Am Südwestrand des Harzes wurde zwischen 1930 und 1933 bei Bad Lauterberg (Niedersachsen) die Odertalsperre errichtet, die dem Hochwasserschutz, der Energieerzeugung und der Niedrigwasseraufhöhung des Unterlaufes der Oder in Trockenzeiten dient. Die Gesamtanlage besteht neben der 56 m hohen Hauptsperre (Erddamm mit Betonkern) aus einem unterhalb gelegenen Ausgleichsbecken (ca. 200 m x 700 m), das wiederum durch einen 7,5 m hohen Erddamm mit integrierter Wehranlage begrenzt wird. Das Reservoir der Hauptsperre und das Ausgleichsbecken wurden bis Anfang der 1990er Jahre als Pumpspeicherkraftwerk betrieben. Zur sicheren Ableitung extremer Hochwasser existiert am linken Hang der Hauptsperre eine Hochwasserentlastungsanlage (HWE) aus Beton, die nach fast 80 Jahren Schäden aufweist, die einer Sanierung bedürfen. Aus Sicherheitserwägungen soll außerdem die Wehranlage des Ausgleichsbeckens umgebaut werden. Für den Betreiber, die Harzwasserwerke GmbH aus Hildesheim, wurden deshalb von Dezember 2008 bis September 2009 zur Vorbereitung der geplanten Sanierungen hydraulische Modellversuche zur HWE, zur Wehranlage am Abschlussdamm des Ausgleichsbeckens und zum Ausgleichsbecken selbst durchgeführt. Unter Leitung von Prof. Jürgen Stamm erfolgten im Hubert-Engels-Labor des Instituts für Wasserbau und Technische Hydromechanik (IWD) der TU Dresden durch Dipl.-Ing. Holger Haufe und Dipl.-Ing. Thomas Kopp die Untersuchungen an drei Teilmodellen, zwei davon physikalisch im Maßstab M 1:25 für die HWE und M 1:20 für die Wehranlage. Bei dem dritten Teilmodell handelte es sich um ein tiefengemitteltes 2D-hydronumerisches Modell zur Ermittlung der Strömungsverhältnisse im Ausgleichsbecken. Am Teilmodell der HWE wurde im Rahmen mehrerer Versuchsreihen die hydraulische Leistungsfähigkeit und Funktionstüchtigkeit für verschiedene Zustände (vor, während und nach der Sanierung) überprüft und nachgewiesen. Durch Maßstabseffekte bedingte hydraulische Unterschiede zwischen Natur und Modell (Wasser-Luft-Gemischabfluss), die im 'verkleinerten' Modell nicht auftraten, wurden analytische Berechnungen durchgeführt, mit denen nachgewiesen werden konnte, dass die Seitenwände der HWE auch beim vermutlich größten Hochwasser (PMF) nicht überströmt werden. Die Harzwasserwerke GmbH wird voraussichtlich 2010/11 auf Grundlage der Versuchsergebnisse mit den Sanierungsarbeiten beginnen. Die am IWD untersuchten und hydraulisch optimierten Einzelmaßnahmen werden dann zu einer effizienten Bauausführung beitragen und anschließend die Hochwassersicherheit der Odertalsperre für die nächsten Generationen gewährleisten. (Text gekürzt)
Gegenüber dem planfestgestellten Sachstand aus der 8. Planänderung ergibt sich Änderungs- bzw. Definitionsbedarf, welcher mit der 11. Planänderung nach Planfeststellungsbeschluss durch die TenneT TSO GmbH beantragt wird. Dadurch, dass die KÜ Erzhausen in einer sog. Stich-Verbindung elektrotechnisch betrachtet eingebaut ist, ergibt sich aus elektrotechnischer Sicht die Notwendigkeit, diese Stichverbindung vom Rest des Netzes abtrennen zu können, um für den Fall von z.B. Reparatur- bzw. Wartungsarbeiten an der KÜA selbst bzw. an den Erdkabeln die Arbeitssicherheit zu gewährleisten. Dies kann ausschließlich innerhalb der KÜA nur durch einen Trenn- und Erdungsschalter inkl. sämtlicher zugehöriger Technik realisiert werden. Diese zusätzlichen Geräte bedeuten zusätzliche Fundamente und somit den Bedarf einer größeren Stellfläche, auf dem bereits erworbenen Grundstück. Der Betriebsweg auf dem KÜA-Gelände wird dementsprechend länger. Gleichwohl hat die Vergrößerung der Stellfläche für die Kabelübergangsanlage zur Folge, dass das KÜA Portal als definierter Endpunkt der Freileitungsanbindung zwischen