API src

Found 193 results.

CLEAR - Climate and Environment in Alpine Regions

Das Projekt "CLEAR - Climate and Environment in Alpine Regions" wird vom Umweltbundesamt gefördert und von Eawag - Das Wasserforschungsinstitut des ETH-Bereichs durchgeführt. Das Projekt ist eine transdisziplinäre Untersuchung über die Konsequenzen der mit dem Klimawandel verbundenen Änderungen in der Alpenregion. Das Projekt verbindet Forschungsgebiete aus den technischen, ökologischen und sozialen Wissenschaften. Dazu ist es in folgende fünf Projektgruppen unterteilt, wobei die ersten vier disziplinär arbeiten, während die fünfte mit der integrierten Bewertung befasst ist: 1. Schnittstelle zwischen Atmosphäre und Hydrosphäre; 2. Schnittstelle zwischen Klima der Vergangenheit und der Gegenwart; 3. Schnittstelle zwischen Klima und Ökologie; 4. Schnittstelle zwischen Klima und Ökonomie; 5. integrierte Bewertung mit Modellwerkzeugen, Fokusgruppen und Politikoptionen. Ziele: Ziele des Projekts sind 1. die Schaffung eines besseren Verständnis der mit dem Klimawandel verbundenen Aspekte, insbesondere im Hinblick auf ihre Komplexität und Unsicherheit, 2. die Bereitstellung einer Vielzahl von neuesten Modellwerkzeugen, 3. die Entwicklung einer umfassenden Methodik für eine integrierte Klimarisikobewertung durch die Nutzung von Fokusgruppen und Computermodellen und 4. die Bereitstellung politikrelevanter Informationen über Strategien und Mechanismen, um Maßnahmen für die Implementation in die Politiken zu testen. KLIMASZENARIO Es werden regionale Klimamodelle zur Untersuchung regionaler Klimavorhersagbarkeit und zur Sensitivität hinsichtlich der globalen Erwärmungsprozesse benutzt, die als ein dynamisches Werkzeug zur Evaluation möglicher 2xCO2-Szenarien für die Alpenregion dienen. Bioklimatische Szenarien werden für die Analyse der Waldökosysteme erstellt. Parameter: physikalische Aspekte des Klimasystems inklusive atmosphärischer, hydrologischer und ozeanographischer Aspekte räumlicher Bezug: Alpenregion (Schweiz) Zeithorizont: 2100 KLIMAFOLGEN Es werden die Folgen für Waldökosysteme, für Pflanzenarten und für den Boden in der sub-alpinen Region betrachtet. Dazu werden die Sensitivitäten der Ökosysteme und ihre Reaktionen auf den Klimawandel untersucht. Ökonomische Folgen für Landwirtschaft und Tourismus und ökonomische Chancen für die Industrie durch Technologiewandel, die aus steigende Energiekosten oder Änderungen im Verbraucherverhalten resultieren, werden ebenfalls analysiert. Sektoren und Handlungsfelder: Biodiversität und Naturschutz, Politik, Kommunikation, Wissenschaft, Umweltschutz, Landwirtschaft, Tourismus, Energiewirtschaft, Bodenschutz ANPASSUNGSMASSNAHMEN Hintergrund und Ziele: Es sollen relevante Informationen über Anpassungsmaßnahmen für die Politik bereitgestellt werden. Dieses soll durch geeignete Modelle, die auch von Nichtwissenschaftlern nutzbar sind, eine verbesserte Risikokommunikation, die Erhöhung der Akzeptanz von Maßnahmen, die Entwicklung neuer Politikwerkzeuge zur Partizipation der Öffentlichkeit und einen effektiven Mitteleinsatz in der Forschungspolitik erreicht werden. Weiterhin soll die Öffentlichkeit über Klimawandel und -folgen besser informiert werden. usw.

