Das Projekt "Luftqualität und Energieeffizienz mit einfacher win-win Technik beispielhaft für den Musiksaal der Hochschule für Kirchenmusik Diözese Rottenburg" wird/wurde gefördert durch: Deutsche Bundesstiftung Umwelt. Es wird/wurde ausgeführt durch: Bischöfliches Ordinariat Rottenburg, Hauptabteilung XV-Finanzen und Vermögen, Abteilung Grund- und Bauverwaltung.
Das Projekt "Ganzjährige Gesamtsystemoptimierung zur Reduzierung der CO2-Emissionen von Bestandsheizungsanlagen - Demonstration einer Systemlösung für Heizen und Kühlen, Teilvorhaben: Wärmeübergabeeinrichtungen für Heizen und Kühlen inkl. deren Leistungsregelung" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Kermi GmbH.
Das Projekt "Simulation und experimentelle Evaluierung thermoaktiver Raumtextilien für die energieeffiziente Heizung und Kühlung von Räumen" wird/wurde ausgeführt durch: Technische Universität Dresden, Institut für Energietechnik, Professur für Gebäudeenergietechnik und Wärmeversorgung.Die weitere Reduzierung des Primärenergieeinsatzes zur Heizung und Kühlung von Gebäuden erfordert neue, intelligente Lösungen für eine Raumkonditionierung mit hoher Flexibilität. Eine Möglichkeit ist die funktionale Kombination von Raumtextilien und Heiz-/Kühlflächen zu 'thermoaktiven Raumtextilien'. Es ist zu erwarten, dass derartige textile Konstruktionen gegenüber konventionellen Flächenheiz- und -kühlsystemen eine Reihe von Vorteilen aufweisen. Hier sind beispielsweise die hervorragende Eignung bei Altbausanierungen, sehr flexible Anordnungsmöglichkeiten im Raum sowie vorteilhafte Regel-, Schnellaufheiz- und -ankühlfähigkeiten mittels 'Faltung' bzw. 'Entfaltung' der Raumtextilien zu nennen. Zudem besteht bei geeigneter Konstruktion die Möglichkeit einer problemlosen Unterschreitung der Taupunkttemperatur im sommerlichen Kühlfall. Diese speziell ausgerüsteten Raumtextilien fungieren gleichzeitig als Wandbespannung und/oder als Vorhang vor den Fenstern und er-möglichen auf diese Weise nicht nur die Wärmezu- und -abfuhr sondern auch die Aufnahme, Speicherung und Abgabe von Wasserdampf und damit die Regulation der Raumluftfeuchte. Wesentliche Zielstellung dieses Projektes ist die grundlegende Untersuchung funktioneller, energetischer und wärmephysiologischer Aspekte bei der Anwendung von textilen Raumheiz- und -kühlflächen. Theoretische Betrachtungen sollen anhand ausgewählter repräsentativer Prototypen verifiziert werden
Das Projekt "Schwerpunktprogramm (SPP) 1708: Materialsynthese nahe Raumtemperatur; Priority program (SPP) 1708: Material Synthesis near Room Temperature, Tieftemperatur-Umwandlungen von komplexen festen Präkursoren in ionischen Flüssigkeiten: Neue Verbindungen und Einsichten in Reaktionsprinzipien" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Universität Dresden, Fachrichtung Chemie und Lebensmittelchemie, Professur für Anorganische Chemie 2.Niedertemperatursynthesen anorganischer Materialien in ionischen Flüssigkeiten (ILs) führten in den letzten Jahren zu bemerkenswerten Ergebnissen. So konnten z. B. ein neues Germanium-Allotrop, ein supraleitendes Material auf der Basis von aromatischen Tellurringen sowie auch große Cluster und Heteropolykationen in ionischen Flüssigkeiten synthetisiert werden. Ein Projektziel ist die Suche nach neuen metastabilen bzw. Niedertemperaturverbindungen auf der Basis von Elementen der Gruppen 13 bis 16, von denen wir außergewöhnliche chemische und physikalische Eigenschaften erwarten. Um dieses zu erreichen, sollen komplex aufgebaute, heteropolare Vorläuferverbindungen unter milden Bedingungen in ionischen Flüssigkeiten so umgesetzt werden, dass