dem Abzweigmast B027N und der KÜA in seinem Standort verschoben werden muss. Auf den durch das Anlagenlayout definierten Anlagenachsen wird das KÜA-Portal um ca. 6m in südöstliche Richtung verschoben. Der Mast 001 ist bereits errichtet und ändert sich nicht. Aufgrund dieser Standortänderung des KÜA-Portals verschwenkt sich die Leitungsachse und das Spannfeld zwischen Mast 001 und KÜA-Portal verkürzt sich. Die geänderte Leitungsgeometrie erfordert eine geänderte Befestigungsgeometrie der Leiterseile am Portalriegel des KÜA-Portals. Dadurch, dass die Trennschalter elektrisch betrieben und gesteuert sind, wird ein Betriebsgebäude zur Unterbringung der Automatisierungstechnik zwingend erforderlich, was aus dem planfestgestellten KÜ eine aktive KÜA macht. Aus den insgesamt größeren Flächen der KÜA resultieren geringfügig höhere zu versickernde bzw. abzuleitende Niederschlagsmengen. Um die planfestgestellte Trommelfläche, östlich der KÜA in direkter Nähe der Landesstraße L487, herstellen zu können und eine schädliche Verdichtung von Oberboden in diesem Bereich zu verhindern, ist der Abtrag von Oberboden zwingend notwendig. Die Lagerung der Oberbodenmieten ist in direkter örtlicher Nähe zur Trommelfläche, außerhalb von Überschwemmungsflächen, vorgesehen, um weite Transportwege zu vermeiden. Auf Grund der starken Steigung der dauerhaften Zuwegung zur KÜA, welche auch als Baustraße genutzt werden muss, ist es baustellenlogistisch zwingend erforderlich, Baumaterialien, die in großen Transporteinheiten nach Erzhausen geliefert werden, abzuladen, kurzfristig zwischenzulagern und auf kleinere Baustellenfahrzeuge umzuladen. Für diese Vorgänge ist die planfestgestellte Trommelfläche östlich der KÜA in direkter Nähe zur Landesstraße L487 vorgesehen. Dementsprechend wird eine Nutzungserweiterung der Trommelfläche als Umladefläche für Bau- und Bodenmaterialien beantragt. Um, ohne auf die L487 einzubiegen, direkt von der Baustraße-/Zuwegung KÜA auf die Trommel-/Umladefläche zu gelangen, wird eine zusätzliche Zufahrt zu dieser Fläche beantragt. Da sich zwischen Landesstraße und der Trommel-/Umladefläche ein Grünstreifen und ein Graben befindet, dessen temporäre Überbauung mit insgesamt zwei asphaltierten Zufahrten und der erforderlichen Verrohrung des vorhandenen Straßenbegleitgrabens im Bereich dieser Zufahrten der in der 8. Planänderung nicht berücksichtigt wurde, diese aber zwingend als Zu- und Abfahrt von Transport- und Trommelfahrzeugen benötigt werden, wird dies mit der vorliegenden Planänderung nach Planfeststellung nachträglich beantragt. Zusammenfassend ergibt sich somit folgender Änderungs- bzw. Definitionsbedarf: Änderung des passiven Kabelübergangs (KÜ) zur aktiven Kabelübergangsanlage (KÜA) auf Grund der zwingend erforderlichen Hinzunahme einer Trenn- und Erdungsschalterebene; zwei zusätzlich erforderliche Blitzableiter sowie eine zwingend erforderliche Umhausung für Steuerzellen (Betriebsgebäude). Dadurch bedingt ist die Veränderung des Portalstandortes, was wiederum eine Veränderung des Schutzbereichs der durch die Leiterseile überspannten Fläche zur Folge hat. Anpassung des rechnerischen Nachweises der schadfreien Entwässerung des KÜA-Geländes, Feinplanung der Zuwegungsfläche vor der Toranlage der KÜA, Zusätzliche, temporär genutzte Flächen zur Lagerung von Oberbodenmieten im Bereich östlich KÜA in Nähe der L487, Erweiterung der Nutzung der temporären Arbeitsfläche (Trommelfläche) im Bereich L487/Einfahrt Zuwegung KÜA als Umlade-/Baustelleinrichtungsfläche, Temporäre Grabenverrohrungen für die Schaffung einer Zufahrt von der L487 auf die temporär hergestellte und genutzte Arbeits-/Umlade-/Trommelfläche und dementsprechend Nutzung des Straßenseitenraums der L487.
