API src

Found 38 results.

Digital surface model of the watercourses Elbe and Lower Havel (Germany), DGM-W Elbe project, DOM Elbe 2022

The high-resolution digital surface model (DSM1, DOM1) of the watercourses Elbe and Lower Havel is based on the airborne laser scanning data, undertaken from 06 January 2022 to 18 March 2022 in the Elbe area and from 20 to 22 December 2021 in the Havel area. It was produced and published by Germany’s Federal Institute of Hydrology (BfG), on behalf of the River Basin Community Elbe (RBC Elbe, FGG Elbe). The work was supported by the German Federal Waterways and Shipping Administration (WSV) and the surveying offices and water management administrations of six German states - Saxony, Saxony-Anhalt, Brandenburg, Lower Saxony, Mecklenburg-Vorpommern and Schleswig-Holstein. The data cover both the area around the inland water stretches of the Elbe from the Czech-German border to the village of Zollenspieker (part of the city of Hamburg) and the Lower Havel waterway from the town of Rathenow to its confluence with the Elbe. Since the dataset has a large coverage of 4,043 km², it is split into 62 sections. They were either labelled *HW in case of flood relevant areas (in German: “hochwasser-relevante Gebiete”) or *AU in case of historical floodplains (in German: “Altauengebiete”). Financing was divided according to these categories: In the HW areas, the project was co-funded by BfG, the WSV and the federal states, while in the AU areas, BfG covered all project costs. For each section we provide hillshade (*HS) and height maps (*NHN). The data are available in a raster resolution of 1 meter in GeoTiff format; Coordinate reference frame: ETRS89.DREF91.R16; Coordinate projection: UTM Zone 33N; EPSG-Code: 25833; Height reference system: DHHN2016, national vertical reference frame in Germany (2022). For further information please contact us. Citation short: BfG et al. / i.A. FGG Elbe (2025)

Digital terrain model of the watercourses Elbe and Lower Havel (Germany), DGM-W Elbe 2022 project

The high-resolution digital terrain model (DTM) of the waterways Elbe and Lower Havel (DGM-W Elbe 2022) comprises both the terrain on land and the bottom of rivers, channels and lakes. It was produced and published by Germany’s Federal Institute of Hydrology (BfG), on behalf of the River Basin Community Elbe (RBC Elbe, FGG Elbe). The work was supported by the German Federal Waterways and Shipping Administration (WSV) and the surveying offices and water management administrations of six German states - Saxony, Saxony-Anhalt, Brandenburg, Lower Saxony, Mecklenburg-Vorpommern and Schleswig-Holstein. The data cover both the area around the inland water stretches of the Elbe from the Czech-German border to the village of Zollenspieker (part of the city of Hamburg) and the Lower Havel waterway from the town of Rathenow to its confluence with the Elbe. Since the dataset has a large coverage of 4,043 km², it is split into 62 sections. They were either labelled *HW in case of flood relevant areas (in German: “hochwasser-relevante Gebiete”) or *AU in case of historical floodplains (in German: “Altauengebiete”). Financing was divided according to these categories: In the HW areas, the project was co-funded by BfG, the WSV and the federal states, while in the AU areas, BfG covered all project costs. For each section we provide hillshade (*HS), height maps (*NHN), slope (*sl) and source flags (*sc). The data are available as GeoTIFF-files (resolution 1 meter); Coordinate reference frame: ETRS89.DREF91.R16; Coordinate projection: UTM Zone 33N; EPSG-Code: 25833; Height reference system: DHHN2016, national vertical reference frame in Germany (2022). For further information please contact us. Citation short: BfG et al. / i.A. FGG Elbe (2025)

openSenseMap: Sensor Box RSS_outdoor

Sensebox der Rudolf Steiner Schule Siegen.

Vergleichsrechnungen für die EU-Umgebungslärmrichtlinie

Für Berechnungen zum Straßenverkehrslärm nach nationalem Recht werden bisher die "Richtlinien für den Lärmschutz an Straßen - RLS-90" angewandt. Diese werden am 01.03.2021 mit Änderung der 16. BImSchV (Verkehrslärmschutzverordnung) durch die am 31.10.2019 im Verkehrsblatt bekanntgegebenen "Richtlinien für den Lärmschutz an Straßen "RLS-19" abgelöst. Die Berechnungen nach der EU-Umgebungslärmrichtlinie erfolgten dagegen bis Ende 2018 nach der "Vorläufige[n] Berechnungsmethode für den Umgebungslärm an Straßen - VBUS", die am 31.12.2018 durch die "Berechnungsmethode für den Umgebungslärm von bodennahen Quellen (Straßen, Schienenwege, Industrie und Gewerbe) - BUB" ersetzt wurde. Derzeit werden in Deutschland somit die Berechnungsergebnisse von drei, demnächst sogar vier verschiedenen Berechnungsvorschriften zum Straßenverkehr verglichen. Dies macht es erforderlich, die Unterschiede der Berechnungsverfahren und deren Auswirkungen auf die Ergebnisse genau zu kennen. Im Rahmen dieses Projektes sind daher die Unterschiede der einzelnen Berechnungsterme zwischen den vier genannten Berechnungsvorschriften herausgearbeitet und deren individuelle Auswirkungen verglichen worden. Darauf aufbauend wurden die Auswirkungen der schallquellen- und ausbreitungsbezogenen Änderungen auf die Immissionspegel durch Modellrechnungen zu einzelnen Ausbreitungsparametern herausgearbeitet. Die Auswirkungen von nationalen Standardwerten für einzelne Parameter sind dabei in die Bewertung einbezogen worden. Quelle: Forschungsbericht

openSenseMap: Sensor Box RoS-back

Hausrückseite, 4. Stock, Innenhof

openSenseMap: Sensor Box RSS_Schueler_1

BESTMAP RS 2010-2020 Farmland birds

Farmland birds observations recorded between 2010 and 2020 in the Backa area (Serbia), which serves as the Serbian case study area within BESTMAP. Original data source is the Global Biodiversity Information Facility (GBIF).

