Die Verwendung von Pikrinsäure (2,4,6-Trinitrophenol) als Sprengstoff hat zu bedeutenden Umweltbelastungen geführt. Die Toxizität der Pikrinsäure (PA) und dessen mutagenes Reduktionsprodukt 2-Amino-4,6-Dinitrophenol schafft ein wirtschaftliches Interesse, die großen Mengen an PA in Altlasten und Abwasserströmen mikrobiologisch zu entfernen. Die Basis für die geplanten Arbeiten sind Bakterien der Gattungen Nocardioides und Rhodococcus, die über Reduktion des aromatischen Ringes und Bildung eines Hydrid-Meisenheimer (H-Pikrat) Komplexes PA als alleinige Stickstoffquelle verwenden. Zwei Enzyme aus Nocardioides simplex übertragen H von NADPH auf PA unter Bildung des H-Pikrat Komplexes. Teile der für den PA-Abbau vermeintlichen genetischen Information aus Rhodococcus opacus HL PM-1 wurden mit der Differential-Display-Technik gefunden. Ziel ist es, die Gene und Genfunktionen des gesamten PA-Abbauweges zu identifizieren und zu charakterisieren, sowie die biochemischen Kenntnisse zu vertiefen. Dies ist entscheidend für die Entwicklung von Systemen zur Entfernung von PA und für die Erschließung von neuartigen Degradationssystemen für TNT.
Das Ziel des Projektes besteht in der Nutzung von Wasserstoff als klimaneutrales Prozessgas für den Tunnelofenbetrieb in der keramischen Industrie. Der Bundesverband der Deutschen Ziegelindustrie e. V. hat im März 2021 eine Roadmap für eine treibhausgasneutrale Ziegelindustrie in Deutschland - Ein Weg zur Klimaneutralität der Branche bis 2050- herausgegeben. Die Treibhausgasemissionen der deutschen Ziegelindustrie betragen rund 1,74 Mio. t CO2 im Jahr. Bis zum Jahr 2050 soll das Ziel der Treibhausgasneutralität, mit dann nur noch Emissionen von rund 0,5 Mio. t CO2/a, erreicht sein. Ein großes Problem bei der Herstellung keramischer Erzeugnisse wie Ziegel, Dachziegel, Klinker etc. ist der hohe Energieverbrauch. Der Sekundärenergieträger Wasserstoff kann durch seine CO2-freie Verbrennung sehr gut als Brennstoff eingesetzt werden. Wasserstoff ist ein brennbares Gas das exotherm mit Sauerstoff zu Wasser reagiert. Durch die Veränderung der Gasatmosphäre im Ofen gibt es jedoch Auswirkungen auf die Eigenschaften des Brennproduktes, die keramischen Eigenschaften, die Brennfarbe, die Puzzolanität und schädliche Emissionen im Ofenraum. Schwerpunkt ist es, derzeit noch offene Fragestellungen zum Wasserstoff-verfahren zu lösen, d.h. Kenntnisse über die Reaktionsmechanismen in den Rohstoffen bei wasserdampfhaltiger Atmosphäre zu erlangen und ein Konzept für die Verfahrenstechnik zu entwickeln, mit der es nach dem heutigen Stand der Technik möglich wird, ein solches Brennverfahren sicher und wirtschaftlich in einem kontinuierlichen Prozess einzusetzen. Die Projektergebnisse sollen im Werk Rietberg der Wienerberger GmbH in einem Pilotofen umgesetzt und erprobt werden.
Das Ziel des Projektes besteht in der Nutzung von Wasserstoff als klimaneutrales Prozessgas für den Tunnelofenbetrieb in der keramischen Industrie. Der Bundesverband der Deutschen Ziegelindustrie e. V. hat im März 2021 eine Roadmap für eine treibhausgasneutrale Ziegelindustrie in Deutschland - Ein Weg zur Klimaneutralität der Branche bis 2050- herausgegeben. Die Treibhausgasemissionen der deutschen Ziegelindustrie betragen rund 1,74 Mio. t CO2 im Jahr. Bis zum Jahr 2050 soll das Ziel der Treibhausgasneutralität, mit dann nur noch Emissionen von rund 0,5 Mio. t CO2/a, erreicht sein. Ein großes Problem bei der Herstellung keramischer Erzeugnisse wie Ziegel, Dachziegel, Klinker etc. ist der hohe Energieverbrauch. Der Sekundärenergieträger Wasserstoff kann durch seine CO2-freie Verbrennung sehr gut als Brennstoff eingesetzt werden. Wasserstoff ist ein brennbares Gas das exotherm mit Sauerstoff zu Wasser reagiert. Durch die Veränderung der Gasatmosphäre im Ofen gibt es jedoch Auswirkungen auf die Eigenschaften des Brennproduktes, die keramischen Eigenschaften, die Brennfarbe, die Puzzolanität und schädliche Emissionen im Ofenraum. Schwerpunkt ist es, derzeit noch offene Fragestellungen zum Wasserstoff-verfahren zu lösen, d.h. Kenntnisse über die Reaktionsmechanismen in den Rohstoffen bei wasserdampfhaltiger Atmosphäre zu erlangen und ein Konzept für die Verfahrenstechnik zu entwickeln, mit der es nach dem heutigen Stand der Technik möglich wird, ein solches Brennverfahren sicher und wirtschaftlich in einem kontinuierlichen Prozess einzusetzen. Die Projektergebnisse sollen im Werk Rietberg der Wienerberger GmbH in einem Pilotofen umgesetzt und erprobt werden.