Die Schwarz-Weiß-Ausgabe der Digitalen Topographischen Karte im Maßstab 1:50.000 (DTK50 SW) stellt überregionale topographische Zusammenhänge in abstrahierter Form dar. Gegenüber der Farbausgabe wird unter anderem auf die Darstellung von Höhenlinien verzichtet; die Darstellung der Siedlungsbereiche erfolgt durch die Einzelgebäudedarstellung.
Mit diesem Dienst werden waldbauliche Informationen wie die Bestandeszustandstypen des Landesbetriebes Forst Brandenburg veröffentlicht.
Radarbilder RW des operationellen DWD-Radarverbundes - Radar images RW from the operational DWD radar composite
Radarbilder RW des operationellen DWD-Radarverbundes - Radar images RW from the operational DWD radar composite
Die Kenntnis von hydraulischen Durchlässigkeiten wie auch von Wasser- und Verunreinigungsfluxen in porösen Grundwasserleitern ist von großer Bedeutung in vielen hydrogeologischen Belangen wie z.B. Beregnung, Versickerung, quantitative und qualitative Wasserwirtschaft, Risikoabschätzung bei Verunreinigungen, usw. Derzeit ist keine theoretisch gut fundierte Methode zur Messung horizontaler und vertikaler Durchlässigkeiten in der gesättigten Zone verfügbar und Methoden zur Messung von gesättigten Durchlässigkeiten in der ungesättigten Zone sind beschränkt, zeitaufwendig und fallweise unzuverlässig. Außerdem ist gegenwärtig keine Methode zur direkten Messung vertikaler Wasser- und Verunreinigunsfluxe in porösen Grundwasserleitern oder am Übergang zwischen Grund- und Oberflächengewässern bekannt. Das dargelegte Projekt basiert auf der Entwicklung einer exakten Lösung des Strömungsfeldes für das Ein- oder Auspumpen von Wasser durch eine beliebige Anzahl von unterschiedlichen Filterabschnitten entlang eines ansonsten undurchlässigen Filterrohres bei verschiedenen Randbedingungen. Diese Lösung erlaubt die Ermittlung von Formfaktoren der Strömungsfelder, die zur Berechnung hydraulischer Durchlässigkeiten aus Einpressversuchen nötig sind. Die derzeit angewendeten Formeln können mit der genauen Lösung verglichen und der Einfluss anisotroper Durchlässigkeiten kann miteinbezogen werden. Eine doppelfiltrige Rammsonde wird zur bohrlochfreien Messung horizontaler und vertikaler Durchlässigkeiten in verschiedenen Tiefen unter dem Grundwasserspiegel vogeschlagen. Der Test besteht aus zwei Teilen: (1) Einpressen durch beide Filterabschnitte und (2) Zirkulation zwischen den Filtern. Die gleiche Sondenkonfiguration wird für die direkte und gleichzeitige Messung lokaler, kumulativer, vertikaler Wasser- und Verunreinigungsfluxe nach dem passiven Fluxmeter-Prinzip vorgeschlagen. Ohne zu pumpen werden die beiden Filterabschnitte hiebei durch eine mit Tracern geladene Filtersäule hydraulisch verbunden. Der vertikale Gradient im Testbereich treibt einen Fluss durch den Filter, der kontinuierlich Tracer auswäscht und Verunreinigungen im Filter hinterlässt. Aus der Analyse des Filtermaterials zur Bestimmung der Tracer- und Verunreinigungsmengen nach dem Test werden mit Kenntnis des Strömungsfeldes um die Sonde die Wasser- und Verunreinigungsfluxe bestimmt. Eine kegelförmige, doppelfiltrige