API src

Found 373 results.

Related terms

Geothermie

„Geothermie“ oder „Erdwärme“ ist die unterhalb der Oberfläche der festen Erde gespeicherte Energie in Form von Wärme und zählt zu den regenerativen Energien. Diese beruht im Wesentlichen auf der von der Sonne eingestrahlten Wärmeenergie und dem nach oben gerichteten, terrestrischen Wärmestrom. Die von der Sonne eingestrahlte und von der Erdoberfläche an die Atmosphäre wieder abgegebene Wärmeenergie beeinflusst hierbei maßgeblich die Temperaturen im oberflächennahen Bereich bis etwa 15 bis 20 Metern Tiefe. Hier finden jahreszeitlich bedingte Temperaturschwankungen statt. In größerer Tiefe ist nur noch der terrestrische Wärmestrom maßgebend. Ursache ist die bei der Erdentstehung freigewordene Energie und der Zerfall radioaktiver Isotope. Mit der Tiefe nehmen die Temperaturen hier um durchschnittlich etwa 3 °C pro 100 Meter Tiefe zu. Man spricht auch von der „geothermischen Tiefenstufe“ oder dem „geothermischen Gradienten“. In einer Tiefe von etwa 20 m ist eine unbeeinflusste Temperatur von ca. 9 °C zu erwarten, in 100 m 12 °C und in 1.000 m etwa 40 °C. Der Transport der Wärme erfolgt durch Wärmeleitung von Teilchen zu Teilchen (Konduktion), aber auch durch bewegte Teilchen, also durch Grundwasserfluss (Konvektion). Berlin hat sich vorgenommen, bis spätestens im Jahr 2045 klimaneutral zu werden. Um dies zu erreichen, gilt es, gerade auch die Wärmeversorgung in der Stadt auf erneuerbare Energiequellen umzustellen. Denn fast die Hälfte des gesamten Berliner Endenergiebedarfs entfällt auf die Raumwärme und Warmwasserversorgung von Gebäuden. Bereitgestellt wird diese Wärme derzeit noch zu mehr als 90 Prozent über fossile Energieträger, also Kohle, Erdgas und Öl. Dies muss sich schnellstmöglich ändern. Dabei kann die Tiefe Geothermie – die emissionsfreie Förderung und Nutzung heißen Wassers aus tiefen Bodenschichten – eine wichtige Rolle spielen. Das genaue Potenzial im Berliner Untergrund ist noch unklar und muss erst präzise erkundet werden. Doch schon jetzt schätzen Geologen auf Grundlage bisheriger Erkenntnisse, dass bis zu einem Fünftel der benötigten Wärme mit Hilfe Tiefer Geothermie zur Verfügung gestellt werden könnte, etwa in Nah- und Fernwärmenetzen, über die Berliner Haushalte versorgt werden. Die Technik dazu ist bewährt und wird deutschlandweit in Dutzenden von Anlagen erfolgreich angewandt. Bild: SenMVKU Tiefe Geothermie. Erdwärme für Berlin Tiefe Geothermie, also Wärme, die in den Tiefen der Erde verfügbar ist, soll ein essenzieller Teil der Berliner Wärmeversorgung werden. Wir haben die wichtigsten Details für Sie zusammengestellt. Weitere Informationen Um das geothermische Potenzial von Berlin zu ermitteln, wurde in den Jahren 2009 bis 2012 die „Potenzialstudie zur Nutzung der geothermischen Ressourcen des Landes Berlin“ aufgeteilt in drei Module erarbeitet. Die Ergebnisse zu Modul 1, Grundlagenermittlung , und zu “Modul 2, Ermittlung des geothermischen Potenzials und dessen Darstellung, bildeten Grundlagen für die Darstellung der Potenzialkarten . Die Arbeiten zu Modul 3, Thermisch-hydraulische Modellierung, sind in der Zusammenfassung der Berichte (Modul 1 bis 3) enthalten, die nachfolgend als Download zur Verfügung steht. Im Jahr 2023 wurde eine aktualisierte Potenzialstudie zur Mitteltiefen Geothermie in Berlin erstellt, welche die Ergebnisse aus verschiedenen Forschungsprojekten der vorangegangenen 10 Jahren berücksichtigt. Aus dem Verbundprojekt „TUNB – Potenziale des unterirdischen Speicher- und Wirtschaftsraumes im Norddeutschen Becken“ ist ein dreidimensionales Modell des Norddeutschen Beckens verfügbar, welches für den Raum Berlin mittels zusätzlicher Daten aus 2D/3D-Seismik und Bohrungen verfeinert wurde. Anschließend erfolgte eine geothermische Parametrisierung der potenziellen Nutzhorizonte, wobei vor allem auf die Ergebnisse der Verbundprojekte Sandsteinfazies, GeoPoNDD und MesoTherm zurückgegriffen wurde. Die aktualisierte Potenzialstudie und die Daten des 3D-Untergrundmodells stehen nachfolgend als Download zur Verfügung. Im Ballungsraum von Berlin ist die Temperatur des Untergrundes durch den Menschen tiefgreifend erwärmt. Der Anstieg der durchschnittlichen Oberflächentemperatur durch die globale Klimaerwärmung hat diesen Prozess zusätzlich noch verstärkt. Dies zeigen