Im Projekt „Abwassermonitoring für die epidemiologische Lagebewertung“ erheben das Umweltbundesamt und Robert Koch-Institut die Viruslast von Krankheitserregern im Abwasser. Dabei wird von einem interdisziplinären Team unmittelbar der One-Health Gedanke umgesetzt: Forschungsdaten aus dem Bereich Umwelt und öffentliche Gesundheit werden zeitnah ausgewertet, vereinigt und öffentlich bereitgestellt. AMELAG - kurz erklärt Was ist Abwassersurveillance (Youtube-Link) Wastewater monitoring - how does it work? (Youtube-Link) Welche Erreger sind geeignet? (Youtube-Link) Wastewater monitoring - Which infectious agents are suitable? (Youtube-Link) Gemeinsam für die Gesundheit aller Das Umweltbundesamt (UBA) und das Robert Koch-Institut (RKI) erfassen im Kooperationsvorhaben „Abwassermonitoring für die epidemiologische Lagebewertung“ (AMELAG), ob und in welcher Häufigkeit SARS-CoV-2-Virusgenfragmente deutschlandweit im Abwasser vorkommen. So kann die lokale Verbreitung von Viren wie SARS-CoV-2, Influenzaviren und weiteren Erregern zeitnah erfasst und beurteilt werden. Im ersten Projektabschnitt (2023-2024) wurden ca. 170 Kläranlagen überwacht, seit 2025 werden Abwasserproben von noch ca. 50 Kläranlagen zweimal wöchentlich untersucht. Das vereinfachte Monitoringspektrum deckt immer noch Abwasserdaten von etwa 25 % der Bevölkerung ab. An diesem durch das Bundesministerium für Gesundheit (BMG) geförderten Kooperationsprojekt sind auch das Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (BMUV), sowie die für Gesundheit und Umweltschutz verantwortliche Behörden der 16 Bundesländer (unterschiedlich ausgeprägt) beteiligt. Das AMELAG-Vorhaben setzt den etablierten One-Health-Gedanken in vorbildlicher Weise um: Wissenschaftler*innen unterschiedlichster Fachdisziplinen arbeiten hier Hand in Hand und über die Grenzen ihrer einzelnen Fachgebiete hinweg. Nur durch diese Zusammenarbeit können die Expertisen aus den Bereichen Umwelt- und Naturwissenschaften, Gesundheitswissenschaften und öffentlicher Gesundheit, Data Science und Statistik das Abwasser als verlässliche Datenquelle für die Information der Öffentlichkeit und eine evidenzbasierte Politikberatung erschließen. Ablauf der Abwassersurveillance in AMELAG Verschiedene Krankheitserreger und deren Abbauprodukte reichern sich in menschlichen Ausscheidungen (z.B. Stuhl und Speichel) an und gelangen in das Abwasser. Abwasserproben werden zweimal pro Woche am Zulauf von Kläranlagen entnommen. In der Regel wird nach der ersten mechanischen Reinigung, dem Rechen und dem Sandfang, automatisiert eine 24h-Mischprobe gewonnen. Diese Proben werden gekühlt in ein Labor transportiert und mit geeigneten Anreicherungsmethoden aufbereitet. Die Erbinformation (DNA/RNA) wird anschließend extrahiert und die vorhandenen Virusgenfragmente mittels der Polymerase-Kettenreaktion (engl. polymerase chain reaction, PCR) quantitativ erfasst. Neben den Routinemessungen auf Genfragmente von SARS-CoV-2, Influenzaviren und den Humanen Respiratorischen Synzytial Viren (RSV), werden am Umweltbundesamt auch verschiedene weitere Methoden zum Nachweis weiterer, klinisch relevanter Infektionserreger entwickelt und etabliert. Nach einer Datenprüfung hinsichtlich Qualität und Plausibilität, werden die Monitoringdaten von den datenliefernden Stellen in die eigens dazu eingerichtete Datenbank „Pathogene im Abwasser“ ( PiA-Monitor ) am Umweltbundesamt eingepflegt und verwaltet. Dort werden sie weiterverarbeitet, um witterungsbedingte Schwankungen des Rohabwasserstroms auszugleichen („Normalisierung“). Die normalisierten Datenwerte werden anschließend vom RKI als Verlaufskurve dargestellt, einer Trendberechnung unterzogen und im AMELAG-Wochenbericht sowie im Infektionsradar durch RKI und BMG veröffentlicht. Zusammen mit anderen Surveillance-Systemen wird eine epidemiologische Bewertung vorgenommen, die wiederum