<p>Gegen die Hitze: Das können Sie im Sommer für kühle Räume tun</p><p>Wie Sie Ihr Zuhause kühl halten und der Hitze trotzen</p><p><ul><li>Halten Sie mit dem richtigen Verhalten die Hitze draußen.</li><li>Bauliche Maßnahmen tragen dazu bei, dass Räume kühl bleiben.</li><li>Wenn nichts mehr hilft: klimafreundliches und geräuscharmes Klimagerät anschaffen und sparsam betreiben.</li></ul></p><p>Gewusst wie</p><p>Heiße Sommertage bringen oft Innentemperaturen über 30 °C mit sich. Dafür gibt es verschiedene Ursachen: Die dichte Bebauung in Städten führt tags und nachts zu höheren Temperaturen. Aber auch Mängel am Gebäude und das Nutzerverhalten tragen ihren Teil zur Überhitzung von Räumen bei.</p><p><strong>Mit ihrem Alltagsverhalten</strong> beeinflussen Sie, wie stark sich Ihre Wohnung erwärmt. Ist die Temperatur in der Wohnung erst einmal hoch, ist es schwer, die Raumtemperatur wieder zu senken. Deshalb ist es wichtig, dass sich die Wohnung erst gar nicht aufheizt.</p><p><strong>Bauliche Maßnahmen </strong>begrenzen die Wärmeströme nach innen und sind die Voraussetzung für das richtige Verhalten im Alltag. Sie sollten deshalb bereits bei der Planung eines Neubaus oder einer Sanierung mit den beteiligten Planer*innen besprochen und durchgerechnet werden. Gute Voraussetzungen für angenehme Sommertemperaturen bieten Wohnungen mit folgenden Eigenschaften:</p><p><strong>Wenn sich ein Raum immer noch überhitzt,</strong> sollten Sie ein klimafreundliches Klimagerät auswählen und es möglichst sparsam nutzen:</p><p><strong>Bewegliche Klimageräte vermeiden:</strong> Sie sind ineffizient und sollten, wenn überhaupt, nur ausnahmsweise genutzt werden.1 Sie kühlen nicht effektiv, da die warme Abluft nach draußen gefördert wird und die nachströmende Luft den Aufstellraum sogar noch mehr aufheizt. Seit 2020 sind für solche Geräte nur noch Kältemittel mit Treibhauspotenzial (GWP) < 150 zulässig, i.d.R. wird das umweltfreundliche Kältemittel Propan genutzt.</p><p>Hintergrund</p><p><strong>Umweltsituation:</strong></p><p>Die Klimawirkungs- und Risikoanalyse für Deutschland zeigt, dass die Außentemperaturen infolge des Klimawandels auch in Deutschland zunehmen. Trotz aller Bemühungen beim <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimaschutz#alphabar">Klimaschutz</a> ist damit zu rechnen, dass beispielsweise die Sommertage (ab 25 °C) um 40 % häufiger werden und die Hitzetage (ab 30 °C) sich verdoppeln können.2 Deswegen werden Lösungen für Gebäudekühlung bereits stärker nachgefragt. Statt aktiver Klimaanlagen, die Energie verbrauchen und Treibhausgasemissionen verursachen, sollten vor allem passive Kühlmaßnahmen wie Sonnenschutz oder Nachtlüftung genutzt werden, die fast ohne Energie auskommen.</p><p>2023 verbrauchten die Klimageräte in Haushalten laut Arbeitsgemeinschaft Energiebilanzen 1,3 <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=TWh#alphabar">TWh</a> Strom. Das entspricht einem Prozent des Stromverbrauchs aller Haushalte.3 Nicht-Wohngebäude zu kühlen verbrauchte 12,6 TWh Strom. Insgesamt entfielen 2023 in Deutschland 2,8 Prozent des Stromverbrauchs auf die Klimatisierung von Gebäuden.