Das Ziel des Projektes besteht in der Nutzung von Wasserstoff als klimaneutrales Prozessgas für den Tunnelofenbetrieb in der keramischen Industrie. Der Bundesverband der Deutschen Ziegelindustrie e. V. hat im März 2021 eine Roadmap für eine treibhausgasneutrale Ziegelindustrie in Deutschland - Ein Weg zur Klimaneutralität der Branche bis 2050- herausgegeben. Die Treibhausgasemissionen der deutschen Ziegelindustrie betragen rund 1,74 Mio. t CO2 im Jahr. Bis zum Jahr 2050 soll das Ziel der Treibhausgasneutralität, mit dann nur noch Emissionen von rund 0,5 Mio. t CO2/a, erreicht sein. Ein großes Problem bei der Herstellung keramischer Erzeugnisse wie Ziegel, Dachziegel, Klinker etc. ist der hohe Energieverbrauch. Der Sekundärenergieträger Wasserstoff kann durch seine CO2-freie Verbrennung sehr gut als Brennstoff eingesetzt werden. Wasserstoff ist ein brennbares Gas das exotherm mit Sauerstoff zu Wasser reagiert. Durch die Veränderung der Gasatmosphäre im Ofen gibt es jedoch Auswirkungen auf die Eigenschaften des Brennproduktes, die keramischen Eigenschaften, die Brennfarbe, die Puzzolanität und schädliche Emissionen im Ofenraum. Schwerpunkt ist es, derzeit noch offene Fragestellungen zum Wasserstoff-verfahren zu lösen, d.h. Kenntnisse über die Reaktionsmechanismen in den Rohstoffen bei wasserdampfhaltiger Atmosphäre zu erlangen und ein Konzept für die Verfahrenstechnik zu entwickeln, mit der es nach dem heutigen Stand der Technik möglich wird, ein solches Brennverfahren sicher und wirtschaftlich in einem kontinuierlichen Prozess einzusetzen. Die Projektergebnisse sollen im Werk Rietberg der Wienerberger GmbH in einem Pilotofen umgesetzt und erprobt werden.
Die Anwendung gasfoermiger Pestizide bringt es mit sich, dass Reste der toxischen Gase in die Troposphaere gelangen. Um entscheiden zu koennen, ob dort eine Anreicherung der Gase erfolgt, sind die chemischen Abbaumechanismen zu erforschen und kinetisch-quantitativ zu bestimmen. Als wesentlichste Abbaureaktion kann die Umsetzung mit OH-Radikalen angesehen werden. Es werden daher primaer die Reaktionen von OH-Radikalen mit HCN, CH3Br, C2H4O sowie PH3 und deren Homologe zu vermessen sein.