das Ableiten von Maßnahmen für den Gesundheitsschutz der Menschen und eine evidenzbasierte Politikberatung unterstützt. Seit Ende Januar 2025 werden die Daten der nationalen Abwassersurveillance auch auf der europäischen Version The European Wastewater Surveillance Dashboard gemeinsam mit den Abwassermonitoringdaten anderer EU-Länder veröffentlicht. Wissenschaftliche Fragestellungen und Forschung am UBA Erarbeitung von Nachweisverfahren für den Nachweis von Infektionserregern und antimikrobiellen Resistenzen (AMR) und weiteren Public Health-relevanten viralen Erregern in Abwasserproben – Forschung am Umweltbundesamt im Fachgebiet Mikrobiologische Risiken Es werden Methoden für den belastbaren Nachweis von relevanten Infektionserregern und deren Antibiotikaresistenzen sowie von Public-Health-relevanten viralen Erregern in Abwasserproben entwickelt. Der Fokus liegt dabei auf Enterobakterien mit klinisch wichtigen Antibiotikaresistenzen sowie auf Influenza A/B und weiteren respiratorischen oder gastrointestinalen Viren. Ein mehrstufiger Screening-Prozess kombiniert den direkten Nachweis lebender Bakterien, Resistenzgene und Sequenzinformationen mit massenspektrometrischen, molekularbiologischen und sequenzbasierten Verfahren. Gleichzeitig werden für virale Erreger neue Aufbereitungs- und Extraktionsmethoden erprobt, um Nukleinsäuren zu isolieren und anzureichern. Hierzu zählen die Entwicklung und Validierung von Konzentrationsverfahren, Versuchsreihen mit inaktivierten Viren oder viraler Nukleinsäure sowie Untersuchungen zur Ermittlung der Bestimmungsgrenzen. Das Ziel besteht darin, qualitätsgesicherte und robuste Labormethoden bereitzustellen, die durch fortlaufende Optimierung und Harmonisierung in die Abwassersurveillance integriert werden können. Laborharmonisierung und Abwasserparameter – Forschung am Umweltbundesamt im Fachgebiet Abwasseranalytik, Überwachungsverfahren Die derzeit gemessenen Konzentrationen von SARS-CoV-2, Influenzaviren und RSV im Abwasser werden im Rahmen von AMELAG von über 10 unterschiedlichen Laboren ermittelt. Dabei kommen unterschiedliche Methoden u. a. hinsichtlich Aufkonzentrierung der Probe, Extraktion der Viren-RNA, in der PCR nachgewiesene Gensequenzen sowie der verwendeten PCR-Analytik zum Einsatz. Neben der Erfassung der Gensequenzen wird auch eine Reihe weiterer Parameter im Abwasserüberwacht überwacht. Vorrangiges Ziel ist, diese Daten zu nutzen um witterungsbedingte Schwankungen der Abwasserzusammensetzung auszugleichen, bzw. starke Schwankungen besser interpretieren zu können. Datenplausibilisierung und Normalisierung – Forschung am Umweltbundesamt im Fachgebiet Abwassertechnikforschung, Abwasserentsorgung Die Konzentration von Viren und anderen Erregern im Abwasser kann durch Veränderungen in der Abwasserzusammensetzung stark beeinflusst werden. Grund hierfür beispielsweise Niederschläge, aber auch Einleitungen aus Industrie und Gewerbe. Die Trenderkennung wird dadurch erschwert. Der Zufluss zur Kläranlage ist ein gängiger Parameter um diese Schwankungen in der Abwasserzusammensetzung abzubilden. Je nach Kläranlage und Kanalsystem können aber andere Parameter besser geeignet sein. Daher entwickelt das UBA Methoden, die eine standortspezifische Beurteilung unterschiedlicher Plausibilisierungs- und Normalisierungsansätze ermöglichen. Über ein automatisiertes Verfahren soll so der am besten geeignete Parameter identifiziert und mit dem entsprechenden Ansatz die Trenderkennung verbessert werden. Zusammenfassend werden am UBA für die Abwassersurveillance notwendige technische Verfahrensabläufe entwickelt, weiter optimiert, harmonisiert und im Rahmen von Technischen Leitfäden dokumentiert. Dies betrifft die Probenahme, Labormethoden, Logistikkonzepte und den Bereich der Datenverarbeitung und -übermittlung an das RKI. Darüber hinaus engagiert sich das UBA im Bereich