langjährige Temperaturmessungen in Grundwassermessstellen unter einer Tiefe von 20 m unter Gelände, unterhalb der jahreszeitliche Temperatureinflüsse durch die Sonne ausgeschlossen sind. In einigen Innenstadtgebieten sind Temperaturbeeinflussungen bis in über 80 m nachgewiesen. Die flächenhaft im Untergrund des Landes Berlin durchgeführten Temperaturmessungen zeigen deutlich, dass im zentralen Innenstadtbereich die Durchschnittstemperatur des Untergrundes und damit auch des Grundwassers z. T. um mehr als 4 °C gegenüber den dünner besiedelten Randbereichen anthropogen bedingt erhöht ist. Die Temperaturmessungen belegen auch, dass sich dieser Temperaturanstieg zunehmend auch flächenhaft in größeren Tiefen bemerkbar macht. Dies zeigt die Karte für den Bezugshorizont 0 m NHN (Normalhöhennull), das entspricht je nach Lage im Stadtgebiet einer Tiefen von 35 bis 55 m Tiefe. Näheres zu dieser Thematik kann dem Umweltatlas Berlin und der Veröffentlichung zur Veränderung des Temperaturfeldes von Berlin ( BRB Henning & Limberg ) entnommen werden. Grundsätzlich ist die Art und Weise der Nutzung geothermischer Energie von der Temperatur des Vorkommens abhängig. Die oberflächennahe Erdwärme (z.B. bis 100 m) lässt sich derzeit wegen ihrer geringen Temperatur von 8 bis 12 °C nur in Verbindung mit einer Wärmepumpe nutzen, die die erforderliche Wärme für die Raumheizung und die Wassererwärmung erzeugt. Da mit zunehmender Tiefe die Temperatur des Untergrundes ansteigt, kann ab einer bestimmten Tiefe (ab etwa 1.000 m) die Untergrundwärme auch direkt (ohne Wärmepumpe) genutzt werden. Ist eine Stromerzeugung mit Dampfturbinen beabsichtigt, sind in der Regel Temperaturen von über 100 °C notwendig. Die dafür geeigneten Nutzungshorizonte liegen in unserer Region i. d. R. drei bis fünf Kilometer unter der Erdoberfläche. In Berlin wird fast ausschließlich die oberflächennahe Geothermie genutzt, d. h. bis zu einer maximalen Tiefe von 100 m. Dafür steht ein ganzes Spektrum von technischen Möglichkeiten zur Verfügung. Alle diese Verfahren benötigen eine Wärmepumpe, die in der Lage ist, die relativ niedrige Temperatur des Untergrundes bzw. des Grundwassers in diesen Tiefen von 8 – 12 °C mit Hilfe von elektrischer Energie auf ein für Heizzwecke geeignetes höheres Temperaturniveau zu bringen. Weitere Informationen zur Erdwärmenutzung Zur Erhöhung der Planungssicherheit dieser Erdwärmesondenanlagen werden im Umweltatlas Berlin Potenzialkarten zur spezifischen Wärmeleitfähigkeit und speziell für Einfamilienhäuser zur spezifischen Entzugsleistung dargestellt. Hierin sind die dafür maßgeblichen geologischen und hydrogeologischen Verhältnisse subsummiert. Da der Einbau von Erdwärmesondenanlagen in den Untergrund potenziell mit einem Risiko der Grundwassergefährdung verknüpft ist, werden zum Schutz des Grundwassers bei der Errichtung einer solchen Anlage hohe wasserrechtliche Anforderungen an das Bohrverfahren, die anschließende Bohrlochabdichtung, Drucktests, Dokumentation etc. gestellt. Neuere Forschungsergebnisse, Schadensfälle sowie die stark gestiegene Anzahl der Erdwärmesondenanlagen bestätigen diese Gefährdung immer wieder. Weitere Informationen zur Anzeigepflicht für Bohrungen Da Berlin sein Trinkwasser zu 100 % aus dem Grundwasser und fast ausschließlich aus dem eigenen Stadtgebiet bezieht, werden deshalb bei der Errichtung einer Erdwärmesondenanlage in dem dafür erforderlichen wasserbehördlichen Erlaubnisverfahren zum Schutz des Grundwassers besonders hohe Anforderungen gestellt. Näheres kann dem Leitfaden Erdwärmenutzung in Berlin entnommen werden. Pflichtenheft zur Methodik und Dokumentation thermohydrodynamischer Modellierungen im Rahmen des wasserrechtlichen Erlaubnisverfahrens zum Betrieb von Erdwärmesondenanlagen mit einer Heizleistung von >30 kW Kartenwerke zur Grundwassertemperatur Kartenwerke zum Geothermischen Potenzial Geothermisches Potenzial – Karten aktualisiert im Geoportal verfügbar Auf der Basis von ca. 14.950 Bohrungen der Bohrungs­datenbank der AG Landesgeologie der Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt wurden zwölf Karten neu berechnet. Die verfeinerten Planungshilfen für die Auslegung von Erdwärme­sonden­anlagen stehen für die Tiefenklassen 0-40 m, 0-60 m, 0-80 m und 0-100 m zur Verfügung. Weitere Informationen Karten im Umweltatlas Berlin