</p><p>Klimaanlagen tragen nicht nur durch den Stromverbrauch, sondern auch durch freigesetzte Kältemittel (mittlerweile bei Neugeräten im Wesentlichen R‑32, GWP=675 gemäß viertem <a href="https://www.umweltbundesamt.de/service/glossar/i?tag=IPCC#alphabar">IPCC</a> Assessment Report) zur Erderwärmung bei. Das GWP (<em>Global Warming Potential</em>) ist ein Maß für die Treibhauswirksamkeit eines Stoffes. Der GWP für CO2 beträgt 1, sodass im Falle von R-32 die Treibhauswirksamkeit 675mal so groß ist wie die von CO2. Daher haben auch relativ kleine Mengen, die in die <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a> entweichen, eine hohe klimaschädliche Wirkung. Der Blaue Engel für Raumklimageräte zeigt für Klimageräte, wie es besser geht.</p><p><strong>Gesetzeslage:</strong></p><p>Das <a href="https://www.gesetze-im-internet.de/geg/__14.html">Gebäudeenergiegesetz</a> schreibt vor, dass der Sonneneintrag in Neubauten durch einen ausreichenden sommerlichen Wärmeschutz begrenzt werden muss. Allerdings bezieht sich dieses Kriterium auf das <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klima#alphabar">Klima</a> der Vergangenheit. Damit blendet es die seither eingetretene und in den nächsten Jahrzehnten noch zu erwartende Klimaerwärmung aus. Für bestehende Gebäude oder für Gebäudesanierungen gelten keine Anforderungen. Es ist daher ratsam, bei Neubau und Sanierung das zukünftige Klima zu berücksichtigen, um Überhitzung auch in den nächsten Jahrzehnten vorzubeugen.</p><p>Die <a href="http://data.europa.eu/eli/reg/2012/206">Verordnung (EU) Nr. 206/2012</a> bewirkt mit den Ökodesign-Anforderungen, dass die ineffizientesten und lautesten Klimageräte bis 12 kW Nennkälteleistung in der EU nicht mehr verkauft werden dürfen. Die Energieverbrauchskennzeichnung nach <a href="http://data.europa.eu/eli/reg_del/2011/626">Verordnung (EU) Nr. 626/2011</a> macht Energieeffizienz und Lautstärke der Klimageräte beim Kauf erkennbar.</p><p>Bestimmte Klimageräte dürfen gemäß Anhang IV der F-Gas-Verordnung (<a href="https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX%3A32024R0573&qid=1706009169366">Verordnung (EU) Nr. 2024/573</a>) nicht mehr auf den europäischen Markt gebracht werden. Seit 2020 zählen hierzu bereits bewegliche Klimageräte mit einem GWP des Kältemittels ≥ 150. Ab dem Jahr 2029 gilt dieser GWP-Grenzwert auch für Split-Klimageräte ("Luft-Luft-Splitsysteme") bis 12 kW Nennkälteleistung. Außerdem wird gemäß Anhang VII die Menge an HFKW (teilfluorierte Kohlenwasserstoffe, z.B. R-32), die auf den europäischen Markt kommt, schrittweise reduziert und bis 2050 auf null gesenkt.</p><p><strong>Marktbeobachtung:</strong></p><p>Die <strong>Wirkung von Sonnenschutz</strong> beschreibt der so genannte Abminderungsfaktor FC gemäß DIN 4108-2. Um effektiv vor Überhitzung zu schützen, sollte er, je nach Bauart des Raums und Größe des Fensters, bei höchstens 0,2-0,1 liegen, also 80 bis 90 Prozent der Sonneneinstrahlung abhalten. Außenliegender Sonnenschutz wie Jalousien, Rollläden, Fensterläden oder durchscheinende Textilscreens erreichen solche Werte problemlos. Zum Vergleich: Innenliegende Rollos halten nur 5 bis 45 Prozent der Sonneneinstrahlung ab – ein entscheidender Unterschied!</p><p>Zwei Arten von Klimageräten sind besonders häufig:</p><p><strong>Split-Klimageräte</strong> bestehen aus zwei Teilen: Das Außengerät mit Kompressor und Kondensator verflüssigt ein Kältemittel, das zum Innengerät geleitet wird, dort verdampft und so dem zu kühlenden Raum Wärme entzieht. Der erwärmte Dampf strömt zurück zum Außengerät, wo die Raumwärme an die Umgebung abgeleitet wird. Die am Innengerät kondensierende Raumfeuchte muss entweder aufgefangen oder mit neu zu verlegenden Kondensatleitungen abgeleitet werden können. Die Kühlwirkung von Split-Geräten ist im Allgemeinen gut. Die Stiftung Warentest rechnet für den Betrieb eines Klimageräts mit Stromkosten über 10 Jahre von 400-560 Euro (1.000-1.400 kWh mit 40 Cent/kWh).