Die Natrium D-Linien stellen eine der wichtigsten Emissionen des terrestrischen Nightglow-Spektrums dar. Die Na-Emission wurde 1929 durch Vesto Slipher erstmals beschrieben. Sydney Chapman schlug im Jahre 1939 einen Anregungsmechanismus für die Na-D Emission vor, der durch die Reaktion von Na und Ozon initiiert wird. Obwohl die Na-D Nightglow-Emission seit über 80 Jahren Gegenstand wissenschaftlicher Untersuchungen ist, ist das Verständnis ihres Anregungsmechanismus noch immer unvollständig. Neuere Studien identifizierten zeitliche Variationen des D2/D1-Linienverhältnisses, das nicht mit dem ursprünglichen Chapman-Mechanismus vereinbar ist. Ein modifizierter Chapman-Mechanismus wurde 2005 durch Slanger et al. vorgeschlagen, der explizit zwischen den verschiedenen elektronischen Anregungszuständen des beteiligen NaO-Moleküls differenziert. Dieser Mechanismus wurde mit Boden-gestützten Messungen des D2/D1-Linienverhältnisses getestet, aber die vertikale Variation des Linienverhältnisses - ein kritischer Test des modifizierten Chapman-Mechanismus - wurde bisher nicht durchgeführt.Das Hauptziel der hier vorgeschlagenen Untersuchungen besteht darin, das wissenschaftliche Verständnis des Na-D Nightglow-Anregungsmechanismus mit Hilfe Satelliten-gestützter Messungen zu testen und eine Methode zur Ableitung von Na Profilen in der Mesopausenregion aus Messungen der Na-D Nightglow-Emission zu konsolidieren. Hierzu sollen Messungen der Instrumente OSIRIS auf dem Odin Satelliten, sowie SCIAMACHY auf Envisat verwendet werden. Die Synergie der beiden Datensätze ermöglicht auf einzigartige Weise die Untersuchung des Na-D Nightglow-Anregungsmechanismus. Konkret sollen die Satellitenmessungen für folgende Zwecke verwendet werden: 1) Die OSIRIS Messungen, die ein sehr hohes Signal-zu-Rausch-Verhältnis besitzen, sollen verwendet werden um das Verzweigungsverhältnis f für die Produktion von Na(2P) über die Reaktion von NaO und O - entsprechend dem ursprünglichen oder effektiven Chapman-Mechanismus - empirisch zu bestimmen. Hierzu werden unabhängige Na-Profilmessungen mit Boden-gestützten LIDARs und anderen verfügbaren Na Datensätzen eingesetzt. 2) Die SCIAMACHY Nightglow Limb-Messungen erlauben die spektrale Trennung der beiden Na D-Linien und sollen eingesetzt werden, um die vertikale Variation des D2/D1-Verhältnisses in der realen Atmosphäre abzuleiten. Die SCIAMACHY Messungen sind hierfür auf einzigartige Weise geeignet. Die hier vorgeschlagenen Ansätze ermöglichen wichtige und neue Beiträge, um das wissenschaftliche Verständnis des Na-D Nightglow-Anregungsmechanismus zu verbessern. Darüber hinaus tragen die erwarteten Ergebnisse dazu bei, die Methode zur Ableitung von Na-Profilen in der Mesopausenregion aus Messungen der Na-D Nightglow-Emission zu konsolidieren. Letzteres wird erreicht durch die Bereitstellung eines optimalen Verzweigungsverhältnisses f (sowie dessen Unsicherheit) des ursprünglichen Chapman-Anregungsmechanismus.
Durch spezielle Techniken gelang es, 'Spezialbakterien' zu gewinnen, die eine Reihe von biologisch problematischen organischen Abwasserinhaltsstoffen (Naphtalinsulfonsaeure, Ligninsulfonsaeuren, Phenole, Alkylthiophosphorestersaeuren etc.) mit hohem Abbaugrad katabolisieren. Aus der Reihe der problematischen Abwaesser werden beispielhaft die mit ueberwiegender Naphtalinsulfonsaeure-Verunreinigung behandelt, wie sie in Faerberei-, Gerberei- und Textilindustrien in sehr hohen Mengen anfallen. Fuer dieses ausgesuchte Abwaessersystem werden das Bakterienwachstum unter Abwasserbedingungen und die hierbei moeglichen Substrat-Abbauraten bestimmt. Dazu werden die Fermentationsbedingungen und die Reaktionsmechanismen des Substratabbaus durch submerse und auf geeigneten Traegern fixierte 'Spezialbakterien' erarbeitet und die dazu angepassten Reaktoren und Reaktionssysteme konzipiert.
Wirbelbettreaktoren werden fuer sehr unterschiedliche Fragestellungen der Energie-, Verfahrens-, und Umwelttechnik eingesetzt. Neben den primaer interessierenden heterogenen Reaktionen laufen auch immer damit gekoppelt homogene Gasphasenreaktionen ab, deren Besonderheit darin besteht, dass sie in der Naehe von grossen Partikeloberflaechen stattfinden. Ziel dieses Forschungsvorhabens ist die Untersuchung der Pyrolyse und Verbrennungsreaktionen von einfachen Kohlenwasserstoffen, die der Fluidisierungsluft oder einem inerten Fluidisierungsgas in kleinen Konzentrationen beigemischt werden. Mit Hilfe eines Chrompack Gaschromatrografen CP09001 (3-Saeulen-Schaltung mit Molsieb 5 A, Al2O3/KCl und Poraplot Q, WLD- und FID-Detektoren) koennen Konzentrationsprofile fuer folgende Gaskomponenten gemessen werden: Kohlenwasserstoffe C1-C4, CO2, CO, O2, N2, H2. Es wurde die stoechiometrische Verbrennung und die Pyrolyse von Propan bei Minimalfluidisation im Bereich von 700 bis 1000 Grad Celsius untersucht. Das Bettmaterial des Wirbelschichtofens bestand aus einer SiO2-Schuettung. Es hat sich gezeigt, dass im Bereich der Minimalfluidisation unguenstige Temperaturgradienten im unteren Bettbereich auftreten, die eine kinetische Deutung erschweren. Bei den Pyrolyseexperimenten konnte das Kohlenstoffdefizit im Abgas durch eine Messung des festen Kohlenstoffs auf dem Bettmaterial bilanziert werden.
