University York, Department of Biology.Flowering time is strongly regulated by the circadian clock, which drives photoperiodic flowering. We recently explored natural allelic diversity of the clock in the dicot Arabidopsis and found a 'memory' of the proceeding environment. Furthermore, we showed that clock variation has a large role in directing flowering time under field conditions. Cloning of one circadian quantitative trait locus revealed variation at the flowering-time gene EARLY FLOWERING 3 (ELF3). Here we will further explore allelic variation in clock genes to define key loci that direct photoperiodic flowering. Firstly, we will complete the construction of new Arabidopsis recombinant inbred populations derived from accessions originating from extremely differing latitudes, and map the genomes of these lines at kilobase resolution. These populations will be scored for variation in the clock and flowering time; dynamic correlations will be constructed. Together, components underling clock-gene variation that directs seasonal flowering will be identified. Secondly, we will examine the molecular genetics of circadian control of flowering in the monocot barley using existing and newly generated variation at barley ELF3. This gene is the likely direct regulator of the seasonality locus Ppd-H1. This second program should reveal dicot/monocot clock conservations and identify allelic variation at the circadian-clock gene ELF3 that could be directly used in barley breeding programs.

Biochemie der Peroxidasine

Das Projekt "Biochemie der Peroxidasine" wird/wurde gefördert durch: Fonds zur Förderung der Wissenschaftlichen Forschung. Es wird/wurde ausgeführt durch: Universität für Bodenkultur Wien, Institut für Chemie.Enzyme der Peroxidase-Cyclooxygenase Superfamilie katalysieren biochemische Reaktionen, die in unzähligen biologischen Prozessen eine wichtige Rolle spielen, z.B. bei der unspezifischen Immunabwehr, der Synthese der Schilddrüsenhormone oder der Bildung und Modifizierung der extrazellulären Matrix. Sie sind zudem auch bei der Pathogenese von chronischen entzündlichen Erkrankungen beteiligt. In der Subfamilie 2 dieser Superfamilie findet man Multidomänen-Oxidoreduktasen, sog. Peroxidasine (Pxds). Hierbei handelt es sich um glykosylierte und sekretierte Häm-Peroxidasen, die zusätzlich zur katalytischen Domäne sog. Leucin-reiche Wiederholungssequenzen, Immunoglobulin C-ähnliche Domänen sowie von Willebrandfaktor C enthalten. Diese Strukturmotive finden sich in vielen extrazellulären Molekülen, die mit anderen Proteinen in Wechselwirkung treten. Ursprünglich wurde Peroxidasin in Basalmembranen von Drosophila entdeckt. Spätere Arbeiten zeigten, dass diese Enzyme auch in Wirbeltieren vorkommen und eine Rolle bei der unspezifischen Immunabwehr, der Gewebsbildung, Ausbreitung von Tumoren und oxidativen Prozessen eine Rolle spielen. Kürzlich wurde gezeigt, dass dieses Metallprotein mit Hilfe von Hypohalogeniten im Kollegen IV für die Bildung von kovalenten Kohlenstoff-Stickstoffbindungen verantwortlich ist, ein Prozess, der sowohl bei der Gewebsbildung als auch bei zahlreichen Kranksheitsbildern eine wichtige Rolle spielt. Trotz der physiologischen Bedeutung dieser neuen Proteinfamilie ist das biochemische Wissen sehr bescheiden. In diesem Projekt sollen daher, basierend auf umfangreichen phylogenetischen Voranalysen und der bereits erfolgreich durchgeführten rekombinanten Produktion von humanem Peroxidasin 1 in tierischen Zellkulturen, die Struktur-Funktionsbeziehungen von vier Peroxidasinen unterschiedlicher Entwicklungsstufe und Sequenz analysiert werden: Peroxidasin 1 von Caenorhabditis elegans, Pxd von Drosophila melanogaster als auch die beiden humanen Peroxidasine 1 & 2. Basierend auf der rekombinanten Produktion der vier Modell-Proteine in voller Kettenlänge bzw. von verkürzten Varianten unterschiedlicher Domänenzusammensetzung werden umfangreiche bio-chemische/biophysikalische Analysen durchgeführt: (i) UV-vis-, Fluoreszenz- CD-, Lichtstreuung-, RR- und ESR-Spektroskopie, (ii) Stopped-flow-Spektroskopie und Polarographie, (iii) MS und Röntgenkristallographie, (v) Spektroelektrochemie und (vi) Kalorimetrie. Mit Hilfe dieser Methoden sollen Struktur und Aktivität der Peroxidasine aufgeklärt werden wie z.B. (i) oligomere Struktur und Architektur des aktiven Zentrums, (ii) Interaktion der Domänen und Mechanismen der Proteinentfaltung, (iii) Chemie der prosthetischen Gruppe inklusive Oxidations- und Spinzustände, Häm-Liganden und posttranslationale Modifizierungen, (iv) Spezifität, Zugänglichkeit, und Bindungorte von Substraten als auch chemische Natur der Reaktionsprodukte (v) Chemie, Reaktivität und Relevanz von Redox-Intermediaten und (vi) die Ro