</p><p>In Deutschland werden seit dem Jahr 2019 etwa 200.000 Monosplit-Klimageräte jährlich verkauft. Installiert sind fast 1,6 Millionen Geräte, ein Teil davon auch in privaten Haushalten. Diese Zahlen werden im Rahmen der Treibhausgasberichterstattung zur Klimarahmenkonvention (<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UNFCCC#alphabar">UNFCCC</a>) ermittelt und stützen sich auf Erhebungen der japanischen Kälte/Klima-Fachzeitschriften JARN (<em>Japan Air Conditioning, Heating and Refrigeration News</em>) und des Verbandes JRAIA (<em>Japan Refrigeration and Air Conditioning Industry Association</em>) sowie Expertenschätzungen. </p><p>Bei <strong>beweglichen Klima-</strong> <strong>oder Mono(block)geräten </strong>sind alle Bauteile in einen Apparat integriert. Die Geräte können daher ohne Installationsaufwand nahezu überall eingesetzt werden. Weil sie aber die heiße Abluft über einen Luftschlauch durch ein geöffnetes Fenster ausblasen, strömt im Gegenzug warme Luft von außen in den Raum. Die Folge: Der restliche Raum kann noch wärmer werden, die Kühlwirkung ist vergleichsweise gering, der Stromverbrauch relativ hoch.</p><p>In Deutschland werden jährlich ca. 90.000 mobile Klimageräte verkauft. Der Bestand in allen Sektoren beläuft sich auf etwa 840.000 Geräte.</p><p>Weitere Informationen finden Sie unter:</p><p> </p><p><strong>Quellen:</strong></p><p>1 <a href="https://www.test.de/Klimageraete-im-Test-4722766-0/">Klimageräte im Test</a>, Stiftung Warentest, 2023</p><p>2 <a href="https://www.umweltbundesamt.de/sites/default/files/medien/479/publikationen/cc_14-2023_kuehle_gebaeude_im_sommer.pdf">Kühle Gebäude im Sommer</a>, Umweltbundesamt, 2023</p><p>3 <a href="https://ag-energiebilanzen.de/daten-und-fakten/anwendungsbilanzen/">Endenergieverbrauch nach Energieträgern und Anwendungszwecken</a>, Arbeitsgemeinschaft Energiebilanzen</p>
Die weitere Reduzierung des Primärenergieeinsatzes zur Heizung und Kühlung von Gebäuden erfordert neue, intelligente Lösungen für eine Raumkonditionierung mit hoher Flexibilität. Eine Möglichkeit ist die funktionale Kombination von Raumtextilien und Heiz-/Kühlflächen zu 'thermoaktiven Raumtextilien'. Es ist zu erwarten, dass derartige textile Konstruktionen gegenüber konventionellen Flächenheiz- und -kühlsystemen eine Reihe von Vorteilen aufweisen. Hier sind beispielsweise die hervorragende Eignung bei Altbausanierungen, sehr flexible Anordnungsmöglichkeiten im Raum sowie vorteilhafte Regel-, Schnellaufheiz- und -ankühlfähigkeiten mittels 'Faltung' bzw. 'Entfaltung' der Raumtextilien zu nennen. Zudem besteht bei geeigneter Konstruktion die Möglichkeit einer problemlosen Unterschreitung der Taupunkttemperatur im sommerlichen Kühlfall. Diese speziell ausgerüsteten Raumtextilien fungieren gleichzeitig als Wandbespannung und/oder als Vorhang vor den Fenstern und er-möglichen auf diese Weise nicht nur die Wärmezu- und -abfuhr sondern auch die Aufnahme, Speicherung und Abgabe von Wasserdampf und damit die Regulation der Raumluftfeuchte. Wesentliche Zielstellung dieses Projektes ist die grundlegende Untersuchung funktioneller, energetischer und wärmephysiologischer Aspekte bei der Anwendung von textilen Raumheiz- und -kühlflächen. Theoretische Betrachtungen sollen anhand ausgewählter repräsentativer Prototypen verifiziert werden