Baugruppen als Ganzes herausgelöst werden, die dann in Lösung modifiziert und in neuen Verbindungen rekristallisiert werden können. Auf diese Weise können die typischen thermodynamischen und kinetischen Einschränkungen der Festkörperchemie überwunden werden. Alle Produkte sollen mit modernen Methoden vollständig charakterisiert werden. Da wenig über die Grundlagen dieser Chemie in ionischen Flüssigkeiten bekannt ist, werden wir auch verschiedene Parameter untersuchen, die Einfluss auf die Löslichkeit, Reaktivität und das Kristallisationsverhalten ausüben. Neben Temperatur, Konzentration und der Lewis-Säurestärke soll insbesondere der Einfluss der ionischen Flüssigkeit untersucht werden, indem gezielt synthetisierte ILs eingesetzt werden. Diese sollen es ermöglichen, die Synthesevorschriften zu optimieren und die Luft- und Feuchtigkeitsempfindlichkeit des Reaktionsmediums zu reduzieren. Mittels zeitaufgelöster NMR-Spektroskopie wird der Reaktionsfortschritt in der IL (Lösungs-NMR) ebenso wie der Beginn der Strukturbildung (Festkörper-NMR) verfolgt werden.
Das Projekt "Ganzjährige Gesamtsystemoptimierung zur Reduzierung der CO2-Emissionen von Bestandsheizungsanlagen - Demonstration einer Systemlösung für Heizen und Kühlen, Teilvorhaben: Systemanalyse" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Technische Universität Dresden, Institut für Energietechnik, Professur für Gebäudeenergietechnik und Wärmeversorgung.
Das Projekt "Beurteilung des Einflusses von tiefen Temperaturen auf die Schwingfestigkeit von Gusseisen mit Kugelgraphit unter Überlagerung von Einflüssen durch Seigerungen, Teilvorhaben: Ableitung des Werkstoffverhaltens für Kugelgraphitguss bei vorliegenden Seigerungen" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF, Standort Kranichstein.
Das Projekt "Schwerpunktprogramm (SPP) 1708: Materialsynthese nahe Raumtemperatur; Priority program (SPP) 1708: Material Synthesis near Room Temperature, Schwerpunktprogramm (SPP) 1708: Materialsynthese nahe Raumtemperatur" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Universität Dresden, Fachrichtung Chemie und Lebensmittelchemie, Professur für Anorganische Chemie 2.Die synthetische Materialchemie steht vor enormen Herausforderungen: Die Energiewende erfordert völlig neue Materialien mit herausragenden Eigenschaften - effektive Fotokatalysatoren für die solargetriebene Wasserstoffentwicklung, effiziente Energiespeichermaterialien, Materialien für Energiekonversion und vieles mehr. Auf der anderen Seite besteht die zwingende Notwendigkeit des ressourcenschonenden Einsatzes von Rohstoffen und Energie durch effizientere Herstellung bekannter und bereits verwendeter Materialien. Hier müssen nachhaltige chemische Prozesse erdacht und entwickelt werden, die bei niedrigerer Temperatur ablaufen, höhere Reinheit und Ausbeute ermöglichen und weniger Abfall produzieren. Eine Erfolg versprechende Option hierfür ist die Nutzung von ionischen Flüssigkeiten (engl. Ionic Liquids, ILs) - organische Salze, die bereits unterhalb 100 Grad Celsius, oftmals sogar bei Raumtemperatur, als hoch polare Flüssigkeiten vorliegen. Die einzigartigen Eigenschaften dieser neuartigen 'Designer-Lösungsmittel' lassen sich durch vielfältige Variation ihrer chemischen Zusammensetzung an das jeweilige Synthesesystem adaptieren. Vielversprechende erste Forschungsergebnisse zeigen, dass unter Nutzung von ILs anorganische Materialien (Metalle, Legierungen, Halbleiter, Hartstoffe, Funktionswerkstoffe etc.) unter Umgebungsbedingungen hergestellt werden können. Dadurch lassen sich Energieeinsatz und technischer Aufwand im Vergleich zu den bisher notwendigen