Gelegentlich wird in den Medien über Funde von radioaktiven Gegenständen berichtet. Dazu gehören auch Alltagsgegenstände, beispielsweise Geschirr mit bestimmten Glasuren. In manchen Fällen sind diese nicht eindeutig als solche erkennbar und es wird nur zufällig festgestellt, dass radioaktive Stoffe enthalten sind. Doch woher stammen diese? Früher wurden radioaktive Stoffe häufig aufgrund bestimmter Eigenschaften zur Herstellung von Gegenständen verwendet. So sind die Fliesen des Rosenthaler Platzes dafür bekannt, dass die aufgebrachte leuchtend orangefarbige Glasur leicht radioaktiv ist. Die Radioaktivität war dabei meist nur ein ungewollter und in der Anfangszeit unbekannter Nebeneffekt. Im Laufe der Zeit entwickelte sich jedoch ein Bewusstsein dafür, dass ionisierende Strahlung eine Gefahr für die menschlichen Gesundheit darstellt. Dies führte dazu, dass Produkte mit radioaktiven Stoffen heutzutage nicht mehr oder nur noch für ganz bestimmte Anwendungsfälle produziert und verwendet werden. Auch heute kann es jedoch in seltenen Fällen noch zu einer Kontamination kommen, z.B. wenn versehentlich eine radioaktive Quelle bei der Wiederverwertung von Metallschrott mit eingeschmolzen wird. Von den meisten der heute noch im Umlauf befindlichen Gegenständen geht nur eine geringe Strahlenbelastung aus, so dass die Handhabung in der Regel unproblematisch ist. Es ist jedoch zu beachten, dass auch diese spezifische Aktivitäten aufweisen können, aufgrund derer man die Gegenstände nicht über den Hausmüll entsorgen darf. In diesem Fall kann die Zentralstelle für radioaktive Abfälle (ZRA) kontaktiert werden. Bestimmte uranhaltige Verbindungen sind dafür bekannt, dass sie eine schöne intensive Farbe ergeben. Daher wurden sie vor allem ab Mitte des 19. Jahrhunderts als Zusatz in Glasuren beispielsweise für Fliesen oder Geschirr verwendet. Auch für die Herstellung gefärbter Gläser oder Vasen kamen sie zur Verwendung. Bei Glasuren sind insbesondere kräftige Orangefarben häufig vertreten, je nach Ausgangsmaterial und Produktionsart können aber auch andere Farben entstehen. Uranglas, welches meist in hellen, gelben oder grünen Farben vorkommt, kann man leicht daran erkennen, dass es durch UV-Licht zum Leuchten angeregt wird. In der Regel sind diese Gegenstände etwa als Sammelobjekte gesundheitlich unbedenklich, da relativ geringe Strahlungswerte auftreten und das uranhaltige Material gebunden vorliegt. Säuren können jedoch die Uranverbindungen aus dem Material herauslösen. Da in vielen Lebensmitteln (z.B. in Früchten) Säuren vorhanden sind oder bei der Nahrungszubereitung Zutaten wie Essig verwendet werden, sollte man Geschirr mit uranhaltiger Glasur nicht als Essgeschirr verwenden, da sonst die Gefahr einer Aufnahme mit der Nahrung besteht. Für die Leuchtzifferblätter von Uhren wurden früher Farben verwendet, die radioaktives Radium oder Promethium enthielten. Hierbei traten durch die Produktionsbedingungen teils schwerwiegende gesundheitliche Auswirkungen auf, wie auch bei dem weithin bekannten Fall der „Radium Girls“. Daher wurde auf das weitaus ungefährlichere radioaktive Tritium gewechselt. Inzwischen gibt es auch nicht-radioaktive Alternativen, diese sind aber nicht selbstleuchtend. Daher wird Tritium auch heute noch verwendet. Seine Eigenschaften werden auch in den frei erhältlichen, mit Tritium gefüllten, nachtleuchtenden Schlüsselanhängern genutzt. Weitere Informationen zu Leuchtzifferblättern auf der Seite des Bundesamtes für Strahlenschutz In gasbetriebenen Leuchten werden sogenannte Glühstrümpfe verwendet. Diese wurden bei der Produktion in einer Lösung mit einer radioaktiven Thorium-haltigen Verbindung getränkt. Die nach dem Verbrennen bleibende Struktur erzeugt aus der kaum sichtbaren Gasflamme das gewünschte helle Licht. Der Effekt entsteht dabei nicht durch die radioaktive Eigenschaft, das Thorium diente vor allem der Stabilität der Struktur. Seit einigen Jahrzehnten können