Mikroplastik wird zwischen Land- und Wasseroberflächen und der Atmosphäre ausgetauscht und kann luftgetragen über weite Strecken transportiert werden, bevor die Mikroplastikpartikel wieder aus der Atmosphäre entfernt und abgelagert werden. Obwohl diese Transportprozesse für die Verteilung und die wirksamen Abbaumechanismen von Mikroplastik sehr wichtig sind, gibt es bislang keine systematischen Untersuchungen zum atmosphärischen Transport von Mikroplastik. Der luftgetragene Transport von Mikroplastik wird im vorliegenden Teilprojekt in einem Windkanal als idealisiertem Modellsystem experimentell untersucht und mit einem strömungsauflösenden Transportmodell numerisch simuliert, um die grundlegenden Prozesse verstehen und quantifizieren zu können.
Unter Verwendung von ionischen Flüssigkeiten wurde in den vergangenen Jahren eine Vielfalt an neuartigen Synthesen von kristallinen und anorganischen Materialen entwickelt. Trotz vorteilhafter Eigenschaften und Synthese-Bedingungen gegenüber konventionellen Methoden mangelt es stark am mechanistischen Verständnis, besonders was die dirigierende Rolle der ionischen Flüssigkeiten angeht. Wir setzen uns hier zum Ziel, die Synthese von mehreren ungewöhnlichen Modifikationen des TiO2, nämlich der Bronze-Phase TiO2(B) und einem jüngst synthetisierten Titanoxyhydroxy-Fluorid, aufzuklären. Beide werden unter erstaunlich milden Bedingungen aus einer Mischung von einfachen ionischen Flüssigkeiten mit Wasser und TiCl4 erhalten. Unsere bisherigen Experimente zeigten bereits den prägenden Einfluss von ionischen Flüssigkeiten, welche Fluor-Atome im Anion enthalten, und von Mischungen zweier Kationen mit jeweils Seitenketten von unterschiedlicher Länge. Die wesentliche Aufgabenstellung unseres Projektes besteht nun darin, mechanistische Zusammenhänge zu klären, und zwar sowohl zwischen der molekularen Struktur der Reaktionslösung und der Bildung von Fluorohydroxotitan-Komplexen als auch der Bildung von Clustern. Darüber hinaus möchten wir die Entstehung von Primär- und Nanopartikeln verstehen. Unser Ansatz liegt in der Variation von ionischen Flüssigkeiten (z. B. Ersatz von (BF4)- durch (F)-) und in der Verwendung alternativer Ti-Verbindungen wie (NH4)(TiF6). Einerseits sollen in-situ-Methoden (Raman-Spektroskopie, Röntgenweit- und Kleinwinkelstreuung) dabei helfen, die relevanten Zwischenstufen auf molekularer Ebene und Nanometer-Skala zu identifizieren, andererseits stärkt die Berechnung der molekularen Bildungsmechanismen und des Wachstums von Clustern aus Komplexen das mechanistische Verständnis. Zu diesem Zweck werden neue Wechselwirkungspotentiale parametrisiert, aber auch solche Simulationen durchgeführt, die mit expliziter elektronischer Struktur-Berechnung arbeiten. Es werden dabei Computer-Experimente aufgesetzt, die dem Experiment nicht zugängliche Einsichten erlauben, zum Beispiel zum Einfluss von lokaler Polarität, spezifischen Wechselwirkungen oder gewissen Zwischenstufen.
| Origin | Count |
|---|---|
| Bund | 772 |
| Type | Count |
|---|---|
| Förderprogramm | 772 |
| License | Count |
|---|---|
| offen | 772 |
| Language | Count |
|---|---|
| Deutsch | 712 |
| Englisch | 106 |
| Resource type | Count |
|---|---|
| Keine | 482 |
| Webseite | 290 |
| Topic | Count |
|---|---|
| Boden | 554 |
| Lebewesen und Lebensräume | 518 |
| Luft | 527 |
| Mensch und Umwelt | 772 |
| Wasser | 490 |
| Weitere | 772 |