Hochtemperaturprozessen, wie Schmelzreaktionen, Solvothermalsynthesen oder Gasphasenabscheidungen, enorm reduzieren. Zugleich werden chemische Materialsynthesen besser steuerbar, was ebenfalls die Energie- und Rohstoffeffizienz erhöht. Unabhängig davon eröffnen Synthesen in ILs die Möglichkeit, auch völlig neue Niedertemperaturverbindungen mit noch unbekannten chemischen und physikalischen Eigenschaften erstmalig zugänglich zu machen. Tatsächlich lassen sich in diesem frühen Stadium der Forschung noch längst nicht alle wissenschaftlichen, ökonomischen und ökologischen Implikationen abschätzen. Somit sind die Ziele des Schwerpunktprogramms: (1) Etablierung IL-basierter ressourceneffizienter Synthesen für bekannte Funktionsmaterialien, (2) Entdeckung neuartiger, auch unorthodoxer Funktionsmaterialien, die nur durch die Synthesen nahe Raumtemperatur in ILs zugänglich sind, (3) Verständnis der Prinzipien von Auflösung, Reaktion und Abscheidung anorganischer Feststoffe in ILs.
Das Projekt "Schwerpunktprogramm (SPP) 1708: Materialsynthese nahe Raumtemperatur; Priority program (SPP) 1708: Material Synthesis near Room Temperature, Synthese anorganischer Materialien in ionischen Flüssigkeiten: Aufklärung der Reaktionsmechanismen vom Komplex zum Kristall" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Bonn, Institut für Physikalische und Theoretische Chemie - Mulliken Center for theoretical Chemistry.Unter Verwendung von ionischen Flüssigkeiten wurde in den vergangenen Jahren eine Vielfalt an neuartigen Synthesen von kristallinen und anorganischen Materialen entwickelt. Trotz vorteilhafter Eigenschaften und Synthese-Bedingungen gegenüber konventionellen Methoden mangelt es stark am mechanistischen Verständnis, besonders was die dirigierende Rolle der ionischen Flüssigkeiten angeht. Wir setzen uns hier zum Ziel, die Synthese von mehreren ungewöhnlichen Modifikationen des TiO2, nämlich der Bronze-Phase TiO2(B) und einem jüngst synthetisierten Titanoxyhydroxy-Fluorid, aufzuklären. Beide werden unter erstaunlich milden Bedingungen aus einer Mischung von einfachen ionischen Flüssigkeiten mit Wasser und TiCl4 erhalten. Unsere bisherigen Experimente zeigten bereits den prägenden Einfluss von ionischen Flüssigkeiten, welche Fluor-Atome im Anion enthalten, und von Mischungen zweier Kationen mit jeweils Seitenketten von unterschiedlicher Länge. Die wesentliche Aufgabenstellung unseres Projektes besteht nun darin, mechanistische Zusammenhänge zu klären, und zwar sowohl zwischen der molekularen Struktur der Reaktionslösung und der Bildung von Fluorohydroxotitan-Komplexen als auch der Bildung von Clustern. Darüber hinaus möchten wir die Entstehung von Primär- und Nanopartikeln verstehen. Unser Ansatz liegt in der Variation von ionischen Flüssigkeiten (z. B. Ersatz von (BF4)- durch (F)-) und in der Verwendung alternativer Ti-Verbindungen wie (NH4)(TiF6). Einerseits sollen in-situ-Methoden (Raman-Spektroskopie, Röntgenweit- und Kleinwinkelstreuung) dabei helfen, die relevanten Zwischenstufen auf molekularer Ebene und Nanometer-Skala zu identifizieren, andererseits stärkt die Berechnung der molekularen Bildungsmechanismen und des Wachstums von Clustern aus Komplexen das mechanistische Verständnis. Zu diesem Zweck werden neue Wechselwirkungspotentiale parametrisiert, aber auch solche Simulationen durchgeführt, die mit expliziter elektronischer Struktur-Berechnung arbeiten. Es werden dabei Computer-Experimente aufgesetzt, die dem Experiment nicht zugängliche Einsichten erlauben, zum Beispiel zum Einfluss von lokaler Polarität, spezifischen Wechselwirkungen oder gewissen Zwischenstufen.
