API src

Found 288 results.

Similar terms

s/rscm/RCM/gi

Risiken und Resilienz hydrologischer Extreme in städtisch-ländlichen Gebieten im südlichen Afrika - Co-Produktion von Wasser- und Klimadienstleistungen für ein angepasstes und nachhaltiges Risikomanagement, Teilprojekt 2

Klima - Oberflächengewässer Änderung Hochwasser Abflussscheitel (HQ100)

Änderung des Scheitelabflusses für ein 100-jährliches Hochwasserereignis (im statistischen Mittel einmal in 100 Jahren zu erwarten) in der Zukunft. Die Änderungen werden als prozentuale Zunahmen bzw. Abnahmen angegeben, die sich aus den Werten für die nahe Zukunft (2021-2050) bzw. die ferne Zukunft (2071-2100) gegenüber einem Referenzzeitraum (1971-2000) ergeben. Die Datenbasis bilden simulierte Abflüsse aus verschiedenen hydrologischen bzw. statistischen Modellen auf Tageswertbasis, die mit Daten aus einem Ensemble von acht regionalen Klimamodellen (aus dem Projekt EURO-CORDEX) auf Grundlage eines Szenarios ohne Klimaschutz (RCP8.5) angetrieben wurden. Dieses Szenario beschreibt eine zukünftige Entwicklung der Menschheit, in der die Energieversorgung im Wesentlichen auf der Verbrennung fossiler Energieträger beruht und der Ausstoß von Treibhausgasen zu einem stetigen Anstieg des Strahlungsantriebes bis zum Jahr 2100 führt. Der Median bildet dabei die mittlere Tendenz aus der Bandbreite der verschiedenen Änderungssignale der Ensemble-Mitglieder ab, der Maximalwert bildet die obere Bandbreite, der Minimalwert die untere Bandbreite.

Der Einfluss des Klimawandels auf die Lage der Brackwasserzone

Der Klimawandel ist ein globales Phänomen. Erhöhte Treibhausgaskonzentrationen in der Atmosphäre führen zu globalen Veränderungen des Klimas. Auf lokaler Ebene können Betroffenheiten entstehen. Es ist eine besondere Herausforderung, ausgehend von globalen Klimaveränderungen auf lokale Folgen, z. B. für die Wasserstraßen, zu schließen. In KLIWAS1 wird mit Hilfe einer Kette von Modellen das Klimaänderungssignal Schritt für Schritt auf kleinere räumliche Skalen übertragen. Am Anfang stehen verschiedene Emissionsszenarien die mögliche Zukünfte beschreiben. Ausgehend von diesen Emissionsszenarien wird der Klimawandel über globale Klimamodelle, regionale Klimamodelle und Abflussmodelle bis hin zu den Wirkmodellen bis zur lokalen Ebene der Wasserstraße transferiert. Kein Modell in dieser Kette repräsentiert die Natur perfekt. Die Ergebnisse jedes Modells basieren auf Annahmen und sind mit Unsicherheiten behaftet. Im Verlauf der Modellkette summieren sich die Unsicherheiten auf. Am Ende der Modellkette ist die Bandbreite der möglichen Folgen eines Klimawandels auf lokaler Ebene sehr groß. Für die deutschen Küstengebiete der Nord- und Ostsee einschließlich der Ästuare ist es aufgrund dieser Unsicherheiten schwierig, konkrete Aussagen zu den lokalen Auswirkungen und möglichen Betroffenheiten zu machen. Eine Möglichkeit mit diesen Unsicherheiten umzugehen sind Sensitivitätsstudien. Die wichtigsten physikalischen Parameter im Ästuar sind Wasserstand, Strömungsgeschwindigkeit, Salzgehalt, Temperatur und Schwebstoffgehalt. Wie sich diese Parameter in einem Ästuar entwickeln, ist abhängig von den Randbedingungen. Die Randbedingungen werden durch die Haupteinflussfaktoren Meeresspiegel in der Nordsee, Abfluss, Wind und Topographie bestimmt, die sich direkt oder indirekt durch die Folgen eines Klimawandels verändern können. Für die Sensitivitätsstudien werden die genannten Haupteinflussfaktoren, die die Randbedingungen dieser Studien bilden, einzeln und in Kombination variiert. Auf diese Weise können Aussagen darüber getroffen werden, wie sich im Ästuar Wasserstand, Strömung, Salzgehalt und Schwebstoffe an die veränderten Randbedingungen (Folgen des Klimawandels) anpassen. Dadurch ist es möglich, festzustellen, unter welchen Bedingungen ein Schwellenwert überschritten wird, der eine Betroffenheit auslöst. Gleichzeitig tragen diese Szenarien zum Prozessverständnis des physikalischen Systems Ästuar bei. Sensitivitätsstudien liefern klare Wenn-Dann-Aussagen. Für eine zeitliche Zuordnung können die Ergebnisse der Sensitivitätsstudien über die jeweils verwendeten Haupteinflussfaktoren mit den aktuellen Klimaszenarien in Beziehung gesetzt werden. (Text gekürzt)