Rammsonde wird weiters vorgeschlagen, um gesättigte Durchlässigkeiten sowohl über als auch unter dem Grundwasserspiegel direkt messen zu können. Die Methode basiert auf stationärer, gesättigt/ungesättigt gekoppelter Strömung aus kugelförmigen Hohlräumen. Die Möglichkeit einer transienten einfiltrigen Methode und einer Methode zur Messung anisotroper Durchlässigkeiten wird beurteilt. Die vorgeschlagenen theoretischen Konzepte werden ausgearbeitet und anhand von Laborversuchen überprüft.
Das Geoportal der Metropolregion Hamburg ist der wesentliche Baustein der Geodateninfrastruktur der Metropolregion Hamburg (GDI-MRH). Es bündelt die Geodaten der Länder und Kommunen der Metropolregion Hamburg (MRH) und ergänzt diese durch übergreifende Themen, die teilweise bundesweit verfügbar sind oder von der Geschäftsstelle der Metropolregion erfasst oder erworben werden. Die im Geoportal MRH präsentierten Daten liegen in der Zuständigkeit verschiedener Akteure in der MRH. Weitere Informationen zu den Nutzungsbedingungen und inhaltlichen Ansprechpersonen erhalten Sie über die Metadaten der einzelnen Datensätze. Eine vollumfängliche Übersicht über die Datensätze des Geoportals bietet der Themenbaum des Geoportals MRH.
<p>Nutzung der Wasserkraft</p><p>Die Kraft des Wassers zu nutzen hat eine lange Tradition und ist bis heute als erneuerbare Energiequelle von Bedeutung. Gleichzeitig hat die Energiegewinnung aus Flüssen vielfältige sozioökonomische und ökologische Wirkungen, die es zu beachten gilt.</p><p>Vom Wasser zum Strom</p><p>Das physikalische Grundprinzip der Wasserkraftnutzung ist, die Bewegungsenergie und die potenzielle Energie des Wassers in nutzbare Energie umzuwandeln. Der Energiegewinn aus Wasserkraft ist umso höher, je mehr Wasser aus möglichst großer Fallhöhe auf die Schaufeln einer Turbine oder eines Wasserrads trifft. Bergige Landschaften mit viel Wasser aus Niederschlägen sind daher besonders für die Wasserkraftnutzung geeignet.</p><p>Bei der Erzeugung von Wasserkraft wird zwischen Laufwasserkraftwerken und Speicherkraftwerken unterschieden. Ein Laufwasserkraftwerk nutzt die augenblicklich verfügbare Wassermenge eines Flusses oder Bachs. Speicherkraftwerke halten das Wasser zurück. Es wird dann zu Zeiten höheren Strombedarfes durch die Turbinen geleitet.</p><p>Pumpspeicherkraftwerke sind eine Sonderform der Speicherkraftwerke. Hierbei wird Wasser in ein höher gelegenes Speicherbecken gepumpt, um es bei Strombedarf nutzen zu können.</p><p>Auswirkungen der Wasserkraftnutzung auf die Gewässerökologie</p><p>Die Wasserkraftnutzung greift erheblich in Natur und Landschaft ein. Aus der Berichterstattung zur EU-<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Wasserrahmenrichtlinie#alphabar">Wasserrahmenrichtlinie</a> ist bekannt, dass in 37 Prozent aller berichteten <a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Wasserkrper#alphabar">Wasserkörper</a> – das sind über 51.000 Flusskilometer – die Wasserkraftnutzung Gewässer signifikant belastet. Dadurch werden die Gewässerschutzziele – der gute ökologische Zustand – nahezu vollständig verfehlt. Zu