EpiCOL: Ecological and Evolutionary plant epigenetics (09-EuroEEFG-FP-048)

Das Projekt "EpiCOL: Ecological and Evolutionary plant epigenetics (09-EuroEEFG-FP-048)" wird/wurde gefördert durch: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung. Es wird/wurde ausgeführt durch: Universität Bern, Departement Biologie, Institut für Pflanzenwissenschaften.One of the fundamental principles in biology is that evolution by natural selection, and therefore the ability of populations to adapt to changing environments, requires heritable variation, i.e. genetically-based variation in phenotypic traits that are under selection. Until recently, such heritable variation was generally thought to require underlying DNA sequence variation. Thus, populations that lack DNA sequence variation were assumed be unable to evolve. However, there is now increasing evidence that epigenetic modifications of the genome, such as DNA methylation or histone modifications - which regulate gene activity and therefore ultimately the phenotype - can be heritable, too, and that there can be epigenetic variation within and among natural populations which is independent of DNA sequence variation. Moreover, epigenetic variation can sometimes be altered direct by the environment, which suggests that such heritable epigenetic variation might be an important and hitherto overlooked component of biodiversity and an additional mechanism for organisms to respond to environmental change. Our project is part of a larger pan-European project (involving partners from the Netherlands, Germany, Austria and France) that attempts to address these exciting questions about the ecological and evolutionary relevance of epigenetic variation and epigenetic inheritance in several connected sub-projects. In our project, we will test the hypothesis that evolution by natural selection can occur even in the absence of DNA sequence variation, based on heritable epigenetic variation only. We will use selection experiments, and a recently developed, unique set of genotypically near-identical but epigenetically distinct recombinant inbred lines (epiRILs) of Arabidopsis thaliana to study epigenetic evolution 'in action'. The specific objectives of our project are (i) to characterise 100+ epiRILs with regard to their drought and pathogen resistance, (ii) to subject replicated experimental populations of these epiRILs to at least 3-4 generations of natural or artificial selection imposed by experimental drought and/or pathogens, and (iii) to quantify the response to this selection both in terms of phenotypic shifts as well as shifts in epigenotype frequencies.

