API src

Found 772 results.

Untersuchungen zum photochemischen Abbau von gasfoermigen Pestiziden in der Troposphaere

Die Anwendung gasfoermiger Pestizide bringt es mit sich, dass Reste der toxischen Gase in die Troposphaere gelangen. Um entscheiden zu koennen, ob dort eine Anreicherung der Gase erfolgt, sind die chemischen Abbaumechanismen zu erforschen und kinetisch-quantitativ zu bestimmen. Als wesentlichste Abbaureaktion kann die Umsetzung mit OH-Radikalen angesehen werden. Es werden daher primaer die Reaktionen von OH-Radikalen mit HCN, CH3Br, C2H4O sowie PH3 und deren Homologe zu vermessen sein.

Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: Die Funktion der Hyphosphäre für die Kohlenstoff- und Nährstoffverteilung zwischen Pflanzen und Mikroorganismen in Grünlandböden unterschiedlicher Landnutzungsintensität

Prozesse auf der Mikro-Habitat-Skala könnten Veränderungen der Ökosystemfunktionen in Grünlandböden in größerem Maßstab erklären. In der letzten Phase haben wir gezeigt, dass Pilze wichtige Kohlenstoff- und Nährstofftransmitter zwischen der Mineralosphäre und der Rhizosphäre in Grünlandböden sind. In der nächsten Phase wollen wir die spezifische Bedeutung des Hyphosphäre (wurzelloser Boden um die Hyphen) unter Feldbedingungen mit Hilfe neu entwickelter HYPHOboxen untersuchen. Wir werden die Rhizosphäre und die Detritusphäre von der Hyphosphäre trennen. Mit zwei 13C-Markierungsansätzen, einem mit markiertem CO2 und einem mit markierter Pflanzenstreu, wollen wir untersuchen, ob die Landnutzungsintensität (LUI) den Kohlenstofffluss von Pflanzen in die Rhizo- und Hyphosphäre bzw. den Nährstofffluss von der Hyphosphäre in die Rhizosphäre beeinflusst. Die Frage ist, ob symbiontische arbuskuläre Mykorrhizen (AMF) oder freilebende saprotrophische Pilze die anfängliche C-Aufnahme dominieren werden, indem sie pflanzenbürtigen C verarbeiten und schnell in die Hyphosphäre leiten. Hyphosphären-Mikroorganismen könnten auch als Brücke für Kohlenstoff- und Nährstoffe zwischen der Detritusphäre und der Rhizosphäre dienen. Die neu etablierten Multi-Grünland-Experimente geben uns die Möglichkeit zu untersuchen, inwieweit und wie schnell eine Extensivierung der Grünlandnutzung die Biomasse und Funktion von Bodenmikroorganismen verändert. Die voneinander unabhängige Verringerung der Nährstoffversorgung (Reduzierung der Düngung, direkte Reaktion der Bodenmikroorganismen) oder die verminderte Mahthäufigkeit (Veränderungen des Pflanzeneintrags in den Boden, indirekte Reaktion der Bodenmikroorganismen) in diesem Experiment ermöglicht es, die beiden verschiedenen Mechanismen zu entschlüsseln und somit das mechanistische Verständnis der Reaktion von Grünland Agrarökosystemen auf Veränderungen der Landnutzungsintensität zu verbessern. Das langfristige Monitoring der mikrobiellen Parameter in 150 Grünlandstandorten (in Fortsetzung der Jahre 2011, 2014 und 2017) wird es uns ermöglichen, Effekte von kurzfristigen Veränderungen der Landnutzungsintensität (innerhalb von drei Jahren) von denen der längerfristigen Historie des Standorts (Legacy-Effekt) auf die Funktionen und die Zusammensetzung der mikrobiellen Gemeinschaften zu trennen.

Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: Reaktion von Insekten auf Lücken im Wald - von der Gemeinschaft zu zellulären Prozessen

Das Kronendach beeinflusst massive die mikroklimatischen Bedingungen eines Waldes und bestimmt damit die lokalen Habitat-Bedingungen für ektotherme Arten, die auf kleiner Skala agieren. In Mitteleuropa sind Waldarten mit Bindung an lichte Wälder aktuell stärker gefährdet als Arten der dichten Wälder. Dies spiegelt den Vorratsanstieg in den letzten hundert Jahren wider. Heutzutage wird das Kronendach durch natürliche Störungen aber auch durch Holznutzung beeinflusst. Die Differenzen im Mikroklima zwischen geschlossenen und offenen Waldbeständen können dabei größer sein als der aktuell beobachtete Anstieg der Temperatur durch die globale Erwärmung. Daher ist ein besseres Verständnis der Mechanismen hinter der Reaktion von Arten auf das Mikroklima sowohl für forstliches als auch naturschutzorientiertes Management von Bedeutung. In der Makroökologie hat die Reaktion von Arten auf Klimagradienten eine lange Tradition. Einige konsistente Muster haben zu ökogeographischen Regeln geführt. Diese sagen z.B. vorher wie die Antwort innerhalb und zwischen Arten auf sinkende Temperaturen, Feuchte oder generell auf harsche Umweltbedingungen aussieht. Wir beabsichtigen hier die Antwort dreier Insektengruppen, Totholzkäfer, Nachtschmetterlinge und Wanzen auf die Variation im Mikroklima unter Kontrolle der Ressourcenverfügbarkeit (Pflanzen, Totholz) zu untersuchen. Dazu werden wir zunächst einen bestehenden Datensatz aus 5 Waldgebieten (inklusive der Exploratorien) auswerten. Dabei werden wir auf drei Eigenschaften fokussieren, die sich in der Makroökologie als sensitiv erwiesen haben: Körpergröße, Flügel-Morphologie und Farbe. Im zweiten Schritt werden wir die Vorhersagen aus den Modellen in Schritt 1 mit neuen Daten aus dem Wald-Experiment der Exploratorien validieren. Im dritten Schritt werden wir anhand der Individuen im Experiment innerartliche Eigenschaft-Reaktionen ausgewählter Arten untersuchen. Im vierten Schritt werden wir Transkriptom-Sequenzierung an vier ausgewählten Arten durchführen, die experimentell in den Lücken und unter dem Kronendach exponiert werden. Damit versuchen wir transkriptionale Signaturen als Reaktion auf das Mikroklima zu identifizieren. Unsere Analysen zielen darauf ab die Mechanismen hinter den Reaktionen von Arten und Artengemeinschaften auf lichte und dichte Wälder besser zu verstehen.

Co-Elektrolysetechnologien im mittleren Temperaturbereich von 200-400 °C zur Herstellung strombasierter Kraftstoffe aus Kohlendioxid und Wasserdampf in einem Prozessschritt (MEDTEMPELEKT)

Die Bildung von Peroxyacetylnitrat (PAN) im Sommersmog

Peroxyacetyl nitrate (PAN) is an important component of summer smog. It can cause eye irritation and plant damage. PAN is also a temporary reservoir for reactive intermediates involved in summer smog formation. Therefore it is essential to know the kinetics and mechanism of its formation and destruction for inclusion in models of atmospheric chemistry. PAN is formed as a secondary product following the OH radical initiated photo-oxidation of acetaldehyde, which leads to the generation of peroxyacetyl radicals. Peroxyacetyl radicals may either react with NO2 to generate PAN or with NO to form radical products and CO2. The aims of this project are: (i) to determine the branching ratio between the two reactions, (ii) to determine the rate and mechanism of the thermal decomposition of PAN analogues.

Climate effects on woody debris on and in Alpine soils

H2Giga: QT1.1 - Projektverbund zur optimierten Materialentwicklung für die technische H2-Erzeugung durch verbesserte Sauerstoffelektroden, PrometH2eus: Projektverbund zur optimierten Materialentwicklung für die technische H2-Erzeugung durch verbesserte Sauerstoffelektroden

BAWiBa - Batterie-Analytik von der Wiege bis zur Bahre

Nutzung von Wasserstoff als klimaneutrales Prozessgas für den Tunnelofenbetrieb in der keramischen Industrie