der Normung. Weiterführende Literatur Durch Forschungsarbeiten mit Beteiligung sowie direkt am Umweltbundesamt und Robert-Koch-Institut ( RKI ) sind in den letzten Jahren zahlreiche wissenschaftliche Veröffentlichungen im Rahmen des Abwassermonitoring Projektes entstanden: Saravia, C.J., Pütz, P., Wurzbacher, C., Uchaikina, A., Drewes, J.E., Braun, U., Bannick, C.G., Obermaier, N., 2024. Wastewater-based epidemiology: deriving a SARS-CoV-2 data validation method to assess data quality and to improve trend recognition. Front. Public Health 12. https://doi.org/10.3389/fpubh.2024.1497100 . Marquar, N., Pütz, P., Buchholz, U., Exner, T., Fretschner, T., Greiner, T., Helmrich, M., Lukas, M., Marty, M., Obermaier, N., Saravia Arzabe, C., Schattschneider, A., Schneider, B., Selinka, H.-C., Ullrich, A., Walther, B., Braun, U., Schumacher, J., 2024. SARS-CoV-2-Abwassersurveillance in Deutschland im Rahmen des Projekts AMELAG. https://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2024/Ausgaben/34_24.html Abwasser als Informationsquelle – Schutz vor künftigen Epidemien, 2024. wwt Wasserwirtschaft Wassertechnik 73. https://doi.org/10.51202/1438-5716-2024-10 Loenenbach, A., Lehfeld, A.-S., Puetz, P., Biere, B., Abunijela, S., Buda, S., Diercke, M., Dürrwald, R., Greiner, T., Haas, W., Helmrich, M., Prahm, K., Schumacher, J., Wedde, M., Buchholz, U., n.d. Participatory, Virologic, and Wastewater Surveillance Data to Assess Underestimation of COVID-19 Incidence, Germany, 2020–2024 - Volume 30, Number 9—September 2024 - Emerging Infectious Diseases journal - CDC. https://doi.org/10.3201/eid3009.240640 Schattschneider, A. et al. 2024, Epidemiologisches Bulletin, 34/2024. Abwasser enthält Informationen für Public Health: Mögliche Anwendungen für Abwassersurveillance“. h ttps://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2024/Ausgaben/34_24.html
Der Unfall von Tschornobyl ( russ. : Tschernobyl) Am 26. April 1986 kam es in Block 4 des Kernkraftwerks Tschornobyl in der Ukraine zu einem schweren Unfall. Dabei wurden erhebliche Mengen radioaktiver Substanzen freigesetzt, die aufgrund hoher Temperaturen des brennenden Reaktors in große Höhen gelangten und sich mit Wind und Wetter über weite Teile Europas verteilten. In der Folge wurden die in einem Umkreis von etwa 30 Kilometern um den havarierten Reaktor lebenden Menschen evakuiert oder zogen aus eigenem Antrieb fort. Messung der Ortsdosisleistung mit einem Handmessgerät am Reaktor von Tschornobyl im Rahmen einer Messübung im Jahr 2016. Zum Zeitpunkt des Unglücks waren die Messwerte weit höher. Am 26. April 1986 ereignete sich im Block 4 des Kernkraftwerks Tschornobyl ( russ. : Tschernobyl) in der Ukraine der bisher schwerste Reaktorunfall in der Geschichte. Die weitreichenden und langwierigen ökologischen, gesundheitlichen – auch psychischen – und wirtschaftlichen Folgen dieses Unfalls stellten die damalige Sowjetunion und später Russland, Belarus und insbesondere die Ukraine vor große Herausforderungen – auch heute noch. Unfallhergang Das Kernkraftwerk Tschornobyl ( russ. : Tschernobyl) gehörte zu einem Reaktortyp, der ausschließlich in der ehemaligen Sowjetunion gebaut wurde. Wesentliche Unterschiede dieses Reaktortyps zu westlichen Reaktoren liegen darin, dass sie Graphit nutzen, um die Geschwindigkeit von Neutronen in der Kernspaltungsreaktion zu reduzieren, und keine druckdichte Beton- und Stahl-Sicherheitshülle um den Reaktorkern, das so genannte Containment, besitzen. Während eines planmäßigen langsamen Abschaltens und eines gleichzeitigen Versuchsprogramms zur Überprüfung verschiedener Sicherheitseigenschaften der Anlage, kam es zu einer unkontrollierten atomaren Kettenreaktion. Dies führte zu einer Explosion des Reaktors, die das rund 1.000 Tonnen schwere Dach des Reaktorbehälters anhob. Mangels Containment lag der Reaktorkern infolge der