den gravierendsten Auswirkungen der Wasserkraft auf die Gewässer und Auen zählen:</p><p>Wasserkraftanlagen neu zu bauen oder zu betreiben, ist deshalb kritisch zu bewerten. Die Mehrzahl der existierenden Anlagen in Deutschland ist aus ökologischer Sicht dringend modernisierungsbedürftig. In den kommenden Jahren müssen Durchgängigkeit, Mindestwasserführung, hydrologische Situation und Fischschutz verbessert werden – auch um die gesetzlichen Ziele der Wasserrahmenrichtlinie zu erreichen.</p><p>Leitplanken für die Stromerzeugung aus Wasserkraft und Erneuerbare Energien Gesetz</p><p>Das Umweltbundesamt empfiehlt folgende Leitplanken für die Stromerzeugung aus Wasserkraft:</p><p>Mit dem „Gesetz zu Sofortmaßnahmen für einen beschleunigten Ausbau der erneuerbaren Energien und weiteren Maßnahmen im Stromsektor“ wurde dem Ausbau der erneuerbaren Energien ein überragendes öffentliches Interesse eingeräumt. Im Rahmen der Abwägung verschiedener Interessen und Schutzgüter erhalten die erneuerbaren Energien damit ein besonders hohes Gewicht. Insgesamt verfolgt das EEG dennoch einen einheitlichen Ansatz, um <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klima#alphabar">Klima</a>-, Umwelt- und Naturschutz miteinander zu verbinden. Wichtige Belange sollen nicht gegeneinander ausgespielt werden. Zur Frage wie weit das überragende Interesse reicht hat das Umweltbundesamt ein<a href="https://www.umweltbundesamt.de/dokument/die-besondere-bedeutung-der-erneuerbaren-energien">Factsheet</a>erstellt.</p><p>Wasserkraftnutzung in Deutschland</p><p>Die Wasserkraft ist mit einem Anteil von etwa 15 Prozent an der weltweiten Stromversorgung eine bedeutende erneuerbare Energiequelle. Im globalen Vergleich zählen China, Kanada, Brasilien, USA, Russland und Indien zu den größten Erzeugern von Strom aus Wasserkraft. In Europa sind Norwegen, Frankreich, Schweden, Türkei und Italien die größten Produzenten.</p><p>In Deutschland wird Wasserkraft vorwiegend in den abfluss- und gefällereichen Regionen der Mittelgebirge, der Voralpen und Alpen sowie an allen größeren Flüssen genutzt. Daher werden über 80 Prozent des Wasserkraftstroms in Bayern und Baden-Württemberg erzeugt. Etwa 86 Prozent des gesamten Leistungsvermögens der großen Wasserkraftanlagen liegt an neun großen Flüssen vor: Inn, Rhein, Donau, Isar, Lech, Mosel, Main, Neckar und Iller.</p><p>Wasserkraftanlagen in Deutschland</p><p>Gegenwärtig werden in Deutschland etwa 8.300 Wasserkraftanlagen betrieben. Vor allem kleine Anlagen mit einer installierten Leistung von höchstens einem Megawatt dominieren den Anlagenbestand mit 95 Prozent; ihr Anteil an der Stromerzeugung ist jedoch gering (s.u.). Den verbleibenden Anteil teilen sich große Wasserkraftanlagen mit einer installierten Leistung über einem Megawatt (436 Anlagen) und Pumpspeicherkraftwerke (31 Anlagen).</p><p>Die Nutzung der Wasserkraft erfolgt in Deutschland vor allem über Laufwasserkraftwerke. Speicherkraftwerke haben demgegenüber einen viel geringeren Anteil von etwa 2,5 Prozent.