Das Projekt "Schwerpunktprogramm (SPP) 1708: Materialsynthese nahe Raumtemperatur; Priority program (SPP) 1708: Material Synthesis near Room Temperature, Koordinationsfonds" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Universität Dresden, Fachrichtung Chemie und Lebensmittelchemie, Professur für Anorganische Chemie 2.Das Schwerpunktprogramm 1708 bündelt und koordiniert die Forschungsaktivitäten zur wissenschaftlichen und technologischen Entwicklung von Niedertemperatursynthesen anorganischer Materialien in Ionischen Flüssigkeiten (ILs). Das Schwerpunktprogramm hat drei Hauptziele: (A) Etablierung IL-basierter ressourceneffizienter Synthesen für bekannte Funktionsmaterialien. (B) Entdeckung neuer, möglicherweise unorthodoxer Materialien, die erst durch die besonderen, milden Synthesebedingungen in ILs zugänglich werden. (C) Verstehen der Prinzipien der Auflösung, Reaktion und Kristallisation von anorganischen Feststoffen in ILs. Das Koordinatorprojekt stellt die zentrale Plattform für Zusammenarbeit im SPP bereit. Dies umfasst die Organisation und Durchführung von Workshops und Arbeitstreffen, die Förderung von Nachwuchswissenschaftlern, die Betreuung von Mercator Fellows, Öffentlichkeitsarbeit und Gleichstellungsmaßnahmen.
Das Projekt "Schwerpunktprogramm (SPP) 1708: Materialsynthese nahe Raumtemperatur; Priority program (SPP) 1708: Material Synthesis near Room Temperature, Elektrochemische Synthese von III-V (GaN, InN, GaSb, InSb, AlSb) und Metallsulfid (ZnS, GaS) Verbindungshalbleitern und deren Nanostrukturen aus ionischen Flüssigkeiten" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Universität Clausthal, Institut für Elektrochemie.Das Projekt beabsichtigt die Entwicklung von III-V-Verbindungshalbleitern (GaN, InN, GaSb, InSb und AlSb) und Metallsulfid-Verbindungshalbleitern (ZnS- und GaS) Dünnfilmen und Nanostrukturen (Nanoröhrchen, Nanodrähte und makroporöse Strukturen) bei elektrochemischer Abscheidung/stromloser Abscheidung in verschiedenen ionischen Flüssigkeiten nahe Raumtemperatur. Der Hauptfokus wird auf das Verständnis des Reaktionsmechanismus der Bildung der Verbindungshalbleiter gesetzt. Die Reaktionsmechanismen werden anhand von IL-Salz-Mischungen, Elektrode/Elektrolyt-Grenzfläche und der hergestellten Strukturen und Schichten analysiert. Der Einfluss der IL-Zusammensetzung auf die Morphologie und die optischen Eigenschaften der erhaltenen Halbleiter wird untersucht. Zusätzlich werden die Halbleiternanostrukturen Templat-basiert und Templat-frei elektrochemisch hergestellt, was eine neue Methode zur Synthese von Halbleiternanostrukturen nahe Raumtemperatur eröffnet.
Origin | Count |
---|---|
Bund | 171 |
Type | Count |
---|---|
Förderprogramm | 168 |
Text | 2 |
unbekannt | 1 |
License | Count |
---|---|
geschlossen | 3 |
offen | 168 |
Language | Count |
---|---|
Deutsch | 159 |
Englisch | 48 |
Resource type | Count |
---|---|
Bild | 1 |
Dokument | 2 |
Keine | 87 |
Webseite | 84 |
Topic | Count |
---|---|
Boden | 109 |
Lebewesen & Lebensräume | 99 |
Luft | 111 |
Mensch & Umwelt | 171 |
Wasser | 65 |
Weitere | 171 |