heftigen Explosion frei, so dass radioaktive Stoffe aus dem Reaktor ungehindert in die Atmosphäre gelangten. Das im Reaktor verwendete Graphit brannte. Bei den Lösch- und Aufräumarbeiten wurden viele Beschäftigte des Reaktors, Feuerwehrleute sowie als "Liquidatoren" bekannte Rettungs- und Aufräumkräfte einer extrem hohen Strahlenbelastung ausgesetzt. Bei 134 von ihnen kam es zu akuten Strahlensyndromen . Die gesundheitlichen – auch psychischen – Folgen des Reaktorunfalls werden bis heute untersucht. Die Freisetzungen radioaktiver Stoffe konnten erst nach 10 Tagen durch den Abwurf von ca. 5.000 Tonnen Sand, Lehm, Blei und Bor aus Militärhubschraubern auf die Reaktoranlage und das Einblasen von Stickstoff zur Kühlung des geschmolzenen Kernbereichs beendet werden. In den Jahren 1986 und 1987 waren über 240.000 Personen als Liquidatoren innerhalb einer 30-Kilometer-Sperrzone rund um den havarierten Reaktor eingesetzt. Weitere Aufräumarbeiten wurden bis etwa 1990 durchgeführt. Insgesamt waren etwa 600.000 Liquidatoren für den Einsatz registriert. Über den Unfallhergang und langfristige Planungen zum Rückbau der Anlage informiert das Bundesamt für Sicherheit in der nuklearen Entsorgung ( BASE ) auf seiner Webseite. Freisetzung von Radioaktivität in die Umwelt Aufgrund des Unfalls gelangten vom 26. April bis zum 6. Mai 1986 in erheblichem Maße radioaktive Stoffe in die Umwelt . Durch den 10 Tage anhaltenden Reaktorbrand entstand eine enorme Hitze. Mit dem thermischen Auftrieb gelangten tagelang große Mengen radioaktiver Stoffe durch das zerstörte Dach der Reaktorhalle in Höhen von vielen Tausenden Metern. Verschiedene Luftströmungen (Winde) verteilten die radioaktiven Stoffe über weite Teile Europas. Sie kontaminierten mehr als 200.000 Quadratkilometer, davon rund 146.000 Quadratkilometer im europäischen Teil der ehemaligen Sowjetunion. Ein Schild warnt im Sperrgebiet vor dem "Roten Wald", einem Gebiet, das nach dem Unfall in Tschornobyl (russ.--russisch: Tschernobyl) am höchsten kontaminiert wurde. Freigesetzt wurden unter anderem radioaktive Edelgase wie etwa Xenon-133, leicht flüchtige Stoffe wie radioaktives Jod, Tellur und radioaktives Cäsium, die sich mit dem Wind weit über die Nordhalbkugel, insbesondere über Europa, verteilten und schwer flüchtige radioaktive Nuklide wie Strontium und Plutonium , die sich vor allem in einem Umkreis von etwa 100 Kilometern um den Unfallreaktor in der Ukraine und in den angrenzenden Gebieten von Belarus ablagerten. Aufgrund ihrer vergleichsweise kurzen Halbwertszeiten waren radioaktives Jod und Xenon-133 drei Monate nach dem Unfall praktisch aus der Umwelt verschwunden. Cäsium-137 und Strontium-90 haben dagegen eine Halbwertszeit von rund 30 Jahren und kontaminieren die Umwelt deutlich länger: 30 Jahre nach dem Unfall in Tschernobyl hat sich die Aktivität dieser radioaktiven Stoffe etwa halbiert. Plutonium -239 und Plutonium -240 haben mehrere Tausend Jahre Halbwertszeit – diese in der näheren Umgebung des Unfallreaktors vorzufindenden radioaktiven Stoffe sind bis heute praktisch nicht zerfallen, ihre Aktivitäten sind etwa so hoch wie 1986. Ende April/Anfang Mai 1986 trafen die radioaktiven Luftmassen des Reaktorunfalls von Tschornobyl ( russ. : Tschernobyl) in Deutschland ein. Aufgrund heftiger lokaler Niederschläge im Süden Deutschlands wurde Süddeutschland deutlich höher belastet als Norddeutschland. Die radioaktiven Stoffe lagerten sich unter anderem in Wäldern, auf Feldern und Wiesen ab – auch auf erntereifem Gemüse und Weideflächen. Über die Folgen für die Umwelt in der näheren Umgebung des Reaktors sowie in Deutschland informiert der Artikel " Umweltkontaminationen und weitere Folgen des Reaktorunfalls von Tschornobyl ". Frühe Schutzmaßnahmen Der Unfall im Kernkraftwerk Tschornobyl ( russ. : Tschernobyl) hatte nicht nur Folgen für die Umwelt , sondern auch massive