Glühstrümpfe auch ohne den Zusatz von Thorium produziert werden. In Deutschland endete die letzte Glühstrumpfproduktion 2004, seit 2011 ist die Herstellung und Inverkehrbringen thoriumhaltiger Glühstrümpfe nicht mehr erlaubt (mit Ausnahme von zur Straßenbeleuchtung verwendeter Glühstrümpfe; §39 StrlSchG). In Berlin erfolgt aufgrund von Energiesparmaßnahmen der Austausch von Gasleuchten auf formgleiche LED-Leuchten. Weiterhin erhalten bleiben sollen jedoch ca. 3.300 Gasleuchten mit historischer Bedeutung. Ein Thorium-haltiger Glühstrumpf ist in der Regel nur gering radioaktiv. Das größte Risiko geht davon aus, wenn Partikel des Glühstrumpfes eingeatmet werden, insbesondere beim erstmaligen Brennen oder der Handhabung der fragilen abgebrannten Glühstrümpfe. Weitere Informationen auf der Seite des Fachverbands für Strahlenschutz e.V. In der ersten Hälfte des 20. Jahrhunderts wurden aus medizinischen Gründen sogenannte Radium-Emanatoren verwendet. In diesen befindet sich eine Quelle mit dem natürlich radioaktiven Isotop Radium-226, welches u. a. in das ebenfalls schwach radioaktive Radon zerfällt. In die Gefäße wurde Wasser eingefüllt, welches das Radon aufnahm. Das Wasser wurde dann in als gesundheitsfördernd geltenden Trinkkuren angewendet. Der radioaktive Stoff ist in einer Quelle in dem Gefäß gebunden. Solange diese nicht beschädigt wird, so dass das Radium etwa als Staub eingeatmet oder mit Nahrung eingenommen wird, geht keine unmittelbare Gefahr davon aus. Dennoch kann die Dosisleistung ausreichen, dass der Grenzwert von 1 mSv im Jahr überschritten wird, der u.a. für beruflich strahlenexponierte Personen festgelegt ist. Die Becher sind auch heute noch etwa unter Sammlern im Umlauf. Sofern die radioaktive Quelle noch enthalten ist, ist für den Besitz eine strahlenschutzrechtliche Genehmigung erforderlich, da hier in der Regel die Freigrenzen für einen genehmigungsfreien Umgang überschritten sind. Einige Farben von (Halb-)Edelsteinen entstehen nur durch die Einwirkung von Strahlung. Diese kann sowohl durch natürliche als auch durch künstlich erzeugte Radioaktivität erfolgen. Wenn zur Bestrahlung Beta-oder Gamma-Strahlung eingesetzt wird, sind die Steine selber nicht radioaktiv. Es kann jedoch auch Neutronenstrahlung verwendet werden, wodurch die bestrahlten Edelsteine selber ebenfalls radioaktiv werden. Ein bekanntes Beispiel hierfür ist der Edelstein Topas. Während hellere Blautöne durch Betastrahlung erzielt wird, kommt für eine tiefblaue Färbung („London Blue“) Neutronenstrahlung zum Einsatz. Da die Radioaktivität mit der Zeit abklingt, dürfen diese, um die gesundheitlichen Risiken zu verringern, erst nach einer ausreichenden Wartezeit in den Verkauf kommen. Außerdem gibt es Edelsteine, die einen Anteil natürlich radioaktiver Stoffe enthalten. Diese geben nur eine geringe Strahlung ab und können daher bedenkenlos gehandhabt werden. Edelsteine die eine natürliche Radioaktivität aufweisen können sind beispielsweise Zirkon oder Ekanit. Aber auch andere Schmuckstücke können radioaktive Strahlung abgeben. Neben Uranglas können auch Gesteine oder Mineralien verarbeitet sein, die eine natürliche Radioaktivität aufweisen. So tauchen beispielsweise gelegentlich Amulette im Handel auf, die aufgrund des verarbeiteten Materials mit Anteilen von Uran oder Thorium leicht radioaktiv sind. Weitere Informationen auf der Seite des Bundesamtes für Strahlenschutz