Aktualisierung der Datenbasis für die Anpassung an den Klimawandel in Deutschland

Aktualisierung der Datenbasis für die Anpassung an den Klimawandel in Deutschland, Teilprojekt 4: Auswahl der optimalen ICON-CLM-Konfigurationen (Hereon)

Schwerpunktprogramm (SPP) 1889: Regional Sea Level Change and Society (SeaLevel), Basales Schmelzen im Grönlandischen Eisschelf und die Auswirkungen auf Meeresspiegelschwankungen

Basales Schmelzen der Eisschelfe Grönlands (GrIS) ist einer der Hauptquellen für den GrIS Masseverlust und für den Meeresspiegelanstieg. Darüber hinaus ist das beschleunigte Abschmelzen in den letzten 20 Jahren auch durch den Einstrom von wärmerem Wasser in die Fjorde verursacht. Die basalen Abschmelzraten sind jedoch unsicher und offene Fragen bestehen bezüglich der relevanten Prozesse in den Fjorden, und wie viel und wie das Schmelzwasser aus den Fjorden in den Randstrom und weiter in den offenen Ozean gelangt. Diese Unsicherheiten können in Klimamodellen zu Fehlern in der zukünftigen Rolle des Schmelzwassers für die Zirkulation und Wassermassen Verteilung und somit zu Fehlern in der Projektion des regionalen Meeresspiegels führen. Bis jetzt gibt es nicht genügend geeignete Messungen, um Schmelzwasser im Inneren des Ozeans zu quantifizieren und die Pfade zu identifizieren. Wir beantragen hier die Messung von Helium und Neon Verteilungen um zu verfolgen wo und wie viel Schmelzwasser aus GrIS in den Randstrom und ins Ozeaninnere gelangt. Dazu wird eine Prozessstudie am 79N Gletscher durchgeführt sowie Messungen im Randstrom und im Inneren der Labradorsee. Die Ziele sind: (i) Abschätzung der basalen Schmelzwasseranteile im Nah und Fernfeld des 79N Gletschers, und der Menge an Schmelzwasser, die in den Randstrom befördert wird, (ii) Berechnung der Anteile an Schmelzwasser, die aus dem Randstrom in die Labradorsee gelangen, einer der Schlüsselregionen für die Atlantische Meridionale Umwälzbewegung, Abschätzung der Zunahme seit Anfang 2000, (iii) Auswertung von hochauflösenden Modellläufen die mit basalen Schmelzwasserquellen versehen wurden, um die Verteilung des Schmelzwassers und die beteiligten Prozesse zu analysieren und um (iv) die Auswirkungen der zunehmenden Schmelzraten auf die Entwicklung des regionalen Meeresspiegels im subpolaren Nordatlantik abzuschätzen.