</p><p>Stromproduktion aus Wasserkraft in Deutschland</p><p>In das öffentliche Stromnetz speisen etwa 7.300 Wasserkraftanlagen ein. Sie decken über die Jahre je nach Wasserführung 2,9 bis 3,8 Prozent des jährlichen Bruttostromverbrauchs bei. Über 90 Prozent des Wasserkraftstromes stammt aus großen Wasserkraftanlagen.</p><p>Der Anteil der Wasserkraft an der Stromerzeugung aus erneuerbaren Energien ist über die Jahre gesunken und liegt gegenwärtig noch bei ca. 8 Prozent. Dieser Anteil wird in Zukunft weiter sinken, da die Potenziale der Wasserkraftnutzung in Deutschland weitgehend erschlossen sind, während andere erneuerbare Energieträger größere Potenziale aufweisen und weiter ausgebaut werden. Darüber hinaus kann sich die durch den <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a> bedingte Zunahme von Trockenperioden negativ auf den Energieertrag von Wasserkraftanlagen auswirken.</p><p><a href="https://www.umweltbundesamt.de/themen/klima-energie/erneuerbare-energien/erneuerbare-energien-in-zahlen">Aktuelle Zahlen</a>zur Wasserkraftnutzung werden regelmäßig von der Arbeitsgruppe Erneuerbare Energien-Statistik (AGEE-Stat) veröffentlicht. Über die Umsetzung des Erneuerbare-Energien-Gesetzes (EEG) im Bereich Wasserkraft unterrichten die<a href="https://www.bmwk.de/Redaktion/DE/Downloads/S-T/schlussbericht-wasserkraft-231027.pdf?__blob=publicationFile&v=6%20l">EEG-Erfahrungsberichte</a>. Anlagendaten sind über das Marktstammdatenregister der Bundesnetzagentur recherchierbar.</p><p>Wasserkraftpotenzial in Deutschland</p><p>Das technisch-ökologische Potenzial der Wasserkraftnutzung in Deutschland wird auf etwa 25 Terawattstunden (<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=TWh#alphabar">TWh</a>) Strom pro Jahr beziffert. In den vergangenen zehn Jahren wurden bereits bis zu 23 TWh Strom pro Jahr aus Wasserkraft gewonnen. Damit ist das Wasserkraftpotenzial zu großen Teilen erschlossen. Zwischenzeitlich haben viele Bundesländer die Potenziale der Energiegewinnung aus Wasserkraft weiter konkretisiert. Dafür wurden fast 40.000 Standorte bestehender Querbauwerke und Wasserkraftanlagen sowie auch frei fließende Gewässerstrecken in Hinblick auf noch zu erschließende Wasserkraftpotenziale analysiert. Auf dieser Basis gehen die Länder derzeit von einem grundsätzlich noch erschließbaren Wasserkraftpotenzial von 1,3 bis 1,4 TWh aus. Etwa 70 Prozent dieses Potenzials entfallen auf die Modernisierung bestehender Wasserkraftanlagen.</p><p>Die Rolle der Wasserkraft bei der Energiewende</p><p>In den letzten Jahren wurden die Rahmenbedingungen einer vollständig auf erneuerbaren Energien basierenden Stromversorgung in Deutschland in verschiedenen Studien analysiert, so auch in der Studie "<a href="https://www.umweltbundesamt.de/themen/klima-energie/klimaschutz-energiepolitik-in-deutschland/szenarien-konzepte-fuer-die-klimaschutz/rescue-wege-in-eine-ressourcenschonende">RESCUE – Wege in eine ressourcenschonende Treibhausgasneutralität</a>" des Umweltbundesamtes. Sowohl die progressiven als auch die konservativen Szenarien unterscheiden sich hinsichtlich der künftigen Entwicklung der Wasserkraft nur geringfügig. Demnach wird die Wasserkraft keinen großen Beitrag zur deutschen Bruttostromerzeugung leisten. Alle Szenarien zeigen einheitlich, dass die Wasserkraft ihr technisch-ökologisches Potenzial im Großen und Ganzen bereits ausschöpft.