Natürliche Radionuklide in Baumaterialien Bei der Verwendung von Gesteinen und Erden zu Bauzwecken können in diesen Materialien enthaltene oder aus ihnen freigesetzte Radionuklide zu einer Strahlenexposition der Bevölkerung führen. Der Mittelwert der durch die natürlichen Radionuklide in den Baustoffen bedingten Gamma-Ortsdosisleistung ( ODL ) in Gebäuden beträgt rund 80 Nanosievert pro Stunde. Werte der ODL über 200 Nanosievert pro Stunde sind selten. Die in Deutschland in großen Mengen traditionell verwendeten Baustoffe sind im Allgemeinen nicht die Ursache für erhöhte Strahlenexpositionen durch Radon in Gebäuden. Naturwerksteine können in allen Bereichen des Bauens im Hausinneren und im Freien eingesetzt werden Bei der Verwendung von Gesteinen und Erden zu Bauzwecken können in diesen Materialien enthaltene oder aus ihnen freigesetzte Radionuklide zu einer Strahlenexposition der Bevölkerung führen. Von besonderer Bedeutung sind dabei die Radionuklide aus den radioaktiven Zerfallsreihen von Uran -238, Thorium-232 sowie Kalium-40. Ursachen der durch natürliche Radionuklide in Baustoffen verursachten Strahlenexposition beim Aufenthalt in Gebäuden sind die von den Radionukliden in den Baumaterialien ausgehende, von außen auf den Körper wirkende Gammastrahlung sowie die Inhalation des aus den Baumaterialien in die Räume freigesetzten Gases Radon und seiner Zerfallsprodukte. Untersuchung und Bewertung Seit über 40 Jahren werden in Deutschland Untersuchungen und Bewertungen der natürlichen Radioaktivität in Baustoffen und Bauprodukten durchgeführt. Daher liegen im Bundesamt für Strahlenschutz ( BfS ) von mehr als 1.500 Proben von Natursteinen, Baustoffen und mineralischen Reststoffen Daten der spezifischen Aktivitäten der relevanten Radionuklide vor. Aktualisierte Untersuchungen an 120 Baustoffproben aus dem Jahr 2007 sind im BfS-Bericht BfS-SW-14/12 veröffentlicht worden. An einer großen Anzahl von Proben wurde zusätzlich die Radonfreisetzung bestimmt. Spezifische Aktivitäten natürlicher Radionuklide in Natursteinen, Baustoffen und Reststoffen (angegeben sind Mittelwert und Bereich (in Klammern) in Becquerel pro Kilogramm) Material Radium-226 Thorium-232 Kalium-40 Granit 100 (30 - 500) 120 (17 - 311) 1.000 (600 - 4.000) Gneis 75 (50 - 157) 43 (22 - 50) 900 (830 - 1.500) Diabas 16 (10 - 25) 8 (4 - 12) 170 (100 - 210) Basalt 26 (6 - 36) 29 (9 - 37) 270 (190 - 380) Granulit 10 (4 - 16) 6 (2 - 11) 360 (9 - 730) Kies, Sand, Kiessand 15 (1 - 39) 16 (1 - 64) 380 (3 - 1.200) Natürlicher Gips, Anhydrit 10 (2 - 70) < 5 (2 - 100) 60 (7 - 200) Tuff, Bims 100 (< 20 - 200) 100 (30 - 300) 1.000 (500 - 2.000) Ton, Lehm < 40 (< 20 - 90) 60 (18 - 200) 1.000 (300 - 2.000) Ziegel, Klinker 50 (10 - 200) 52 (12 - 200) 700 (100 - 2.000) Beton 30 (7 - 92) 23 (4 - 71) 450 (50 - 1.300) Kalksandstein, Porenbeton 15 (6 - 80) 10 (1 - 60) 200 (40 - 800) Schlacke aus Mansfelder Kupferschiefer 1.500 (860 - 2.100) 48 (18 - 78) 520 (300 - 730) Gips aus der Rauchgasentschwefelung 20 (< 20 - 70) < 20 < 20 Braunkohlenfilterasche 82 (4 - 200) 51 (6 - 150) 147 (12 - 610) Der Mittelwert der durch die natürlichen Radionuklide in den Bauprodukten bedingten Gamma-Ortsdosisleistung ( ODL ) in Gebäuden beträgt rund 80 Nanosievert pro Stunde. Werte der ODL über 200 Nanosievert pro Stunde sind selten. Radon Gesetzliche Regelungen Naturwerksteine Radon Radon von besonderer Bedeutung Das durch radioaktiven Zerfall aus Radium-226 entstehende gasförmige Radon-222 ist aus der Sicht des Strahlenschutzes von besonderem Interesse. Nach aktuellen Erkenntnissen wird in Deutschland ein signifikanter Anteil der Lungenkrebserkrankungen in der Bevölkerung auf die Belastung mit Radon und seinen Zerfallsprodukten in Gebäuden zurückgeführt. Die Radonfreisetzung aus Bauprodukten wird durch die spezifische Aktivität des Radium-226 und andere, den Radontransport bestimmende Materialeigenschaften (zum Beispiel Porosität ) bestimmt. Untersuchungen zeigen, dass die in Deutschland in großen Mengen traditionell verwendeten Baustoffe Beton, Ziegel, Porenbeton und Kalksandstein im Allgemeinen nicht die Ursache für Überschreitungen des vom BfS empfohlenen Jahresmittelwertes der Radonkonzentration in Aufenthaltsbereichen sind. Dieser soll 100 Becquerel pro Kubikmeter nicht überschreiten. Der Beitrag des Radon-222 aus Bauprodukten zur Radonkonzentration in Wohnräumen liegt bei maximal 70 Becquerel pro Kubikmeter. Bei aktuell im Handel erhältlichen Bauprodukten wurden