ClimXtreme II - Modul A Physik und Prozesse, Teilprojekt 2: Verbesserung der Beschreibung und Attribution der extremsten Zentraleuropäischen Hitzewellen (A5 DesAttHeat)

Aktualisierung der Datenbasis für die Anpassung an den Klimawandel in Deutschland, Teilprojekt 2: Auswahl der globalen Klimaprojektionen für das Downscaling sowie Durchführung der Simulationen für das hydrologische Deutschland (KIT)

Aktualisierung der Datenbasis für die Anpassung an den Klimawandel in Deutschland, Teilprojekt 1: Koordination und Optimierung der Modellkonfiguration (DWD)

prime-HYD - HYDrologische Variabilität in Hochasien

Niederschlag ist eines der wichtigsten Klimaelemente, welches komplexe atmosphärische Prozesse mit Wasserkreislauf, Schneebedeckung und Massenbilanz von Gletschern verknüpft. Niederschlag ist eine Schlüsselgröße im Umgang mit Wasserressourcen und in der Verhinderung von Hochwasser und Dürre. Dies gilt besonders für das Untersuchungsgebiet des Bündelprojektes PRIME, welches Hochasien, d.h. das Tibet-Plateau und seine umgrenzenden Gebirgsketten, umfasst. Die Forschung im Rahmen von PRIME zielt darauf ab, einen verbesserten, auf neuen Fernerkundungsverfahren und fortgeschrittenen Ansätzen regionaler numerischer Klimamodellierung (HAR*) aufbauenden, Rasterdatensatz für Niederschlag abzuleiten und zu validieren (i). Darauf aufbauend werden räumliche und zeitliche Muster, großräumige Antriebe und meso- bis lokalskalige Prozesse untersucht, die die Niederschlagsvariabilität bestimmen (ii). Die verbesserte Genauigkeit und das erweiterte Verständnis von Niederschlagstypus und -variabilität ermöglichen es, das Wissen über räumliche und zeitliche Variabilität der Gletschermassenbilanz, saisonale Schneedecken und Wasserspeicher in verschiedenen Teilregionen Hochasiens zu erweitern (iii). Das Teilprojekt PRIME-HYD befasst sich spezifisch mit dem Oberflächenwasserzyklus und wie dieser durch die Niederschlagsvariabilität und Temperatur beeinflusst wird. Für diesen Zweck wurden zwei Gebiete bestimmt: Das endorheische Einzugsgebiet des Pangong Sees (1) und jenes des Brahmaputra (2), zwei Systeme mit gemeinsamen Ursprung am Tibet-Plateau. Zur hydrologischen Modellierung wird ein verteiltes hydrologisches Modell erstellt, das durch ein Modul zur Darstellung der Gletscher und Schneedecke ergänzt wird. Das Modell wird von einem durch probabilisitsches downscaling verfeinertes Niederschlagsprodukt angetrieben, das durch die Bayessche Verbindung von Niederschlagsdaten aus der Fernerkundung und Atmosphärensimulationen HAR* an Bodenmessdaten konditioniert wird. Temperaturdaten aus der Fernerkundung und simulierte Temperaturdaten aus HAR*, die für die Simulation von Eis und Schnee erforderlich sind, können analog zu den Niederschlagsdaten verarbeitet werden. Nach der Eichung und Validierung des Modells anhand von Schnee und Abflussdaten, wird es zur Analyse von Einflüssen der Niederschlagsvariabilität auf die Abflüsse und die Seespiegelstände auf subdekadischen Zeitskalen angewandt. Die hydrologischen Zeitreihen die durch das Modell ausgegeben werden, werden anschliessend auf möglich periodische Variabilitätsmuster untersucht. Eines der wichtigen Produkte, welches durch das Projekt bereitgestellt wird, ist ein physikalisch-basiertes räumlich distribuiertes hydrologisches Modell in einem Gebiet am Tibet-Plateau, für das bisher keine wissenschaftlichen hydrologischen Modellinstrumente verfügbar sind. Die für das Vorhaben erforderlichen hydro-meteorologischen Daten werden durch das chinesische Ministerium für Wasserressourcen zugänglich gemacht.

1 2 3 4 527 28 29