Wärmebedarf - Gemeinden

Modellierter jährlicher Wärmebedarf (Warmwasser und Raumwärme) aller Gebäude in den Gemeinden.

Wärmebedarf - 100m-Gitter

Modellierter jährlicher Wärmebedarf (Warmwasser und Raumwärme) aller Gebäude in der Hektar-Zelle.

Fernwärme Stadtwerke Uelzen

Die Stadtwerke Uelzen GmbH ist ein modernes Energieversorgungsunternehmen im Herzen der Lüneburger Heide und bietet Ihnen alle Services rund um das Thema Energie aus einer Hand. Unter der Marke mycity versorgt das Unternehmen die Stadt Uelzen neben Erdgas und Wasser mit 100 % Ökostrom. Hier wird das Fernwärmenetz digital geführt, es werden alle Leitungen der Stadtwerke aus diesem Bereich dargestellt. Die Daten werden fortlaufend aktualisiert. Die Daten können von berechtigten Personen eingesehen werden.

EVI Energieversorgung Hildesheim GmbH & Co. KG - Fernwärmeversorgung.

Die EVI Energieversorgung Hildesheim ist ein Tochterunternehmen der Stadtwerke Hildesheim AG. Als modernes und dienstleistungsorientiertes Unternehmen bieten wir Ihnen eine sichere Energie- und Wasserversorgung zu wettbewerbsfähigen Konditionen. Zusätzlich profitieren Sie von unseren Service- und Beratungsleistungen. In unser Fernwärmenetz wird ausschließlich Wärme eigespeist, die in unserem Holzhackschnitzelheizkraftwerk erzeugt wird. Dieses produziert neben Wärme auch Ökostrom durch die Verbrennung von Biomasse in Form von Holzhackschnitzeln. Diese werden ausschließlich aus Waldresthölzern gewonnen.