Werte deutlich unter 20 Becquerel pro Kubikmeter bestimmt. Höhere Radonkonzentrationen bei einzelnen Baumaterialien Freisetzungsraten von Radon , die höhere Konzentrationen im Innenraum zur Folge haben können, wurden in Deutschland vereinzelt an Rückständen der Verbrennung von Kohlen mit erhöhter Uran-/Radiumkonzentration (früher unter der Bezeichnung "Kohleschlacke" regional als Füllung von Geschossdecken verwendet) und in Ausnahmefällen an Natursteinen mit erhöhten spezifischen Aktivitäten des Radium-226 gemessen. Erhöhte Radonkonzentrationen in Häusern aus Mansfelder Kupferschlacke wurden trotz der vergleichsweise hohen spezifischen Aktivität des Radium-226 in diesem Material nicht ermittelt. In einigen Ländern wurden höhere Radonkonzentrationen in Häusern festgestellt, in denen so genannte Chemiegipse (Rückstände der Phosphoritverarbeitung) eingesetzt wurden, sowie bei Leichtbetonen, die unter Verwendung von Alaunschiefer hergestellt wurden. Vereinzelt findet man auch überdurchschnittliche Radonkonzentrationen in den traditionellen Gebieten des Bergbaus, wenn Abraum oder Reststoffe der Erzverarbeitung mit erhöhter Radiumkonzentration als Baumaterial, als Beton- oder Mörtelzuschlagstoff oder zur Fundamentierung oder als Füllmaterial beim Hausbau verwendet wurden. Thoron Nach derzeitigem Kenntnisstand wurden in Deutschland keine Materialien zu Bauzwecken verwendet, die infolge erhöhter Thoriumkonzentrationen zu aus der Sicht des Strahlenschutzes relevanten Expositionen durch das Gas Radon-220 (Thoron) und seiner Zerfallsprodukte in Räumen führen könnten. Die Möglichkeit, dass ungebrannter Lehm als Baustoff in Einzelfällen zu erhöhten Thoronwerten in der Raumluft führen kann, lässt sich jedoch nicht gänzlich ausschließen. Weiterführende Informationen zum Thema Lehm und Thoron finden Sie im Artikel Lehm als Baumaterial . Gesetzliche Regelungen Gesetzliche Begrenzung bei Baustoffen In einigen Rückständen aus industriellen Prozessen reichern sich die natürlichen radioaktiven Stoffe an. Bei Verwendung dieser Rückstände, zum Beispiel ihrem Einsatz als Sekundärrohstoff im Bauwesen, sind erhöhte Strahlenexpositionen der Bevölkerung nicht auszuschließen. 1. Strahlenschutzrecht Zur Begrenzung der effektiven Dosis aus der äußeren Exposition für Einzelpersonen der Bevölkerung in Aufenthaltsräumen wurde im Strahlenschutzgesetz ( StrlSchG ) ein Referenzwert von 1 Millisievert pro Jahr festgelegt, der zusätzlich zur effektiven Dosis im Freien gilt. Ein Referenzwert dient gemäß Strahlenschutzgesetz als Maßstab für die Prüfung der Angemessenheit von Schutzmaßnahmen. Er ist kein Grenzwert, der nicht überschritten werden darf. Eine entsprechende Prüfung ist vorzunehmen, wenn die in der Anlage 1 des Strahlenschutzgesetzes ( StrlSchG ) genannten Rückstände oder die in Anlage 9 des StrlSchG genannten Rohstoffe zur Herstellung von Gebäuden, die Aufenthaltsräume enthalten, genutzt werden sollen. Der Nachweis zur Unterschreitung des festgelegten Referenzwertes der effektiven Dosis von 1 Millisievert pro Jahr erfolgt mithilfe des in Anlage 17 der Strahlenschutzverordnung ( StrlSchV ) dargestellten Aktivitätsindexes. Dieser wird aus den Aktivitäten der im Baustoff enthaltenen Radionuklide Radium-226, Thorium-232 und Kalium-40 unter Berücksichtigung von Dicke und Dichte des Baustoffs berechnet. 2. Baurecht Gemäß der Bauproduktenverordnung (BauPVO, Verordnung EU Nr. 305/2011 ) darf in den Mitgliedsstaaten der Europäischen Union ein Bauprodukt nur dann in Verkehr gebracht werden, wenn es die wesentlichen Anforderungen an Hygiene, Gesundheit und Umweltschutz - unter anderem bezüglich der Freisetzung gefährlicher Strahlen - erfüllt. Diese EU -Verordnung ist direkt im deutschen Recht verbindlich und für die Hersteller seit dem 1. Mai 2013 gültig. Die europäische Normungsinstitution CEN hat von der Europäischen Kommission den Auftrag erhalten, die Messung von Radium, Thorium und Kalium zu