Rekombinante humane Laktoperoxidase und Eosinophile Peroxidase

Das Projekt "Rekombinante humane Laktoperoxidase und Eosinophile Peroxidase" wird/wurde gefördert durch: Fonds zur Förderung der Wissenschaftlichen Forschung. Es wird/wurde ausgeführt durch: Universität für Bodenkultur Wien, Institut für Chemie.Im menschlichen Körper gibt es verschiedene Häm-Peroxidasen, die in der unspezifischen Immunabwehr eine wichtige Rolle spielen. Laktoperoxidase (LPO) findet man beispielsweise in der Muttermilch, im Speichel und in der Tränenflüssigkeit. Eosinophile Peroxidase (EPO) kommt in speziellen weißen Blutzellen, den sog. Eosinophilen, in hoher Konzentration vor und wird bei Befall des menschlichen Körpers mit Parasiten ausgeschüttet. Beide Enzyme produzieren durch Oxidation von Halogeniden und Thiocyanat antimikrobiell wirkende Oxidationsmittel. Auf der anderen Seite wird spekuliert, dass beide Proteine an der Entstehung von Krankheiten beteiligt sind. Laktoperoxidase beispielsweise soll durch Oxidation von Arzneimitteln oder körperfremden Stoffen an der Entstehung von Brustkrebs beteiligt sein, während EPO eine wichtige Rolle bei allergischen und chronischen Atemwegserkrankungen (z.B. Asthma) zu spielen scheint. Vor allem aufgrund des beschränkten Zugangs zu natürlichen Quellen und die schwierige Reinigung, sind allerdings sowohl die funktionalen als auch strukturellen Eigenschaften von beiden humanen Enzymen weitgehend unbekannt. Basierend auf unserer Erfahrung in der Expression verwandter Proteine in produzierenden Säugetierzelllinien, ist uns kürzlich die gentechnische Herstellung von (rekombinanter) humaner Laktoperoxidase gelungen. Erste Versuche in der Produktion rekombinanter humaner EPO sind ebenfalls vielversprechend. Nach Optimierung der Produktion und Evaluierung alternativer Klonierungsstrategien und Produktionszelllinien sollen beide Oxidoreduktasen in hoher Ausbeute produziert werden. Mit Hilfe dieser Modellprotein können dann erstmals umfangreiche Struktur-Funktionsbeziehungen durch eine Kombination von molekularbiologischen, biochemischen und biophysikalischen Methoden durchgeführt werden. Mit Hilfe der UV-Vis und Resonanz-Ramanspektroskopie werden Hämstruktur- und Umgebung, sowie Oxidations- und Spinzustand des Hämeisens untersucht. Spektroelektrochemische Untersuchen werden Rückschlüsse auf die Reduktionspotentiale relevanter Redoxpaare erlauben. Mittels Multimixing-Stopped-flow-Spektroskopie in Kombination mit Mutagenese sollen schließlich die Mechanismen der Liganden bzw. Substratbindung im aktiven Zentrum als auch sämtliche Redox-Teilreaktionen des Halogenid- und Peroxidasezyklus aufgeklärt werden. Parallel wird versucht beide Proteine zu kristallisieren und ihre Struktur mittels Röntgenbeugung aufzuklären. Die Untersuchungen werden in Zusammenarbeit mit drei renommierten Gruppen in Italien und Spanien durchgeführt. Diese Forschungen sind nicht nur die notwendige Basis für das Verständnis der physiologischen und pathophysiologischen Rolle(n) von LPO und EPO, sondern auch für die zukünftige rationale Entwicklung von spezifischen Pharmazeutika.

Aquabase, Studies on the metabolic fate of 13C- Nonylphenol in water and sediment and related microbial system

Das Projekt "Aquabase, Studies on the metabolic fate of 13C- Nonylphenol in water and sediment and related microbial system" wird/wurde gefördert durch: Kommission der Europäischen Gemeinschaften Brüssel. Es wird/wurde ausgeführt durch: RWTH Aachen University, Institut für Umweltforschung, Biologie V, Lehrstuhl für Umweltbiologie und -chemodynamik.The aim of this research project is to study the metabolic fate of 13C-labelled nonylphenol in water, sediment and related microbial model systems. The main use of nonylphenol is the production of NP polyethoxilates. These nonionic surfactants have different application such as the production of industrial and household detergents. The most common route of nonylphenol to enter in the environment is through the wastewater. In fact NP polyethoxilates is most used in cleaners and for this reasons is discharged directly in the sewage system. Under anaerobic conditions NP polyetoxilates is degraded to NP. Laboratories studies on NP have demonstrated that NP can be classified as endocrine disrupter compound. Isomers highly branched in the alpha position of the nonyl chain show an higher estrogenic activity and that the para position is favorite as well for estrogenic activity.So far data on the metabolic fate of NP in water and soil are limitated in literature. Several studies have been performed in the laboratories about the metabolic fate of EDC using 14C labelled compounds. But this lead to 2 disadvantages: 1) the complete identification of the metabolites was not possible using GC/MS and 2) problems related with the discharge of radioactive compounds. For the previous reasons isomers of NP (353-NP, 363-NP, 33-NP) will be synthesised and labelled with 13C on the aromatic ring. An equimolar mixture of the labelled compound with the corresponding non labelled compound will yields a characteristic double peak with approximately the same abundance in MS analyses. Taking advantages of this it will be able to follow the degradation of nonylphenol in the experiments. The metabolic fate of NP exposed to different conditions will be studied: exposed to UV light, degraded by a recombinant yeast and in aerobic and anaerobic conditions. The first line of the project is to study the metabolic fate of NP exposed under condition of photo degradation. In fact NP can be exposed to sunlight when present in the aquatic environment. UV rays are of a short wavelength and have the energy to degrade products in sunlights. A lamp that had a ratio of UV-A and UV-B quite similar to the sun light was chosen. The NP degradation will be followed in a water/sediment system and in chlorinated water. The water sediment system and chlorinated water will be spiked with the nonylphenol, than the sample will be exposed to UV light at difference distance from the lamp and for different time. Than the metabolites will be extracted and analyzed via GC/MS. The second line of the project is to study the metabolic fate of NP after degradation with a recombinant yeast. The host used will be the yeast Saccharomyces cerevisiae, because it is well known and the genome of this yeast has been completely sequenced. The yeast will be transformed with an expression vector containing one cytochrome P-450 and the yeast reductase. Etc.