Das Ziel des Projektes besteht in der Nutzung von Wasserstoff als klimaneutrales Prozessgas für den Tunnelofenbetrieb in der keramischen Industrie. Der Bundesverband der Deutschen Ziegelindustrie e. V. hat im März 2021 eine Roadmap für eine treibhausgasneutrale Ziegelindustrie in Deutschland - Ein Weg zur Klimaneutralität der Branche bis 2050- herausgegeben. Die Treibhausgasemissionen der deutschen Ziegelindustrie betragen rund 1,74 Mio. t CO2 im Jahr. Bis zum Jahr 2050 soll das Ziel der Treibhausgasneutralität, mit dann nur noch Emissionen von rund 0,5 Mio. t CO2/a, erreicht sein. Ein großes Problem bei der Herstellung keramischer Erzeugnisse wie Ziegel, Dachziegel, Klinker etc. ist der hohe Energieverbrauch. Der Sekundärenergieträger Wasserstoff kann durch seine CO2-freie Verbrennung sehr gut als Brennstoff eingesetzt werden. Wasserstoff ist ein brennbares Gas das exotherm mit Sauerstoff zu Wasser reagiert. Durch die Veränderung der Gasatmosphäre im Ofen gibt es jedoch Auswirkungen auf die Eigenschaften des Brennproduktes, die keramischen Eigenschaften, die Brennfarbe, die Puzzolanität und schädliche Emissionen im Ofenraum. Schwerpunkt ist es, derzeit noch offene Fragestellungen zum Wasserstoff-verfahren zu lösen, d.h. Kenntnisse über die Reaktionsmechanismen in den Rohstoffen bei wasserdampfhaltiger Atmosphäre zu erlangen und ein Konzept für die Verfahrenstechnik zu entwickeln, mit der es nach dem heutigen Stand der Technik möglich wird, ein solches Brennverfahren sicher und wirtschaftlich in einem kontinuierlichen Prozess einzusetzen. Die Projektergebnisse sollen im Werk Rietberg der Wienerberger GmbH in einem Pilotofen umgesetzt und erprobt werden.

Nutzung von Wasserstoff als klimaneutrales Prozessgas für den Tunnelofenbetrieb in der keramischen Industrie, Teilvorhaben: Entwicklung des klimaneutralen Brennverfahrens

Das Ziel des Projektes besteht in der Nutzung von Wasserstoff als klimaneutrales Prozessgas für den Tunnelofenbetrieb in der keramischen Industrie. Der Bundesverband der Deutschen Ziegelindustrie e. V. hat im März 2021 eine Roadmap für eine treibhausgasneutrale Ziegelindustrie in Deutschland - Ein Weg zur Klimaneutralität der Branche bis 2050- herausgegeben. Die Treibhausgasemissionen der deutschen Ziegelindustrie betragen rund 1,74 Mio. t CO2 im Jahr. Bis zum Jahr 2050 soll das Ziel der Treibhausgasneutralität, mit dann nur noch Emissionen von rund 0,5 Mio. t CO2/a, erreicht sein. Ein großes Problem bei der Herstellung keramischer Erzeugnisse wie Ziegel, Dachziegel, Klinker etc. ist der hohe Energieverbrauch. Der Sekundärenergieträger Wasserstoff kann durch seine CO2-freie Verbrennung sehr gut als Brennstoff eingesetzt werden. Wasserstoff ist ein brennbares Gas das exotherm mit Sauerstoff zu Wasser reagiert. Durch die Veränderung der Gasatmosphäre im Ofen gibt es jedoch Auswirkungen auf die Eigenschaften des Brennproduktes, die keramischen Eigenschaften, die Brennfarbe, die Puzzolanität und schädliche Emissionen im Ofenraum. Schwerpunkt ist es, derzeit noch offene Fragestellungen zum Wasserstoff-verfahren zu lösen, d.h. Kenntnisse über die Reaktionsmechanismen in den Rohstoffen bei wasserdampfhaltiger Atmosphäre zu erlangen und ein Konzept für die Verfahrenstechnik zu entwickeln, mit der es nach dem heutigen Stand der Technik möglich wird, ein solches Brennverfahren sicher und wirtschaftlich in einem kontinuierlichen Prozess einzusetzen. Die Projektergebnisse sollen im Werk Rietberg der Wienerberger GmbH in einem Pilotofen umgesetzt und erprobt werden.

1 2 3 4 576 77 78