standardisieren sowie eine europäische Norm zur Berechnung der Dosis zu entwickeln. Naturwerksteine Natürliche Radionuklide in Naturwerksteinen Medianwerte der spezifischen Aktivität natürlicher Radionuklide in Naturwerksteinen Heute finden Naturwerksteine in allen Bereichen des Bauens im Hausinneren und im Freien verstärkt Anwendung. Deshalb hat das BfS mit Unterstützung des Deutschen Naturwerkstein-Verbandes e. V. im Jahr 2006 eine Reihe marktgängiger Fliesen und anderer Plattenmaterialien unterschiedlichster Herkunft auf die Gehalte natürlicher Radioaktivität untersucht und aus Strahlenschutzsicht bewertet. Im Vordergrund standen gammaspektrometrische Messungen der spezifischen Aktivitäten von Radium-226, Kalium-40 und Thorium-232. Die Ergebnisse sind in der Grafik zusammengefasst. Die dargestellten Medianwerte (Zentralwerte) bedeuten, dass die Hälfte der untersuchten Proben über diesem Wert liegt und 50 Prozent darunter. Die Materialgliederung erfolgt an dieser Stelle nach der Gesteinsart. Es muss darauf hingewiesen werden, dass im Handel aus Erwägungen, die sich an den speziellen Anwendungen, der Verarbeitung und Pflege der Materialien orientieren, nicht immer korrekte Gesteinsbezeichnungen verwendet werden. So muss es sich bei "Granit" nicht unbedingt um Granitgestein handeln; diese Bezeichnung wird auch für Gneise, Diorite, Granodiorite und andere Gesteine verwendet. Spezifische Aktivitäten der untersuchten Naturwerksteine Die spezifischen Aktivitäten der untersuchten Naturwerksteine liegen für Kalium-40 im Bereich zwischen 10 und 1.600 Becquerel pro Kilogramm, für Radium-226 zwischen weniger als 10 und 355 Becquerel pro Kilogramm und für Thorium-232 zwischen weniger als 10 und 330 Becquerel pro Kilogramm. Zum Vergleich und zur Ergänzung wird auf die oben gezeigte Tabelle hingewiesen. Die mögliche Strahlenexposition durch die einzelnen Materialien hängt neben der Radionuklidkonzentration und der Radonfreisetzung von der Art ihrer Verwendung ab. Im Ergebnis der Messungen des BfS ist festzustellen, dass die untersuchten aktuellen Bauprodukte und auch die untersuchten Naturwerksteine - selbst bei großflächiger Anwendung - in Gebäuden uneingeschränkt verwendbar sind. Das Strahlenschutzgesetz legt einen Referenzwert für die effektive Dosis durch Radionuklide natürlichen Ursprungs (außer Radon ) fest. Ein Referenzwert dient gemäß Strahlenschutzgesetz als Maßstab für die Prüfung der Angemessenheit von Schutzmaßnahmen. Er ist kein Grenzwert, der nicht überschritten werden darf. Der gesetzlich festgelegte Referenzwert für die effektive Dosis von 1 Millisievert pro Jahr für Personen der Bevölkerung durch Radionuklide natürlichen Ursprungs (außer Radon ) wird in allen Fällen eingehalten. Medien zum Thema Mehr aus der Mediathek Radioaktivität in der Umwelt In Broschüren, Videos und Grafiken informiert das BfS über radioaktive Stoffe im Boden, in der Nahrung und in der Luft. Stand: 18.06.2025
Es ist zu erwarten, dass der Radiumgehalt der Trinkwaesser in Abhaengigkeit von den geologischen Verhaeltnissen in der Bundesrepublik Deutschland schwankt. In Ergaenzung zu der Erhebung ueber die externe Strahlenexposition der Bevoelkerung soll eine Erhebung ueber die Radiumkonzentration im Trinkwasser der Bundesrepublik Deutschland erfolgen, um Schwankungsbreite eines Beitrages zur inneren Strahlenexposition - in diesem Falle des Knochens - zu erfassen. Speicherung aller anfallenden Daten im EDV-System BIBIDAT. Es wird eine umfassende Erhebung des Radiumgehaltes von Trinkwasser in der Bundesrepublik Deutschland in Zusammenarbeit mit anderen Gruppen durchgefuehrt. Die Daten werden vom Bundesgesundheitsamt gesammelt und im EDV-System BIBIDAT gespeichert. Darueber hinaus werden Abwaesser sowie Getraenke (Bier, Wein, Milch) in bezug auf ihren Radiumgehalt untersucht. Damit soll versucht werden, den Beitrag des mit Fluessigkeiten aufgenommenen Radiums zur inneren Strahlenexposition zu erfassen.