Three-dimensional reconstruction of human corneas by tissue engineering (CORNEA ENGINEERING)

Das Projekt "Three-dimensional reconstruction of human corneas by tissue engineering (CORNEA ENGINEERING)" wird/wurde gefördert durch: Kommission der Europäischen Gemeinschaften Brüssel. Es wird/wurde ausgeführt durch: Universitätsklinikum Hamburg-Eppendorf, Klinik und Poliklinik für Augenheilkunde, Hornhautbank.The goal of the proposed research project is to reconstruct a human cornea in vitro, for use both in corneal grafting and as an alternative to animal models for cosmeto-pharmacotoxicity testing. The project responds to the urgent need to develop new forms of corneal replacements as alternatives to the use of donor corneas, in view of the worldwide shortage of donors, the increasing risk of transmissible diseases, the widespread use of corrective surgery, which renders corneas unsuitable for grafting, and the severe limitations of currently available synthetic polymer-based artificial corneas (keratoprostheses). The originality of the proposal lies in the use of recombinant human extra cellular matrix proteins to build a engineered-engineered scaffold to support growth of the different cell types found in the cornea, cells to be derived from human adult stem cell pools. The development of a reconstructed human cornea will represent a real breakthrough, allowing diseased or damaged corneas to be replaced by tissue-engineered human corneal equivalents that resemble in all respects their natural counterparts. The proposal also responds to impending ED legislation banning the marketing of cosmetic products that have been tested on animals, using procedures such as the Raise rabbit eye irritation test. The development of tissue-engineered corneas will provide a non-animal alternative, which will therefore alleviate animal suffering. The project will lead to a transformation of industry to meet societal needs using innovative, knowledge-based approaches integrating Nan technology and biotechnology. The project brings together 14 participants with complementary expertise from 9 different countries, including basic scientists, ophthalmologists and industrialists (three Sees). Ethical and standardisation aspects will also be included. Prime Contractor: Centre National de la Recherche Scientifique, Institut de Biologie et Chimie des Proteines - UMR5086; Paris; France.

FP5-LIFE QUALITY, Virus-resistant transgenic plants: ecological impact of gene flow (VRTP IMPACT)

Das Projekt "FP5-LIFE QUALITY, Virus-resistant transgenic plants: ecological impact of gene flow (VRTP IMPACT)" wird/wurde gefördert durch: Kommission der Europäischen Gemeinschaften Brüssel. Es wird/wurde ausgeführt durch: RWTH Aachen University, Institut für Umweltforschung, Lehr- und Forschungsgebiet Ökosystemanalyse (ESA).The objective of this project is to provide detailed evaluation of the two sources of potential genotypic impact that could result from large-scale cultivation of virus-resistant transgenic plants, and particularly ones expressing viral sequences. Genotypic impact could result from two types of gene flow: one involving recombination between viral sequences transcribed from the transgene and the genome of an infecting virus, and another due to the potential for sexual outcrossing between the transgenic plant and a compatible wild species. In both cases, this requires not only close examination of the interaction of the transgenic plants, on the one hand with the genome of other viruses, and on the other hand with related plant species, but also requires establishment of baselines on the role of these same processes in a non-transgenic context. Thus, the idea of impact as used here only concerns additional, i.e. above borderline, novel effects that could be caused by interaction of the transgenic plants with their biological environment. In order to address these interlocking concerns, the VRTP IMPACT project has been divided into four Workpackages. Each of these will involve collaboration among several participants, and as a result, most of the participants are involved in more than one Workpackage. The first two workpackages (WPs I & II) are organised in a parallel fashion to evaluate the impact of recombination between transgene sequences and those of the genome of two particularly important groups of plant viruses, the potyviruses and the cucumoviruses, which are extremely different in both their biological and molecular properties, and thus may have different aptitudes for recombination in transgenic plants. WPs I & II will centre on comparisons of the outcome of recombination in transgenic plants with that in non-transgenic ones. Since our knowledge of the prevalence in nature of recombinant virus genomes is extremely sparse, this question will be address in a separate workproject (WP III) that will involve molecular epidemiology studies of virus populations in Spain, France. In WP IV, we will examine the impact of plant to plant gene flow from two major crop species where this is known to occur, rapeseed and beet. In both cases, this will involve field and glasshouse studies to evaluate if a virus resistance gene could confer a fitness advantage on the receptor wild or weedy species.

1 2