Eifel Flood 2021 - Airborne Laser Scanning (ALS) and Orthophoto Data

The GFZ Potsdam HART (Hazard and Risk Team) in cooperation with the DFG research training group 2043 NatRiskChange at Potsdam University has enabled the acquisition of Airborne Laser Scanning (ALS) and high-resolution optical data which were acquired between 22 September 2021 and 24 October 2021 by the Milan Geoservice company, Spremberg, Germany. This data acquisition took place in the Eifel regions of North Rhine-Westphalia (NRW) and Rhineland-Palatinate (RLP), which were hit by the 14 July 2021 precipitation event leading to widespread severe inundations, flash floods and caused around 185 victims and massive damage to settlements, river geometry and other geomorphic features. The high-resolution ALS and optical data acquisitions aimed at the documentation and quantification of the extent of flood related changes and destructions as well as their reappraisal before diffusion erases traces. Thus, the generated data are valuable for forensic event analysis and future attempts on flood forecasting and warning in the context of scientific and practical purposes.

Höheninformationen aus der Laserscanbefliegung der Stadt Braunschweig 2019

Im Februar 2019 fand u.a. über dem Stadtgebiet Braunschweig flächendeckend eine Laserscanbefliegung in Kooperation mit dem Landesamt für Geoinformation und Landesvermessung Niedersachsen (LGLN) und der Stadtentwässerung Braunschweig GmbH statt. Als Ergebnis liegen klassifizierte Höhenpunkte der Oberfläche mit einer Punktdichte von mehr als 8 Punkten/m² vor. Die Höhengenauigkeit der Messdaten/Einzelpunktkoordinaten beträgt ± 0,15m (Standardabweichung). Sie ist meist deutlich besser, wie terrestrische Vergleichsmessungen im Stadtgebiet ergaben. Die originären Rohmessdaten stehen als 3D-Punktwolke (unregelmäßig verteilte Einzelpunkte) im Format LAS/LAZ zur Verfügung. Eine Abgabe in weiteren Datenformaten sowie als ausgedünnte Punktdatensätze, interpoliert auf regelmäßige Punktgitter ist möglich. Auf Wunsch können individuell ausgeprägte Höhendarstellungen, wie z. B. Höhenlinien, digitale Geländemodelle (DGM) und digitale Oberflächenmodelle (DOM) als Datensatz oder Karte davon abgeleitet und angeboten werden.

Surface and subsurface characterisation of salt pans

This data collection bundles six datasets about the surface, subsurface and environmental conditions of saltpans that express polygonal patterns in their surface salt crust that are fully described in Lasser et al., 2020 (https://doi.org/10.5194/essd-2020-86). Information stems from 5 field sites at Badwater Basin and 21 field sites at Owens Lake – both in central California, US. All data was recorded during two field campaigns, from between November and December, 2016, and in January 2018. (1) Lasser, J., Goehring, L. (2020a). Grain size distributions of sand samples from Owens Lake and Badwater Basin in central California, collected in 2016 and 2018. PANGAEA - Data Publisher for Earth & Environmental Science. https://doi.org/10.1594/PANGAEA.910996 (2) Lasser, J., Goehring, L. (2020b): Subsurface salt concentration profiles and pore water density measurements from Owens Lake, central California, measured in 2018 (Version 2). PANGAEA, https://doi.org/10.1594/PANGAEA.922264 (3) Lasser, J., Goehring, L., Nield, J. M. (2020). Images and Videos from Owens Lake and Badwater Basin in central California, taken in 2016 and 2018 [Data set]. PANGAEA - Data Publisher for Earth & Environmental Science. https://doi.org/10.1594/PANGAEA.911054 (4) Lasser, J., Karius, V. (2020). Chemical characterization of salt samples from Owens Lake and Badwater Basin, central California, collected in 2016 and 2018. PANGAEA - Data Publisher for Earth & Environmental Science. https://doi.org/10.1594/PANGAEA.911239 (5) Nield, J. M., Lasser, J., Goehring, L. (2020). TLS surface scans from Owens Lake and Badwater Basin, central California, measured in 2016 and 2018 [Data set]. PANGAEA - Data Publisher for Earth & Environmental Science. https://doi.org/10.1594/PANGAEA.911233 (6) Nield, J. M., Lasser, J., Goehring, L. (2020): Temperature and humidity time-series from Owens Lake, central California, measured during one week in November 2016 (Version 2). Max Planck Institute for Dynamics and Self-Organization, PANGAEA, https://doi.org/10.1594/PANGAEA.922231

1 2 3 4