Auswirkungen auf die Gesundheit und das Leben der Bevölkerung in den am stärksten betroffenen Gebieten in der nördlichen Ukraine, in Belarus und im Westen Russlands. Am 1. Mai 1986 sollte ein Vergnügungspark in Prypjat eröffnet werden. Die Stadt wurde am 27. April 1986 evakuiert; das Riesenrad steht seitdem. Evakuierungen Am Tag nach dem Unfall wurde die Stadt Prypjat evakuiert, sie ist bis heute nicht bewohnt. Das Gebiet in einem Radius von 30 Kilometern rund um das Kernkraftwerk Tschornobyl ( russ. : Tschernobyl) wurde anschließend zum Schutz der Bevölkerung vor hoher Strahlung zur Sperrzone. Die Orte innerhalb der Sperrzone wurden evakuiert und aufgegeben – betroffen davon waren 1986 neben Prypjat auch Tschornobyl, Kopatschi und weitere Ortschaften. Die Sperrzone wurde später anhand der Höhe der Kontamination räumlich angepasst. Insgesamt wurden mehrere 100.000 Personen umgesiedelt (zwangsweise oder aus eigenem Antrieb). Schutz vor radioaktivem Jod Die Zahl der Schilddrüsenkrebserkrankungen stieg nach 1986 in der Bevölkerung von Weißrussland, der Ukraine und den vier am stärksten betroffenen Regionen Russlands deutlich an. Dies ist zum größten Teil auf die Belastung mit radioaktivem Jod innerhalb der ersten Monate nach dem Unfall zurückzuführen. Das radioaktive Jod wurde vor allem durch den Verzehr von Milch von Kühen aufgenommen, die zuvor kontaminiertes Weidegras gefressen hatten. Dies gilt als Hauptursache für die hohe Rate an Schilddrüsenkrebs bei Kindern. Radioaktives Jod wurde außerdem durch weitere kontaminierte Nahrung sowie durch Inhalation mit der Luft aufgenommen. Nach Aufnahme in den Körper reichert es sich in der Schilddrüse an. Wird genau zum richtigen Zeitpunkt nicht-radioaktives Jod in Form einer hochdosierten Tablette aufgenommen, kann verhindert werden, dass sich radioaktives Jod in der Schilddrüse anreichert (sogenannte Jodblockade ). Entsprechende Informationen der zuständigen Behörden gab es in den betroffenen Staaten der ehemaligen Sowjet-Union für die Bevölkerung, insbesondere in ländlichen Gebieten, jedoch nicht – auch nicht darüber, dass potenziell betroffene Lebensmittel, insbesondere Milch, nicht oder nur eingeschränkt verzehrt werden sollte. Dazu kam, dass die betroffene Bevölkerung oft keine Alternativprodukte zur Nahrungsaufnahme zur Verfügung hatte. Schutzhülle am Reaktor Schutzhülle (New Safe Confinement) über dem havarierten Reaktor von Tschernobyl Quelle: SvedOliver/Stock.adobe.com Um die im zerstörten Reaktorblock befindlichen radioaktiven Stoffe sicher einzuschließen und weitere Freisetzungen radioaktiver Stoffe in die Umgebung zu begrenzen, wurde von Mai bis Oktober 1986 eine als "Sarkophag" bekannte Konstruktion aus Beton und Stahl um den zerstörten Reaktor errichtet. Wegen der Dringlichkeit blieb keine Zeit für eine detaillierte Planung. 2016 wurde mit internationaler Unterstützung eine etwa 110 Meter hohe Schutzhülle - das "New Safe Confinement" - über den ursprünglichen Sarkophag geschoben und 2019 betriebsbereit in die Verantwortung der Ukraine übergeben. Die Schutzhülle ist rund 165 Meter lang und besitzt eine Spannweite von ungefähr 260 Metern; ihre projektierte Lebensdauer beträgt 100 Jahre. Der Rückbau des alten Sarkophags sowie die Bergung und sichere Endlagerung des darin enthaltenen radioaktiven Materials stehen als nächste Herausforderung an. Konsequenzen für den Notfallschutz in Deutschland Über die Folgen des Reaktorunfalls von Tschornobyl ( russ. : Tschernobyl) für die Organisation und Umsetzung des radiologischen Notfallschutzes in Deutschland informiert der Artikel " Entwicklung des Notfallschutzes in Deutschland " Medien zum Thema Mehr aus der Mediathek Tschornobyl (russ. Tschernobyl) Was geschah beim Reaktorunfall 1986 in Tschornobyl? In Videos berichten Zeitzeugen. Broschüren und Bilder zeigen die weitere Entwicklung. Stand: 15.01.2025