Die innere Mischung des Sees, sowie die Wechselwirkung des Sees mit der Atmosphaere und dem Sediment soll mit Hilfe von Spurenstoffmessungen untersucht werden. Geplant sind Messungen von Temperatur, Sauerstoff, Leitfaehigkeit, Phosphat, SO2, Tritium, Helium-3, Radium 226, Radon-222, Blei-210 und Ionium.
Der südliche Indische Ozean gehört zu den am wenigsten untersuchten Meeresgebieten. Entlang eines zonalen Transekts bei 23°S im südlichen Indischen Ozean wollen wir mit Hilfe der Verteilung von isotopischen Tracern (Radiumisotope, Thorium, Helium) die Quellen, die Senken und die Flüsse von Spurenelementen (TEs: Cd, Co, Cu, Fe, Mn, Mo, Ni, V, Zn) in der Wassersäule untersuchen. Die Anwendung von Radiumisotopen (224Ra, 223Ra, 228Ra,226Ra,), Thoriumisotopen (234Th, 232Th) und Heliumisotopen (3He, 4He) erlaubt ein besseres Verständnis der biogeochemischen Zyklen von TEs. Da einige dieser Spurenelemente als Mikronährstoffe fungieren, wollen wir ihre biogeochemischen Kreisläufe und ihre Wechselwirkungen mit der Bioproduktivität im Oberflächenwasser sowie ihre Wechselwirkungen mit den Kohlenstoff- und Nährstoffkreisläufen erforschen. Durch die Kombination von Messungen von TEs mit Radium- und 234Th-Isotopen als Tracer für vertikale und horizontale Flüsse, 232Th als Tracer für den Staubeintrag und Heliumisotope als Tracer für einen hydrothermalen Eintrag, werden wir die Zufuhrpfade von TEs aus der Atmosphäre, den Kontinenten (hauptsächlich dem Sambesi-Fluss), den Sedimenten der afrikanischen und australischen Kontinentalschelfe und aus den hydrothermalen Quellen (Hydrothermalismus am Mittelindischen Ozeanrücken) bestimmen und quantifizieren. Diese Untersuchungen sollen auf Probenmaterial basieren, das während der Sonne Ausfahrt SO-276 (Juli – August 2020) von Durban (Südafrika) nach Fremantle (Australien) gewonnen wird. Unsere Untersuchungen sind Teil des international koordinierten Programms GEOTRACES und werden zum „Second Indian Ocean Expedition Program (IIOE-2)“ beitragen. Wir erwarten, dass die Ergebnisse der vorgesehenen Untersuchungen einen signifikanten Beitrag zum Verständnis von Ökosystemen und ihrem chemischen Milieu liefern werden.
Bestimmung von Transferfaktoren Erde-Pflanze fuer Radionuklide, bes. Ra226 fuer Gemuesepflanzen. Wichtig im Zusammenhang mit Biosphaerentransportmodellen (Lagerung radioaktiver Abfaelle), Werte unter praktischen Bedingungen zu bestimmen, die fuer die hier herrschenden Parameter (Saatgut, Klima, Konsum) zutreffen. Bestimmung der Beeinflussung der Ra226-Aufnahme durch das Verhaeltnis Erdalkalimetalle/Radium, besonders des Kalziums, welches im Pflanzenstoffwechsel eine wichtige Rolle spielt. Versuche zur Bestimmung der Loeslichkeit, der biologischen 'availability' des Radiums als Funktion der Zeit, da bekannt ist, dass Radium im Boden keine grosse Mobilitaet besitzt. Diese Arbeiten sollen in einem neu erstellten Treibhaus weitergefuehrt werden. Versuche mit anderen Radionukliden sind vorgesehen.
