API src

Found 767 results.

Abbau von problematischen Abwasserinhaltsstoffen mit speziellen Bakterienkulturen

Durch spezielle Techniken gelang es, 'Spezialbakterien' zu gewinnen, die eine Reihe von biologisch problematischen organischen Abwasserinhaltsstoffen (Naphtalinsulfonsaeure, Ligninsulfonsaeuren, Phenole, Alkylthiophosphorestersaeuren etc.) mit hohem Abbaugrad katabolisieren. Aus der Reihe der problematischen Abwaesser werden beispielhaft die mit ueberwiegender Naphtalinsulfonsaeure-Verunreinigung behandelt, wie sie in Faerberei-, Gerberei- und Textilindustrien in sehr hohen Mengen anfallen. Fuer dieses ausgesuchte Abwaessersystem werden das Bakterienwachstum unter Abwasserbedingungen und die hierbei moeglichen Substrat-Abbauraten bestimmt. Dazu werden die Fermentationsbedingungen und die Reaktionsmechanismen des Substratabbaus durch submerse und auf geeigneten Traegern fixierte 'Spezialbakterien' erarbeitet und die dazu angepassten Reaktoren und Reaktionssysteme konzipiert.

Nutzung von Wasserstoff als klimaneutrales Prozessgas für den Tunnelofenbetrieb in der keramischen Industrie, Teilvorhaben: Entwicklung des klimaneutralen Brennverfahrens

Das Ziel des Projektes besteht in der Nutzung von Wasserstoff als klimaneutrales Prozessgas für den Tunnelofenbetrieb in der keramischen Industrie. Der Bundesverband der Deutschen Ziegelindustrie e. V. hat im März 2021 eine Roadmap für eine treibhausgasneutrale Ziegelindustrie in Deutschland - Ein Weg zur Klimaneutralität der Branche bis 2050- herausgegeben. Die Treibhausgasemissionen der deutschen Ziegelindustrie betragen rund 1,74 Mio. t CO2 im Jahr. Bis zum Jahr 2050 soll das Ziel der Treibhausgasneutralität, mit dann nur noch Emissionen von rund 0,5 Mio. t CO2/a, erreicht sein. Ein großes Problem bei der Herstellung keramischer Erzeugnisse wie Ziegel, Dachziegel, Klinker etc. ist der hohe Energieverbrauch. Der Sekundärenergieträger Wasserstoff kann durch seine CO2-freie Verbrennung sehr gut als Brennstoff eingesetzt werden. Wasserstoff ist ein brennbares Gas das exotherm mit Sauerstoff zu Wasser reagiert. Durch die Veränderung der Gasatmosphäre im Ofen gibt es jedoch Auswirkungen auf die Eigenschaften des Brennproduktes, die keramischen Eigenschaften, die Brennfarbe, die Puzzolanität und schädliche Emissionen im Ofenraum. Schwerpunkt ist es, derzeit noch offene Fragestellungen zum Wasserstoff-verfahren zu lösen, d.h. Kenntnisse über die Reaktionsmechanismen in den Rohstoffen bei wasserdampfhaltiger Atmosphäre zu erlangen und ein Konzept für die Verfahrenstechnik zu entwickeln, mit der es nach dem heutigen Stand der Technik möglich wird, ein solches Brennverfahren sicher und wirtschaftlich in einem kontinuierlichen Prozess einzusetzen. Die Projektergebnisse sollen im Werk Rietberg der Wienerberger GmbH in einem Pilotofen umgesetzt und erprobt werden.