</p><p>Wasserkraft und Klimawandel</p><p>Bei der Abschätzung der zukünftigen Stromerzeugung aus Wasserkraft ist der Klimawandel mit zu betrachten, denn die Höhe des Stromertrags hängt u.a. von der Wassermenge ab. Das Umweltbundesamt hat die möglichen Effekte des Klimawandels auf die Ertragssituation der Wasserkraft<a href="https://www.umweltbundesamt.de/publikationen/klimafolgen-fuer-wasserkraftnutzung-in-deutschland">untersuchen lassen</a>. Demnach kann bis zur Hälfte des 21. Jahrhunderts mit einer Mindererzeugung aus Wasserkraft um ein bis vier Prozent und für den Zeitraum danach um bis zu 15 Prozent gerechnet werden.</p><p>So zeigen Berechnungen an ausgewählten Wasserkraftanlagen an Hochrhein, Lech und Main Schwankungen in der Stromerzeugung von plus/minus neun Prozent in Abhängigkeit des Wasserdargebots. Um mögliche Mindererzeugungen der Wasserkraft zu kompensieren, empfiehlt es sich, die Anlagen zu optimieren und die Vorhersagemodelle für den Oberflächenabfluss weiter zu verbessern.</p><p>Wasserkraftwerk bei Griesheim im Main von oberstrom fotografiert.</p><p>Wasserkraftwerk bei Griesheim im Main von unterstrom fotografiert.</p><p>Wasserkraftanlage in der Sieg (Unkelmühle).</p><p>Demonstration der Nutzung von Wasserkraft.</p><p>Wasserkraftanlage in der Saale bei Öblitz.</p><p>Wasserkraftanlage in der Saale unterhalb von Jena.</p><p>Wasserkraftnutzung im Bayerischen Wald.</p><p>Ausleitungswehr für die Wasserkraftnutzung bei Tübingen.</p><p>Literatur</p><p>Anderer Pia, Dumont Ulrich, Linnenweber Christof, Schneider Bernd (2009): Das Wasserkraftpotenzial in Rheinland-Pfalz. In: KW Korrespondenz Wasserwirtschaft 2009 (2) Nr. 4. 223-227.</p><p>Anderer, Pia; Heimerl, Stephan; Raffalski, Niklas; Wolf-Schumann, Ulrich (2018): Potenzialstudie Wasserkraft in Nordrhein-Westfalen. WasserWirtschaft 5 – 2018. 33-39.</p><p><a href="https://www.umweltbundesamt.de/service/glossar/b?tag=BMU#alphabar">BMU</a> (Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit) (2010): Potentialermittlung für den Ausbau der Wasserkraftnutzung in Deutschland als Grundlage für die Entwicklung einer geeigneten Ausbaustrategie. Aachen. 2010.</p><p>Helbig, Ulf; Stiller, Felix (2020): Potentialstudie WKA Brandenburg. Institut für Wasserbau und technische Hydromechanik TU Dresden. Vortrag. (Unveröffentlicht).</p><p>International Hydropower Association (IHA) 2022: Hydropower Status Report. Sector trends and insights.</p><p>Kraus Ulrich, Kind Olaf, Spänhoff Bernd (2011): Wasserkraftnutzung in Sachsen – aktueller Stand und Perspektiven. 34. Dresdner Wasserbaukolloquium 2011: Wasserkraft – mehr Wirkungsgrad + mehr Ökologie = mehr Zukunft. Dresdner Wasserbauliche Mitteilungen. 11-18.