Radon in Baumaterialien In jedem Baumaterial aus natürlichem Gestein ist – abhängig von seiner geologischen Herkunft - ein natürlicher Anteil an Uran und Radium enthalten. Zerfallen Uran und Radium, entstehen Radon und seine Folgeprodukte und werden aus dem Baumaterial ins Gebäude freigesetzt. Messungen des BfS belegen, dass Baustoffe wenig zur Radon -Konzentration von Aufenthaltsräumen beitragen - üblicherweise wenige Becquerel pro Kubikmeter, meist deutlich unterhalb von 20 Becquerel pro Kubikmeter. Baumaterial In jedem Baumaterial aus mineralischen Rohstoffen oder natürlichem Gestein ist – abhängig von seiner geologischen Herkunft - ein natürlicher Anteil an Uran und Radium enthalten. Zerfallen Uran und Radium, entstehen Radon und seine Folgeprodukte und werden aus dem Baumaterial ins Gebäude freigesetzt. Radon ist nach dem Rauchen eine der wichtigsten Ursachen für Lungenkrebs . Etwa sechs Prozent der Todesfälle durch Lungenkrebs in der Bevölkerung sind nach aktuellen Erkenntnissen auf Radon und seine Zerfallsprodukte in Gebäuden zurückzuführen. Baumaterialien setzen eher wenig Radon frei Das BfS hat marktübliche Baumaterialien wie Beton, Ziegel, Porenbeton und Kalksandstein untersucht und auch die Freisetzung (Exhalation) von Radon daraus gemessen. Der baustoffbedingte Anteil liegt üblicherweise bei wenigen Becquerel pro Kubikmeter, meist deutlich unterhalb von 20 Becquerel pro Kubikmeter. Damit sind Baumaterialien im Allgemeinen nicht die Ursache für erhöhte Radon-Konzentrationen in Innenräumen von Gebäuden. Wieviel Radon aus Baumaterial austritt, hängt auch von der Beschaffenheit des Materials ab: Werden zum Beispiel Ziegel bei hohen Temperaturen gebrannt, verschließen sich die Poren im Baumaterial. So kann anschließend nur wenig Radon austreten. Bei ungebranntem Material wie zum Beispiel Lehmputz ist damit zu rechnen, dass mehr Radon austritt. Gesetzliche Regelungen Gesetzliche Regelungen zur expliziten Begrenzung der Radonfreisetzung aus Baumaterialien existieren nicht. Der Beitrag des Radons aus Baumaterialien soll jedoch nicht wesentlich zur Überschreitung der für Radon geltenden Referenzwerte beitragen. Radioaktivitätsgehalt von Baumaterial wird seit 1. Januar 2019 begrenzt Baumaterialien wie zum Beispiel Betonziegel bestehen üblicherweise aus Zuschlagsstoffen wie Sand, Kies, Ton, Kalk, Zement oder ähnlichem. Werden als Zuschlagstoffe Rückstände aus industriellen Prozessen wie zum Beispiel Schlacken aus der Metallverhüttung oder Schlämme aus der Wasseraufbereitung verwendet, die mehr Uran und Radium enthalten, kann sich die Menge des Radons, die aus dem Baumaterial ins Gebäude gelangt, erhöhen. Das Strahlenschutzgesetz sieht in den Paragraphen 133-135 vor, dass seit 1. Januar 2019 der Radioaktivitätsgehalt aller Baustoffe begrenzt wird, die beim Bau von Aufenthaltsräumen verwendet werden. Seit 2001 hatte die Strahlenschutzverordnung bereits einen maximalen prozentualen Anteil von Rückständen aus industriellen Prozessen in Baumaterialien vorgegeben. Seit 2019 umfasst die Prüfung des Radioaktivitätsgehalts auch natürliche mineralische Rohstoffe, die erhöhte Uran- und Radiumgehalte aufweisen können. Dadurch wird auch radioaktives Radon, das beim Zerfall von Uran und Radium aus Baumaterial freigesetzt werden kann, beschränkt. Medien zum Thema Broschüren und Video downloaden : zum Download: Radon - ein kaum wahrgenommenes Risiko (PDF, Datei ist barrierefrei⁄barrierearm) … PDF 3 MB Broschüre Radon - ein kaum wahrgenommenes Risiko downloaden : zum Download: Radon in Innenräumen (PDF, Datei ist barrierefrei⁄barrierearm) … PDF 853 KB Broschüre Radon in Innenräumen Video Radon Zu viel Radon im Haus kann Lungenkrebs verursachen. Aber woher weiß ich, ob ich betroffen bin? Wie kann ich es messen? Was kann ich gegen zu viel Radon tun? mehr anzeigen Stand: 13.11.2024 Ionisierende Strahlung Häufige Fragen Was ist Radon? Wie breitet sich Radon aus und wie gelangt es in Häuser? Welche Radon-Konzentrationen treten in Häusern auf? Alle Fragen