Nutzung von Wasserstoff als klimaneutrales Prozessgas für den Tunnelofenbetrieb in der keramischen Industrie

Das Ziel des Projektes besteht in der Nutzung von Wasserstoff als klimaneutrales Prozessgas für den Tunnelofenbetrieb in der keramischen Industrie. Der Bundesverband der Deutschen Ziegelindustrie e. V. hat im März 2021 eine Roadmap für eine treibhausgasneutrale Ziegelindustrie in Deutschland - Ein Weg zur Klimaneutralität der Branche bis 2050- herausgegeben. Die Treibhausgasemissionen der deutschen Ziegelindustrie betragen rund 1,74 Mio. t CO2 im Jahr. Bis zum Jahr 2050 soll das Ziel der Treibhausgasneutralität, mit dann nur noch Emissionen von rund 0,5 Mio. t CO2/a, erreicht sein. Ein großes Problem bei der Herstellung keramischer Erzeugnisse wie Ziegel, Dachziegel, Klinker etc. ist der hohe Energieverbrauch. Der Sekundärenergieträger Wasserstoff kann durch seine CO2-freie Verbrennung sehr gut als Brennstoff eingesetzt werden. Wasserstoff ist ein brennbares Gas das exotherm mit Sauerstoff zu Wasser reagiert. Durch die Veränderung der Gasatmosphäre im Ofen gibt es jedoch Auswirkungen auf die Eigenschaften des Brennproduktes, die keramischen Eigenschaften, die Brennfarbe, die Puzzolanität und schädliche Emissionen im Ofenraum. Schwerpunkt ist es, derzeit noch offene Fragestellungen zum Wasserstoff-verfahren zu lösen, d.h. Kenntnisse über die Reaktionsmechanismen in den Rohstoffen bei wasserdampfhaltiger Atmosphäre zu erlangen und ein Konzept für die Verfahrenstechnik zu entwickeln, mit der es nach dem heutigen Stand der Technik möglich wird, ein solches Brennverfahren sicher und wirtschaftlich in einem kontinuierlichen Prozess einzusetzen. Die Projektergebnisse sollen im Werk Rietberg der Wienerberger GmbH in einem Pilotofen umgesetzt und erprobt werden.

Nutzung von Wasserstoff als klimaneutrales Prozessgas für den Tunnelofenbetrieb in der keramischen Industrie, Teilvorhaben: Bewertung anhand von Werkstoff- und Produktuntersuchungen

Das Ziel des Projektes besteht in der Nutzung von Wasserstoff als klimaneutrales Prozessgas für den Tunnelofenbetrieb in der keramischen Industrie. Der Bundesverband der Deutschen Ziegelindustrie e. V. hat im März 2021 eine Roadmap für eine treibhausgasneutrale Ziegelindustrie in Deutschland - Ein Weg zur Klimaneutralität der Branche bis 2050- herausgegeben. Die Treibhausgasemissionen der deutschen Ziegelindustrie betragen rund 1,74 Mio. t CO2 im Jahr. Bis zum Jahr 2050 soll das Ziel der Treibhausgasneutralität, mit dann nur noch Emissionen von rund 0,5 Mio. t CO2/a, erreicht sein. Ein großes Problem bei der Herstellung keramischer Erzeugnisse wie Ziegel, Dachziegel, Klinker etc. ist der hohe Energieverbrauch. Der Sekundärenergieträger Wasserstoff kann durch seine CO2-freie Verbrennung sehr gut als Brennstoff eingesetzt werden. Wasserstoff ist ein brennbares Gas das exotherm mit Sauerstoff zu Wasser reagiert. Durch die Veränderung der Gasatmosphäre im Ofen gibt es jedoch Auswirkungen auf die Eigenschaften des Brennproduktes, die keramischen Eigenschaften, die Brennfarbe, die Puzzolanität und schädliche Emissionen im Ofenraum. Schwerpunkt ist es, derzeit noch offene Fragestellungen zum Wasserstoff-verfahren zu lösen, d.h. Kenntnisse über die Reaktionsmechanismen in den Rohstoffen bei wasserdampfhaltiger Atmosphäre zu erlangen und ein Konzept für die Verfahrenstechnik zu entwickeln, mit der es nach dem heutigen Stand der Technik möglich wird, ein solches Brennverfahren sicher und wirtschaftlich in einem kontinuierlichen Prozess einzusetzen. Die Projektergebnisse sollen im Werk Rietberg der Wienerberger GmbH in einem Pilotofen umgesetzt und erprobt werden.