Entwicklung Flex-Wärmepumpe, Teilvorhaben: Konstruktion und Erprobung Flex-Wärmepumpe

Wärmepumpen werden bei der Wärmeversorgung der Zukunft (Stichworte: Wärmewende, Sektorenkopplung, 'bezahlbares Heizen') eine große Rolle spielen. Unter Nutzung von regenerativ erzeugter elektrischer Energie können sie die unterschiedlichsten Wärmequellen (z.B. Abwärme oder Umweltwärme) auf ein nutzbares Temperaturniveau heben. Sogenannte 'kalte' Netze (Wärmenetze der neuesten Generation) können insbesondere in neu zu erschließenden Gebieten als Quelle dienen. Dezentral können dann Raumwärme und Warmwasserbereitung getrennt voneinander und sehr energieeffizient 'erzeugt' werden. Geplant ist die Entwicklung einer für unterschiedliche Anwendungen flexibel einsetzbaren Wärmepumpe (Flex-WP) auf Basis natürlicher zeotroper Kältemittelgemische mit einem mittleren bis hohen Temperaturgleit sowohl auf der kalten als auch auf der warmen Seite im Leistungsbereich von ca. 50 kW. Damit können große Spreizungen zwischen Vor- und Rücklauf sowohl auf der Wärmequellen- als auch -senkenseite genutzt bzw. erzeugt werden. Durch den Temperaturgleit bei der Wärmeübertragung passt sich die Wärmepumpe sehr energieeffizient an die Temperaturen der externen Medien an. Im Vergleich zu Wärmepumpen mit Einstoffkältemitteln bzw. azeotropen Gemischen sind Effizienzsteigerungen von bis zu 20% möglich. Allerdings ist die technische Umsetzung insbesondere in den Wärmeübertragern ein seit Jahrzehnten bekanntes, aber ungelöstes Problem. Die Entwicklung einer grundsätzlichen, technischen Lösung ist ein wesentlicher Schwerpunkt und stellt ein hohes Risiko dar. Entsprechend dem weltweit anvisierten Ausstieg aus fluorierten Kältemitteln (auch europäische 'F-Gase-Verordnung') sollen natürliche Kältemittel zum Einsatz kommen. Die geplante Verwendung von brennbaren Kohlenwasserstoffen erfordert dabei die Erarbeitung von Sicherheitskonzepten für die Innen- und Außenaufstellung. Dies reicht von der Begrenzung der Füllmenge über die Vermeidung von Leckagen und Zündquellen bis hin zur Detektion von Undichtheiten (Text abgebrochen)

Entwicklung Flex-Wärmepumpe, Teilvorhaben: Voruntersuchungen und Entwicklung Flex-Wärmepumpe

