API src

Found 35 results.

Digital surface model of the watercourses Elbe and Lower Havel (Germany), DGM-W Elbe project, DOM Elbe 2022

The high-resolution digital surface model (DSM1, DOM1) of the watercourses Elbe and Lower Havel is based on the airborne laser scanning data, undertaken from 06 January 2022 to 18 March 2022 in the Elbe area and from 20 to 22 December 2021 in the Havel area. It was produced and published by Germany’s Federal Institute of Hydrology (BfG), on behalf of the River Basin Community Elbe (RBC Elbe, FGG Elbe). The work was supported by the German Federal Waterways and Shipping Administration (WSV) and the surveying offices and water management administrations of six German states - Saxony, Saxony-Anhalt, Brandenburg, Lower Saxony, Mecklenburg-Vorpommern and Schleswig-Holstein. The data cover both the area around the inland water stretches of the Elbe from the Czech-German border to the village of Zollenspieker (part of the city of Hamburg) and the Lower Havel waterway from the town of Rathenow to its confluence with the Elbe. Since the dataset has a large coverage of 4,043 km², it is split into 62 sections. They were either labelled *HW in case of flood relevant areas (in German: “hochwasser-relevante Gebiete”) or *AU in case of historical floodplains (in German: “Altauengebiete”). Financing was divided according to these categories: In the HW areas, the project was co-funded by BfG, the WSV and the federal states, while in the AU areas, BfG covered all project costs. For each section we provide hillshade (*HS) and height maps (*NHN). The data are available in a raster resolution of 1 meter in GeoTiff format; Coordinate reference frame: ETRS89.DREF91.R16; Coordinate projection: UTM Zone 33N; EPSG-Code: 25833; Height reference system: DHHN2016, national vertical reference frame in Germany (2022). For further information please contact us. Citation short: BfG et al. / i.A. FGG Elbe (2025)

Digital terrain model of the watercourses Elbe and Lower Havel (Germany), DGM-W Elbe 2022 project

The high-resolution digital terrain model (DTM) of the waterways Elbe and Lower Havel (DGM-W Elbe 2022) comprises both the terrain on land and the bottom of rivers, channels and lakes. It was produced and published by Germany’s Federal Institute of Hydrology (BfG), on behalf of the River Basin Community Elbe (RBC Elbe, FGG Elbe). The work was supported by the German Federal Waterways and Shipping Administration (WSV) and the surveying offices and water management administrations of six German states - Saxony, Saxony-Anhalt, Brandenburg, Lower Saxony, Mecklenburg-Vorpommern and Schleswig-Holstein. The data cover both the area around the inland water stretches of the Elbe from the Czech-German border to the village of Zollenspieker (part of the city of Hamburg) and the Lower Havel waterway from the town of Rathenow to its confluence with the Elbe. Since the dataset has a large coverage of 4,043 km², it is split into 62 sections. They were either labelled *HW in case of flood relevant areas (in German: “hochwasser-relevante Gebiete”) or *AU in case of historical floodplains (in German: “Altauengebiete”). Financing was divided according to these categories: In the HW areas, the project was co-funded by BfG, the WSV and the federal states, while in the AU areas, BfG covered all project costs. For each section we provide hillshade (*HS), height maps (*NHN), slope (*sl) and source flags (*sc). The data are available as GeoTIFF-files (resolution 1 meter); Coordinate reference frame: ETRS89.DREF91.R16; Coordinate projection: UTM Zone 33N; EPSG-Code: 25833; Height reference system: DHHN2016, national vertical reference frame in Germany (2022). For further information please contact us. Citation short: BfG et al. / i.A. FGG Elbe (2025)

openSenseMap: Sensor Box RSS_outdoor

Sensebox der Rudolf Steiner Schule Siegen.

Eifel Flood 2021 - Airborne Laser Scanning (ALS) and Orthophoto Data

The GFZ Potsdam HART (Hazard and Risk Team) in cooperation with the DFG research training group 2043 NatRiskChange at Potsdam University has enabled the acquisition of Airborne Laser Scanning (ALS) and high-resolution optical data which were acquired between 22 September 2021 and 24 October 2021 by the Milan Geoservice company, Spremberg, Germany. This data acquisition took place in the Eifel regions of North Rhine-Westphalia (NRW) and Rhineland-Palatinate (RLP), which were hit by the 14 July 2021 precipitation event leading to widespread severe inundations, flash floods and caused around 185 victims and massive damage to settlements, river geometry and other geomorphic features. The high-resolution ALS and optical data acquisitions aimed at the documentation and quantification of the extent of flood related changes and destructions as well as their reappraisal before diffusion erases traces. Thus, the generated data are valuable for forensic event analysis and future attempts on flood forecasting and warning in the context of scientific and practical purposes.

Vergleichsrechnungen für die EU-Umgebungslärmrichtlinie

Für Berechnungen zum Straßenverkehrslärm nach nationalem Recht werden bisher die "Richtlinien für den Lärmschutz an Straßen - RLS-90" angewandt. Diese werden am 01.03.2021 mit Änderung der 16. BImSchV (Verkehrslärmschutzverordnung) durch die am 31.10.2019 im Verkehrsblatt bekanntgegebenen "Richtlinien für den Lärmschutz an Straßen "RLS-19" abgelöst. Die Berechnungen nach der EU-Umgebungslärmrichtlinie erfolgten dagegen bis Ende 2018 nach der "Vorläufige[n] Berechnungsmethode für den Umgebungslärm an Straßen - VBUS", die am 31.12.2018 durch die "Berechnungsmethode für den Umgebungslärm von bodennahen Quellen (Straßen, Schienenwege, Industrie und Gewerbe) - BUB" ersetzt wurde. Derzeit werden in Deutschland somit die Berechnungsergebnisse von drei, demnächst sogar vier verschiedenen Berechnungsvorschriften zum Straßenverkehr verglichen. Dies macht es erforderlich, die Unterschiede der Berechnungsverfahren und deren Auswirkungen auf die Ergebnisse genau zu kennen. Im Rahmen dieses Projektes sind daher die Unterschiede der einzelnen Berechnungsterme zwischen den vier genannten Berechnungsvorschriften herausgearbeitet und deren individuelle Auswirkungen verglichen worden. Darauf aufbauend wurden die Auswirkungen der schallquellen- und ausbreitungsbezogenen Änderungen auf die Immissionspegel durch Modellrechnungen zu einzelnen Ausbreitungsparametern herausgearbeitet. Die Auswirkungen von nationalen Standardwerten für einzelne Parameter sind dabei in die Bewertung einbezogen worden. Quelle: Forschungsbericht

openSenseMap: Sensor Box RoS-back

Hausrückseite, 4. Stock, Innenhof

openSenseMap: Sensor Box RSS_Schueler_3

openSenseMap: Sensor Box RSS_Schueler_7

openSenseMap: Sensor Box RSS_Schueler_4

openSenseMap: Sensor Box RSS_Schueler_6

1 2 3 4