Nutzung von Wasserstoff als klimaneutrales Prozessgas für den Tunnelofenbetrieb in der keramischen Industrie, Teilvorhaben: Umsetzung und Erprobung anhand eines Pilotofens

Das Ziel des Projektes besteht in der Nutzung von Wasserstoff als klimaneutrales Prozessgas für den Tunnelofenbetrieb in der keramischen Industrie. Der Bundesverband der Deutschen Ziegelindustrie e. V. hat im März 2021 eine Roadmap für eine treibhausgasneutrale Ziegelindustrie in Deutschland - Ein Weg zur Klimaneutralität der Branche bis 2050- herausgegeben. Die Treibhausgasemissionen der deutschen Ziegelindustrie betragen rund 1,74 Mio. t CO2 im Jahr. Bis zum Jahr 2050 soll das Ziel der Treibhausgasneutralität, mit dann nur noch Emissionen von rund 0,5 Mio. t CO2/a, erreicht sein. Ein großes Problem bei der Herstellung keramischer Erzeugnisse wie Ziegel, Dachziegel, Klinker etc. ist der hohe Energieverbrauch. Der Sekundärenergieträger Wasserstoff kann durch seine CO2-freie Verbrennung sehr gut als Brennstoff eingesetzt werden. Wasserstoff ist ein brennbares Gas das exotherm mit Sauerstoff zu Wasser reagiert. Durch die Veränderung der Gasatmosphäre im Ofen gibt es jedoch Auswirkungen auf die Eigenschaften des Brennproduktes, die keramischen Eigenschaften, die Brennfarbe, die Puzzolanität und schädliche Emissionen im Ofenraum. Schwerpunkt ist es, derzeit noch offene Fragestellungen zum Wasserstoff-verfahren zu lösen, d.h. Kenntnisse über die Reaktionsmechanismen in den Rohstoffen bei wasserdampfhaltiger Atmosphäre zu erlangen und ein Konzept für die Verfahrenstechnik zu entwickeln, mit der es nach dem heutigen Stand der Technik möglich wird, ein solches Brennverfahren sicher und wirtschaftlich in einem kontinuierlichen Prozess einzusetzen. Die Projektergebnisse sollen im Werk Rietberg der Wienerberger GmbH in einem Pilotofen umgesetzt und erprobt werden.

Untersuchungen zum photochemischen Abbau von gasfoermigen Pestiziden in der Troposphaere

Die Anwendung gasfoermiger Pestizide bringt es mit sich, dass Reste der toxischen Gase in die Troposphaere gelangen. Um entscheiden zu koennen, ob dort eine Anreicherung der Gase erfolgt, sind die chemischen Abbaumechanismen zu erforschen und kinetisch-quantitativ zu bestimmen. Als wesentlichste Abbaureaktion kann die Umsetzung mit OH-Radikalen angesehen werden. Es werden daher primaer die Reaktionen von OH-Radikalen mit HCN, CH3Br, C2H4O sowie PH3 und deren Homologe zu vermessen sein.

Abiotischer Abbau und Diffusion chlorierter Lösemittel in Fe2+-haltigen ungestörten Kalksteinen und Tonsteinen