Wärmepumpen werden bei der Wärmeversorgung der Zukunft (Stichworte: Wärmewende, Sektorenkopplung, 'bezahlbares Heizen') eine große Rolle spielen. Unter Nutzung von regenerativ erzeugter elektrischer Energie können sie die unterschiedlichsten Wärmequellen (z.B. Abwärme oder Umweltwärme) auf ein nutzbares Temperaturniveau heben. Sogenannte 'kalte' Netze (Wärmenetze der neuesten Generation) können insbesondere in neu zu erschließenden Gebieten als Quelle dienen. Dezentral können dann Raumwärme und Warmwasserbereitung getrennt voneinander und sehr energieeffizient 'erzeugt' werden. Geplant ist die Entwicklung einer für unterschiedliche Anwendungen flexibel einsetzbaren Wärmepumpe (Flex-WP) auf Basis natürlicher zeotroper Kältemittelgemische mit einem mittleren bis hohen Temperaturgleit sowohl auf der kalten als auch auf der warmen Seite im Leistungsbereich von ca. 50 kW. Damit können große Spreizungen zwischen Vor- und Rücklauf sowohl auf der Wärmequellen- als auch -senkenseite genutzt bzw. erzeugt werden. Durch den Temperaturgleit bei der Wärmeübertragung passt sich die Wärmepumpe sehr energieeffizient an die Temperaturen der externen Medien an. Im Vergleich zu Wärmepumpen mit Einstoffkältemitteln bzw. azeotropen Gemischen sind Effizienzsteigerungen von bis zu 20% möglich. Allerdings ist die technische Umsetzung insbesondere in den Wärmeübertragern ein seit Jahrzehnten bekanntes, aber ungelöstes Problem. Die Entwicklung einer grundsätzlichen, technischen Lösung ist ein wesentlicher Schwerpunkt und stellt ein hohes Risiko dar. Entsprechend dem weltweit anvisierten Ausstieg aus fluorierten Kältemitteln (auch europäische 'F-Gase-Verordnung') sollen natürliche Kältemittel zum Einsatz kommen. Die geplante Verwendung von brennbaren Kohlenwasserstoffen erfordert dabei die Erarbeitung von Sicherheitskonzepten für die Innen- und Außenaufstellung. Dies reicht von der Begrenzung der Füllmenge über die Vermeidung von Leckagen und Zündquellen bis hin zur Detektion von Undichtheiten (Text abgebrochen)

Entwicklung Flex-Wärmepumpe

Wärmepumpen werden bei der Wärmeversorgung der Zukunft (Stichworte: Wärmewende, Sektorenkopplung, 'bezahlbares Heizen') eine große Rolle spielen. Unter Nutzung von regenerativ erzeugter elektrischer Energie können sie die unterschiedlichsten Wärmequellen (z.B. Abwärme oder Umweltwärme) auf ein nutzbares Temperaturniveau heben. Sogenannte 'kalte' Netze (Wärmenetze der neuesten Generation) können insbesondere in neu zu erschließenden Gebieten als Quelle dienen. Dezentral können dann Raumwärme und Warmwasserbereitung getrennt voneinander und sehr energieeffizient 'erzeugt' werden. Geplant ist die Entwicklung einer für unterschiedliche Anwendungen flexibel einsetzbaren Wärmepumpe (Flex-WP) auf Basis natürlicher zeotroper Kältemittelgemische mit einem mittleren bis hohen Temperaturgleit sowohl auf der kalten als auch auf der warmen Seite im Leistungsbereich von ca. 50 kW. Damit können große Spreizungen zwischen Vor- und Rücklauf sowohl auf der Wärmequellen- als auch -senkenseite genutzt bzw. erzeugt werden. Durch den Temperaturgleit bei der Wärmeübertragung passt sich die Wärmepumpe sehr energieeffizient an die Temperaturen der externen Medien an. Im Vergleich zu Wärmepumpen mit Einstoffkältemitteln bzw. azeotropen Gemischen sind Effizienzsteigerungen von bis zu 20% möglich. Allerdings ist die technische Umsetzung insbesondere in den Wärmeübertragern ein seit Jahrzehnten bekanntes, aber ungelöstes Problem. Die Entwicklung einer grundsätzlichen, technischen Lösung ist ein wesentlicher Schwerpunkt und stellt ein hohes Risiko dar. Entsprechend dem weltweit anvisierten Ausstieg aus fluorierten Kältemitteln (auch europäische 'F-Gase-Verordnung') sollen natürliche Kältemittel zum Einsatz kommen. Die geplante Verwendung von brennbaren Kohlenwasserstoffen erfordert dabei die Erarbeitung von Sicherheitskonzepten für die Innen- und Außenaufstellung. Dies reicht von der Begrenzung der Füllmenge über die Vermeidung von Leckagen und Zündquellen bis hin zur Detektion von Undichtheiten (Text abgebrochen)

Fernwärmeleitungsnetz Stadtwerke Clausthal GmbH

Die Daten umfassen das Versorgungsnetz Fernwärme Clausthal-Zellerfeld. Fernwärme gelangt über Leitungen in die angeschlossenen Gebäude. Das Prinzip ist einfach: Zur Wärmeerzeugung strömt Gas in einen Verbrennungsmotor. Kinetische Energie und damit Wärme werden frei. Aus dem verbrannten Gas werden 2/3 Wärme und 1/3 Strom. Die Wärme gelangt gespeichert in heißem Wasser in einen geschlossenen Kreislauf, der Strom wird in das allgemeine Netz eingespeist.