</p><p>LANUV (Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen) [Hrsg.] (2017): Potenzialstudie Erneuerbare Energien NRW Teil 5 – Wasserkraft. LANUV-Fachbericht 40. Pia Anderer, Edith Massmann (Ingenieurbüro Floecksmühle GmbH), Dr. Stephan Heimerl, Dr. Beate Kohler (Fichtner Water & Transportation GmbH), Ulrich Wolf-Schumann, Birgit Schumann (Hydrotec Ingenieurgesellschaft für Wasser und Umwelt mbH). Recklinghausen 2017.</p><p>LfU - Bayerisches Landesamt für Umwelt (2020). Energieatlas Bayern.<a href="https://www.energieatlas.bayern.de/thema_wasser/daten.html">https://www.energieatlas.bayern.de/thema_wasser/daten.html</a>. Zugriff am 04.05.2021.</p><p>MWAG - Ministerium für Wirtschaft, Arbeit und Tourismus Mecklenburg-Vorpommern [Hrsg.] (2011): Landesatlas Erneuerbare Energien Mecklenburg-Vorpommern 2011. Projektbearbeitung: Energie-Umwelt-Beratung e.V./Institut Rostock. Schwerin – Neubrandenburg.</p><p>Naumann, S. (2022): Aktueller Gewässerzustand und Wasserkraftnutzung. In Korrespondenz Wasserwirtschaft 2022 (15) Nr. 12. 743-748.</p><p>Radinger, J., van Treeck R., Wolter C. (2021). Evident but context-dependent mortality of fish passing hydroelectric turbines. conservation biology. Volume36, Issue3. DOI: 10.1111/cobi.13870.</p><p>Reiss, J.; Becker, A.; Heimerl S. (2017): Ergebnisse der Wasserkraftpotenzialermittlung in Baden-Württemberg. In: WasserWirtschaft 10/2017. 18-23.</p><p>Theobald, Stephan (2011): Analyse der hessischen Wasserkraftnutzung und Entwicklung eines Planungswerkzeuges „WKA-Aspekte“. Universität Kassel. Fachgebiet Wasserbau und Wasserwirtschaft. Erläuterungsbericht i.A. Hessisches Ministerium für Umwelt, Energie, Landwirtschaft und Verbraucherschutz, Wiesbaden. August 2011.</p><p>TMWAT - Thüringer Ministerium für Wirtschaft, Arbeit und Technologie [Hrsg.] (2011): Neue Energie für Thüringen Ergebnisse der Potenzialanalyse. Thüringer Bestands- und Potenzialatlas für erneuerbare Energien. Studie im Auftrag des Thüringer Ministeriums für Wirtschaft, Arbeit und Technologie 2010–2011.</p><p><a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a> - Umweltbundesamt [Hrsg.] (1998): Umweltverträglichkeit kleiner Wasserkraftwerke – Zielkonflikte zwischen <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klima#alphabar">Klima</a>- und Gewässerschutz. Meyerhoff J., Petschow U.. Institut für ökologische Wirtschaftsforschung GmbH, Berlin, UFOPLAN 202 05 321, UBA-FB 97-093, In: UBA Texte 13/98, 1-150.</p><p>UBA -Umweltbundesamt [Hrsg.] (2001): Wasserkraftanlagen als erneuerbare Energiequelle –rechtliche und ökologische Aspekte. BUNGE T. et. al.. In: UBA Texte 01/01, 1-88.</p>
Origin | Count |
---|---|
Bund | 97 |
Kommune | 12 |
Land | 740 |
Wissenschaft | 17 |
Zivilgesellschaft | 10 |
Type | Count |
---|---|
Daten und Messstellen | 695 |
Ereignis | 2 |
Förderprogramm | 61 |
Text | 24 |
Umweltprüfung | 12 |
unbekannt | 53 |
License | Count |
---|---|
geschlossen | 40 |
offen | 784 |
unbekannt | 23 |
Language | Count |
---|---|
Deutsch | 823 |
Englisch | 31 |
Resource type | Count |
---|---|
Archiv | 689 |
Bild | 1 |
Datei | 2 |
Dokument | 25 |
Keine | 70 |
Unbekannt | 1 |
Webdienst | 12 |
Webseite | 749 |
Topic | Count |
---|---|
Boden | 98 |
Lebewesen und Lebensräume | 82 |
Luft | 79 |
Mensch und Umwelt | 843 |
Wasser | 742 |
Weitere | 838 |