Langsame Diffusionsprozesse von Schadstoffen in geringdurchlässigen wasser-gesättigten Gesteinen sind ein wesentlicher Grund für den beschränkten Erfolg vieler Untergrundsanierungen. Zu den immer noch wichtigsten Schadstoffen im Grundwasser zählen die chlorierten Lösemittel, die trotz jahrzehntelanger Sanierungsanstrengungen inzwischen lange Fahnen im urbanen Raum ausbilden. Eine langsame Diffusion bedingt aber auch lange Aufenthaltszeiten in der Gesteinsmatrix und damit können langsame abiotische Abbaumechanismen zum Tragen kommen, die auf Fe2+-haltige Mineralien wie z.B. Eisensulfide, Magnetit oder Phyllosilikate zurückgehen, und bei der Einschätzung des natürlichen Abbaupotentials berücksichtigt werden sollten. Ziel dieses Vorhabens ist es daher, die Transformation von Tri- und Perchlorethen während der Diffusion in Gesteinsproben geklüfteter Aquifere und Aquitarde zu quantifizieren. Weil die Reaktionsraten der Ausgangssubstanzen sehr wahrscheinlich zu klein sind, um im Labor gemessen werden zu können, liegt der Fokus auf der Bestimmung von Transformations- und Abbauprodukten (bspw. teil-chlorierte Ethene, Azetylen, Ethan). Die Experimente zur reaktiven Diffusion müssen mit intakten Gesteinsproben durchgeführt werden, da beim Zerkleinern reaktive Mineralober-flächen (z.B. bei Quarz und Pyrit) entstehen könnten, die zur Dehalogenierung der Ausgangssubstanzen führen könnten. Im Unterschied zu früheren Studien sollen hier die für die Reaktivität verantwortlichen spezifischen Minerale in der Gesteins-matrix identifiziert werden. Die Ergebnisse sind nicht nur für das Langzeitverhalten von chlorierten Lösemitteln im Grundwasser, sondern generell auch für die Endlagerung von radioaktiven Abfällen oder die chemische Verwitterung (Oxidation) von reduzierten Gesteinen relevant.

Untersuchungen zu den Abbau-Mechanismen der Sprengstoffe RDX und TNT durch bodenbewohnende Pilze

Sprengstoffe, v.a. TNT und Hexogen (RDX), sind als Kontaminationen in den Boden eingetragen worden und gelangen aufgrund ihrer geringen Wasserlöslichkeit langsam in das Grundwasser. Aufgrund ihrer Umwetlttoxizität ist eine Sanierung kontaminierter Standorte nötig. Bisherige Untersuchungen zum Abbau dieser Xenobiotika haben sich auf die oxidativen Enzyme von Pilzen aus fremden Habitaten (v.a. Weißfäule-Pilzen) konzentriert. Unter Ansatz basiert hingegen auf der Charakterisierung des Abbau-Potentials der nativen Bodenmycota. TNT wird durch Nitratreduktase-Aktivität reduziert und in die Humus-Schicht eingebunden, während das instabile heterozyklische RDX-Moleküle durch Reduktion gespalten und somit mineralisiert wird. TNT-Reduktion und RDX-Abbau werden durch eine große Diversität an bodenbewohnenden Pilzen durchgeführt, v.a. Zygomyceten (Cuninghamella, Absidia) und imperfekte Stadien von Ascomyceten (Penicillium, Trichoderma). Unsere derzeitigen Studien befassen sich mit der Einbringung der RDX-Fragmente in den pilzlichen Sekundärmetabolismus.

Biologischer Abbau technisch relevanter Polymere und synthetischer Polymere

Polymere stellen eine sehr umfangreiche Gruppe chemischer Verbindungen dar, die verschiedenen Stoffklassen angehoeren. Sie kommen in aussergewoehnlich grossen Mengen in unserer Biosphaere vor. Es handelt sich dabei um Substanzen, die aus solchen Molekuelen aufgebaut sind, in denen eine Art oder mehrere Arten von Atomen oder Atomgruppierungen wiederholt aneinandergereiht sind. Polymere sind auch Hauptbestandteil der Kunststoffe. Hierbei handelt es sich um Materialien, deren wesentliche Bestandteile aus makromolekularen organischen Verbindungen bestehen, die synthetisch oder durch Abwandeln von Naturprodukten oder durch biotechnologische Produktion entstehen. Der Abbau von Polymeren in Kunststoffen sowie von natuerlichen und synthetischen Kautschuken durch Bakterien und Pilze ist auf biochemischer und molekularer Ebene bisher wenig erforscht worden. Ein Verstaendnis der ablaufenden Vorgaenge koennte dazu beitragen, biotechnologische Verfahren zu entwickeln, solche polymeren Werkstoffe und Verpackungsmaterialien zu entsorgen oder in wiederverwertbare Substanzen zu ueberfuehren. Fuer wasserloesliche, technisch relevante Polymere ist die Kenntnis und ein Verstaendnis des Abbaus besonders wichtig, weil diese meist nicht rezyklisiert oder deponiert werden koennen. Darueber hinaus tragen Kenntnisse ueber die biologischen Abbaumechanismen dazu bei, polymere Materialien zu entwickeln, die gegenueber einem Abbau inert sind und die fuer besonders langlebige Anwendungen geeignet sind. Die am Abbau von aus Biosynthesen hervorgegangenen Polyamide, Poly(aepfelsaeure) und Naturkautschuk beteiligten Proteine sollen charakterisiert und deren Strukturgene kloniert werden. Daneben zielen Untersuchungen auch auf die Aufklaerung des mikrobiellen Abbaus synthetischer Polymere wie zB Polyethylenglykol, Polyvinylalkohol oder Polyacrylsaeure sowie synthetischer Kautschuk ab.