Geologische und verfahrenstechnische Möglichkeiten der Erdwärmenutzung am Standort der Medizinischen Hochschule Hannover (MHH)

Für die Medizinische Hochschule Hannover hat das GeothermieZentrum Bochum gemeinsam mit der GeoDienste GmbH (Garbsen) im Zeitraum von August 2007 bis März 2008 eine Vorstudie zur Einbindung der Geothermie in das Energiekonzept des Klinikums erstellt. Im Anschluss an diese Vorstudie wurde eine Wirtschaftlichkeitsanalyse erstellt, welche die petrothermale und hydrothermale Versorgung betrachtete. Vorstudie: Die Medizinische Hochschule Hannover (MHH) wird derzeit von den Stadtwerken Hannover mit den Medien Gas, Strom und Fernwärme zur Erzeugung ihrer dreigliedrigen Energieversorgung, bestehend aus Dampf, Raumwärme und Klimakälte, versorgt. Aufgrund der hydrogeologischen Situation am Standort der MHH in Hannover wird eine Einbindung der Geothermie sowohl in den Heizkreislauf (direkte Integration über Wärmetauscher) als auch in den Kälteklimakreislauf (modular betriebene Absorptionskältemaschinen) vorgeschlagen. Ziel der Einbindung ist es konventionelle, preislich fluktuierende und primärenergetisch nachteilige Energieträger, wie in erster Linie elektrischen Strom und nachrangig Fernwärme oder Gas, durch den Einsatz der Geothermie vollständig, oder im Rahmen der Leistungsfähigkeit des geothermischen Reservoirs teilweise, zu ersetzen. Wirtschaftlichkeit, CO2-Bilanz und Versorgungssicherheit stehend dabei im Vordergrund. Die Grundlastfähigkeit der Geothermie wird in der vorgeschlagenen Anlagenkonfiguration vollständig ausgenutzt. Im Bereich der Spitzenlastdeckung spielt die Geothermie daher keine Rolle. Die geothermisch unterstützte Dampferzeugung findet im betrachteten Szenario keinen Eingang. Dies liegt in der internen Wärmerückgewinnung im Dampferzeuger durch den Economizer zur Vorwärmung des Speise- und Verbrauchswassers begründet. Da die Geothermie bei der Dampfherstellung nur einen geringen energetischen Beitrag leisten kann und Investitionen für ihre Anbindung an das Dampferzeugersystem entstehen, wird von der Betrachtung dieser Systeme abgesehen. Übersteigt die Bereitstellung von geothermischer Energie im Heiz- oder Kühlfall die Energienachfrage, lassen sich Pufferspeicher integrieren um diese überschüssig Energie effizient zu speichern. Bei Lastspitzen kann die Energie zurückgewonnen werden. Somit erhöht sich der geothermische Anteil an der Gesamtenergiebereitstellung. Wirtschaftlichkeitsanalyse: Hier wurden 9 verschiedene Szenarien untersucht, welche sich aufgrund ihrer Art (petrothermal / hydrothermal), der Bohrtiefe (4500 / 3000 m), ihrer Schüttung (15-50 l/s), Temperatur (115 / 160 Grad C) oder Bereitstellung (Wärme / Strom+Wärme) unterscheiden. Die höheren Investitionskosten für die petrothermalen Systeme werden durch die höhere Energieausbeute (Schüttung und Temperatur) abgefangen und diese somit wirtschaftlicher als die hydrothermalen Systeme, welche sich in der Amortisationsrechnung nur aufgrund der steigenden Energiepreise nach einigen Jahren rechnen.

1 2 3 4 536 37 38