Radon in der Boden-Luft in Deutschland Radon kommt in Deutschland im Boden regional in unterschiedlichen Konzentrationen vor. Prognose-Karten des BfS zeigen die regionale Verteilung von Radon im Boden in einem groben Raster. Aussagen zu Einzelgebäuden sind aus den Prognose-Karten niemals ableitbar. Sie können nur durch Messungen im jeweiligen Gebäude getroffen werden. Beim radioaktiven Zerfall von Uran und Radium in Böden und Gesteinen entsteht das Gas Radon . Gelangt es durch Undichtigkeiten von Gebäuden in Innenräume , kann es sich dort anreichern und Lungenkrebs verursachen . Karte "Radon-Konzentration im Boden" Regional unterscheiden sich sowohl das Vorkommen von Uran und Radium als auch die Gasdurchlässigkeit des Bodens - und damit die Konzentration von Radon in der Bodenluft. Diese hat das Bundesamt für Strahlenschutz ( BfS ) aus Messwerten von rund 6.000 Messpunkten sowie Informationen über Geologie, Bodeneigenschaften und Klima für ganz Deutschland prognostiziert und in einer Karte abgebildet. Karte: Schätzung der Radon-Aktivitätskonzentration in der Bodenluft für ein Raster von 1x1 Kilometer, in Becquerel pro Kubikmeter (Bq/m³) Bitte geben Sie den Ortsnamen oder die Postleitzahl ein * Radon im Boden (in Bq/m³) über 150.000 100.000 - 150.000 80.000 - 100.000 60.000 - 80.000 40.000 - 60.000 20.000 - 40.000 unter 20.000 Die Karten-Daten können auch in der Fachanwendung BfS -Geoportal abgerufen werden. Weitere Informationen zur Karte "Radon im Boden" Karte "Radon-Potenzial" Wie stark Radon aus dem Boden entweichen und potenziell in Innenräume von Häusern gelangen kann, wird als "Radon-Potenzial" bezeichnet. Die Höhe des Radon-Potenzials hängt davon ab, wie viel Radon im Boden konzentriert ist und wie (gas-)durchlässig der Boden ist. Karte: Radon-Potenzial (Prognose) Bitte geben Sie den Ortsnamen oder die Postleitzahl ein * Radon-Potenzial 1 -5 5 - 10 10 - 15 15 - 20 20 - 25 25- 30 30 - 35 35 - 40 40 - 45 45 - 50 > 50 zu verifizieren Weitere Informationen zur Karte "Radon-Potenzial" Radon-Situation vor Ort kann nur durch Messungen geklärt werden Wie hoch das Radon -Vorkommen an einem bestimmten Standort tatsächlich ist, lässt sich nur durch Messungen der bodennahen Luft oder durch Messungen der Radon-Konzentration in der Raumluft eines Gebäudes konkret ermitteln. Medien zum Thema Broschüren und Video downloaden : zum Download: Radon - ein kaum wahrgenommenes Risiko (PDF, Datei ist barrierefrei⁄barrierearm) … PDF 3 MB Broschüre Radon - ein kaum wahrgenommenes Risiko downloaden : zum Download: Radon in Innenräumen (PDF, Datei ist barrierefrei⁄barrierearm) … PDF 853 KB Broschüre Radon in Innenräumen Video Radon Zu viel Radon im Haus kann Lungenkrebs verursachen. Aber woher weiß ich, ob ich betroffen bin? Wie kann ich es messen? Was kann ich gegen zu viel Radon tun? mehr anzeigen Stand: 13.10.2025 Ionisierende Strahlung Häufige Fragen Was ist Radon? Wie breitet sich Radon aus und wie gelangt es in Häuser? Welche Radon-Konzentrationen treten in Häusern auf? Alle Fragen
| Origin | Count |
|---|---|
| Bund | 86 |
| Land | 8 |
| Wissenschaft | 6 |
| Type | Count |
|---|---|
| Chemische Verbindung | 6 |
| Daten und Messstellen | 5 |
| Ereignis | 1 |
| Förderprogramm | 58 |
| Gesetzestext | 5 |
| Text | 12 |
| Umweltprüfung | 2 |
| unbekannt | 14 |
| License | Count |
|---|---|
| geschlossen | 32 |
| offen | 66 |
| Language | Count |
|---|---|
| Deutsch | 85 |
| Englisch | 27 |
| Resource type | Count |
|---|---|
| Archiv | 2 |
| Datei | 5 |
| Dokument | 12 |
| Keine | 57 |
| Unbekannt | 1 |
| Webdienst | 1 |
| Webseite | 25 |
| Topic | Count |
|---|---|
| Boden | 67 |
| Lebewesen und Lebensräume | 68 |
| Luft | 51 |
| Mensch und Umwelt | 98 |
| Wasser | 63 |
| Weitere | 92 |