Hochleistungs-Flüssigchromatograph mit Tandem-Ionenfallen-Flugzeit-Massenspektrometer

Organische Spurenverunreinigungen und insbesondere deren Wirkungen rücken immer mehr in den Focus der Forschung. Rückstände von Pestiziden und Pharmaka werden inzwischen in allen Umweltkompartimenten bis hin zu Nahrungsmitteln, Trinkwasser und auch in menschlichen Geweben gefunden. Die Wirkungen solcher Stoffe sind jedoch bisher nur sehr wenig untersucht. Wirkungen werden auf Ökosystemebene, vor allem bei Wasserorganismen, aber auch bereits auf der Ebene von Vertebraten- und humanen Zellen gefunden. Besonders Besorgnis erregend ist die Feststellung synergistischer Effekte von Stoffen, die einzeln in Konzentrationen deutlich unterhalb der Wirkschwelle vorliegen. Die neu gegründete Fakultät 2 der BTU hat sich deshalb die Erforschung von Umweltverhalten und gesundheitlicher Auswirkungen solcher Verbindungen zum Ziel gesetzt. Ein besonderes Problem bei der Betrachtung von Wirkungen der Spurenstoffe stellen Metabolite und Abbauprodukte dieser Substanzen dar. Von zahlreichen Verbindungen ist das Verhalten in der Umwelt bisher kaum bekannt. Dies liegt häufig auch daran, dass bisher geeignete Analyseverfahren für die Verfolgung von Abbaumechanismen im Spurenbereich fehlen. Der LS 'Biotechnologie der Wasseraufbereitung' beschäftigt sich beispielsweise mit dem Umweltverhalten phosphororganischer Verbindungen. Der gegenwärtig bekannteste Vertreter dieser Stoffgruppe ist das Totalherbizid Glyphosat. Obwohl diese Verbindungen in großen Mengen nicht nur in der Landwirtschaft, sondern auch in der Industrie und vor allem im Haushalt verwendet werden, ist über das Umweltverhalten und vor allem über den Abbau der meisten Substanzen nur sehr wenig bekannt. Dies liegt u.a. an der äußert komplizierten Analytik, die bisher nur über LC/MS/MS oder LC/ICP-MS gelingt und nur von sehr wenigen Laboren in Deutschland beherrscht wird. Die Identifikation vieler Metaboliten scheitert bisher am Fehlen geeigneter Gerätetechnik und Methoden. Das beantragte LC/MS-IT-TOF-Gerät vereinigt erstmals die gute Empfindlichkeit des Ion-Trap mit der Massengenauigkeit der Time-Flow-Technik. Dieses Gerät besitzt somit die besten Voraussetzungen für die Identifikation von Substanzen im Spurenbereich und stellt eine wichtige Ergänzung von bereits vorhandenen Techniken wie GC/MS, LC/MS und NMR, sowie hoch effizienter Methoden und Verfahren zur Anreicherung von organischen Verbindungen dar. Es wird erwartet, dass mit Hilfe der neuen Technik völlig neue Einblicke in Umweltverhalten und Wirkungen von solchen Spurenstoffen gewonnen werden können, die bisher nicht oder nur unzureichend analysiert werden können. Mit der neuen Geräteausstattung werden dabei auch die Umwelt- und Gesundheitsforschung weiter verknüpft.

1 2 3 4 575 76 77