Unter Verwendung von ionischen Flüssigkeiten wurde in den vergangenen Jahren eine Vielfalt an neuartigen Synthesen von kristallinen und anorganischen Materialen entwickelt. Trotz vorteilhafter Eigenschaften und Synthese-Bedingungen gegenüber konventionellen Methoden mangelt es stark am mechanistischen Verständnis, besonders was die dirigierende Rolle der ionischen Flüssigkeiten angeht. Wir setzen uns hier zum Ziel, die Synthese von mehreren ungewöhnlichen Modifikationen des TiO2, nämlich der Bronze-Phase TiO2(B) und einem jüngst synthetisierten Titanoxyhydroxy-Fluorid, aufzuklären. Beide werden unter erstaunlich milden Bedingungen aus einer Mischung von einfachen ionischen Flüssigkeiten mit Wasser und TiCl4 erhalten. Unsere bisherigen Experimente zeigten bereits den prägenden Einfluss von ionischen Flüssigkeiten, welche Fluor-Atome im Anion enthalten, und von Mischungen zweier Kationen mit jeweils Seitenketten von unterschiedlicher Länge. Die wesentliche Aufgabenstellung unseres Projektes besteht nun darin, mechanistische Zusammenhänge zu klären, und zwar sowohl zwischen der molekularen Struktur der Reaktionslösung und der Bildung von Fluorohydroxotitan-Komplexen als auch der Bildung von Clustern. Darüber hinaus möchten wir die Entstehung von Primär- und Nanopartikeln verstehen. Unser Ansatz liegt in der Variation von ionischen Flüssigkeiten (z. B. Ersatz von (BF4)- durch (F)-) und in der Verwendung alternativer Ti-Verbindungen wie (NH4)(TiF6). Einerseits sollen in-situ-Methoden (Raman-Spektroskopie, Röntgenweit- und Kleinwinkelstreuung) dabei helfen, die relevanten Zwischenstufen auf molekularer Ebene und Nanometer-Skala zu identifizieren, andererseits stärkt die Berechnung der molekularen Bildungsmechanismen und des Wachstums von Clustern aus Komplexen das mechanistische Verständnis. Zu diesem Zweck werden neue Wechselwirkungspotentiale parametrisiert, aber auch solche Simulationen durchgeführt, die mit expliziter elektronischer Struktur-Berechnung arbeiten. Es werden dabei Computer-Experimente aufgesetzt, die dem Experiment nicht zugängliche Einsichten erlauben, zum Beispiel zum Einfluss von lokaler Polarität, spezifischen Wechselwirkungen oder gewissen Zwischenstufen.
Niedertemperatursynthesen anorganischer Materialien in ionischen Flüssigkeiten (ILs) führten in den letzten Jahren zu bemerkenswerten Ergebnissen. So konnten z. B. ein neues Germanium-Allotrop, ein supraleitendes Material auf der Basis von aromatischen Tellurringen sowie auch große Cluster und Heteropolykationen in ionischen Flüssigkeiten synthetisiert werden.
Ein Projektziel ist die Suche nach neuen metastabilen bzw. Niedertemperaturverbindungen auf der Basis von Elementen der Gruppen 13 bis 16, von denen wir außergewöhnliche chemische und physikalische Eigenschaften erwarten. Um dieses zu erreichen, sollen komplex aufgebaute, heteropolare Vorläuferverbindungen unter milden Bedingungen in ionischen Flüssigkeiten so umgesetzt werden, dass Baugruppen als Ganzes herausgelöst werden, die dann in Lösung modifiziert und in neuen Verbindungen rekristallisiert werden können. Auf diese Weise können die typischen thermodynamischen und kinetischen Einschränkungen der Festkörperchemie überwunden werden. Alle Produkte sollen mit modernen Methoden vollständig charakterisiert werden.
Da wenig über die Grundlagen dieser Chemie in ionischen Flüssigkeiten bekannt ist, werden wir auch verschiedene Parameter untersuchen, die Einfluss auf die Löslichkeit, Reaktivität und das Kristallisationsverhalten ausüben. Neben Temperatur, Konzentration und der Lewis-Säurestärke soll insbesondere der Einfluss der ionischen Flüssigkeit untersucht werden, indem gezielt synthetisierte ILs eingesetzt werden. Diese sollen es ermöglichen, die Synthesevorschriften zu optimieren und die Luft- und Feuchtigkeitsempfindlichkeit des Reaktionsmediums zu reduzieren. Mittels zeitaufgelöster NMR-Spektroskopie wird der Reaktionsfortschritt in der IL (Lösungs-NMR) ebenso wie der Beginn der Strukturbildung (Festkörper-NMR) verfolgt werden.
Die synthetische Materialchemie steht vor enormen Herausforderungen: Die Energiewende erfordert völlig neue Materialien mit herausragenden Eigenschaften - effektive Fotokatalysatoren für die solargetriebene Wasserstoffentwicklung, effiziente Energiespeichermaterialien, Materialien für Energiekonversion und vieles mehr. Auf der anderen Seite besteht die zwingende Notwendigkeit des ressourcenschonenden Einsatzes von Rohstoffen und Energie durch effizientere Herstellung bekannter und bereits verwendeter Materialien. Hier müssen nachhaltige chemische Prozesse erdacht und entwickelt werden, die bei niedrigerer Temperatur ablaufen, höhere Reinheit und Ausbeute ermöglichen und weniger Abfall produzieren.
Eine Erfolg versprechende Option hierfür ist die Nutzung von ionischen Flüssigkeiten (engl. Ionic Liquids, ILs) - organische Salze, die bereits unterhalb 100 Grad Celsius, oftmals sogar bei Raumtemperatur, als hoch polare Flüssigkeiten vorliegen. Die einzigartigen Eigenschaften dieser neuartigen 'Designer-Lösungsmittel' lassen sich durch vielfältige Variation ihrer chemischen Zusammensetzung an das jeweilige Synthesesystem adaptieren. Vielversprechende erste Forschungsergebnisse zeigen, dass unter Nutzung von ILs anorganische Materialien (Metalle, Legierungen, Halbleiter, Hartstoffe, Funktionswerkstoffe etc.) unter Umgebungsbedingungen hergestellt werden können. Dadurch lassen sich Energieeinsatz und technischer Aufwand im Vergleich zu den bisher notwendigen Hochtemperaturprozessen, wie Schmelzreaktionen, Solvothermalsynthesen oder Gasphasenabscheidungen, enorm reduzieren. Zugleich werden chemische Materialsynthesen besser steuerbar, was ebenfalls die Energie- und Rohstoffeffizienz erhöht.
Unabhängig davon eröffnen Synthesen in ILs die Möglichkeit, auch völlig neue Niedertemperaturverbindungen mit noch unbekannten chemischen und physikalischen Eigenschaften erstmalig zugänglich zu machen. Tatsächlich lassen sich in diesem frühen Stadium der Forschung noch längst nicht alle wissenschaftlichen, ökonomischen und ökologischen Implikationen abschätzen. Somit sind die Ziele des Schwerpunktprogramms:
(1) Etablierung IL-basierter ressourceneffizienter Synthesen für bekannte Funktionsmaterialien,
(2) Entdeckung neuartiger, auch unorthodoxer Funktionsmaterialien, die nur durch die Synthesen nahe Raumtemperatur in ILs zugänglich sind,
(3) Verständnis der Prinzipien von Auflösung, Reaktion und Abscheidung anorganischer Feststoffe in ILs.
1
2
3
4
5
…
16
17
18