Teilprojekt TUHH/SPE

Das Projekt "Teilprojekt TUHH/SPE" wird vom Umweltbundesamt gefördert und von Technische Universität Hamburg-Harburg, Institut für Feststoffverfahrenstechnik und Partikeltechnologie V-3 durchgeführt. Im Rahmen des Gesamtziels, der Entwicklung eines Verfahrens zur Chemical Looping Combustion (CLC) von festen Brennstoffen, sollen im vorliegenden Projekt hauptsächlich zwei Fragestellungen untersucht werden. Das erste Ziel ist es, einen Prozess zu entwickeln, der es erlaubt, die Sauerststoffträgerpartikeln möglichst vollständig von den Brennstoffpartikeln zu trennen, wobei gleichzeitig verhindert werden muss, dass Luft, bzw. Stickstoffhaltige Abgase aus dem Oxydationsreaktor in den Brennstoffreaktor gelangen. Darüber hinaus muss gewährleistet werden, dass die CO-Emissionenn bestimmte Grenzwerte nicht überschreiten. Das zweite Ziel besteht darin, einen synthetischen Sauerstoffträger zu entwickeln, der einerseits hinsichtlich Aktivität und Umsatz optimiert ist und andererseits eine ausreichende Bruch- und Abriebsfestigkeit aufweist. Zur Erreichung des Ziels sollen zunächst Versuche im Labor durchgeführt werden. Hier werden die Oxydations- und Reduktionskinetiken unterschiedlicher Sauerstoffträger untersucht und die Abriebsfestigkeit gemessen. Parallel hierzu wird ein Simulationsmodell des CLC-Prozesses auf der Basis des Simulationspaketes SolidSim entwickelt, das zur Planung einer optimalen Verschaltungsvariante benutzt werden soll. Darauf basierend sollen dann bereits existierende Wirbelschichtfeuerungsanlagen mit neu zu bauenden Anlagenkomponenten zur CLC-Anlage verschaltet werden, an der dann Versuche im Technikumsmaßstab durchgeführt werden sollen.

Der Verbleib von Carbonylradikalen (R-C=O) in der Atmosphaere

Das Projekt "Der Verbleib von Carbonylradikalen (R-C=O) in der Atmosphaere" wird vom Umweltbundesamt gefördert und von Universität Stuttgart, Institut für Physikalische Chemie durchgeführt. In addition to peroxy and alkoxy radicals, carbonyl (ie substituted acetyl) radicals (R-C=O) are important short-lived radical intermediates in the atmospheric degradation of volatile organic compounds. In order to supply atmospheric modellers with the necessary input data, rate parameters for reactions of these radicals are needed. The principal reaction pathways of carbonyl radicals are either thermal decomposition or addition of O2, leading to different product distributions and thus affecting the amount of ozone formation. In this project, state-of-the-art experimental methods are applied to quantify the branching ratio of these two pathways for a number of atmospherically important carbonyl radicals. Since thermal decomposition of R-CO generally exhibits much stronger temperature dependence as compared to O2 addition, the branching ratio of these pathways is also strongly temperature dependent. For this reason, variable temperature is an important feature of the planned experiments. The addition pathway leads to substituted acetylperoxy radicals. For a small number of these radicals, reaction rate constants for their reactions with NO, NO2, and HO2 will also be determined. The effect on atmospheric chemistry of the rate parameters coming out of this project will be tested by sophisticated box model calculations. The most important radical reactions will then be implemented into a new regional atmospheric chemistry model (RACM) in order to give an account of the influence of these R-CO radicals on atmospheric chemistry. It is expected that inclusion of the experimental data from this project into atmospheric chemistry models will considerably improve the predictions about radical balances and ozone formation in the troposphere which form the basis for future ozone control strategies.

Sub project: Reactive transport in the dynamic capillary fringe

Das Projekt "Sub project: Reactive transport in the dynamic capillary fringe" wird vom Umweltbundesamt gefördert und von Universität Tübingen, Zentrum für Angewandte Geowissenschaften, Arbeitsgruppe Hydrogeochemie durchgeführt. Transport of volatile organic contaminants (VOC) and soil gases (e.g. O2, CO2) across the capillary fringe (CF) depends on the morphology and the dynamics of the groundwater table. It is widely hypothesized that the CF is a highly bioactive region, where biodegradation of organic compounds or pollutants takes place. Overall biodegradation rates depend for example on the supply of electron acceptors such as oxygen, which is limited by diffusion and dispersion in the CF. The work in the first phase of the research unit focused on tracer techniques (dye tracers) and mass transfer of oxygen by transverse hydrodynamic dispersion as well as gas partitioning between the aqueous and the gaseous phase due to air entrapment. Overall objectives were the quantification of the basic mass transfer parameters in the CF and the investigation of the impact of transient conditions and heterogeneities. In the second period, the investigations will be extended to abiotic, rapid model reactions (e.g. consumption of oxygen by reducing species in groundwater). Goals of this proposal are - to quantify the basic mass transfer parameters in the CF for reactive systems under transient conditions and - to investigate the impact of coarse-grained inclusions (heterogeneities) in the porous medium packing on overall mass transfer and reaction rates.Flow-through experiments and numerical modeling (in collaboration with SP 2, Bastian/Ippisch) will be carried out in order to study example reactions in homogeneous and complex heterogeneous porous media by high-resolution spatial and temporal analysis.

Teilprojekt 4

Das Projekt "Teilprojekt 4" wird vom Umweltbundesamt gefördert und von Evonik Industries AG durchgeführt. Das Vorhabensziel besteht in der Entwicklung eines auf photokatalytischer Alkandehydrierung beruhenden Verfahrens für die Herstellung von Aldehyden. Dadurch sollen CO2 stofflich genutzt und Alkane einer chemischen Verwendung zugänglich gemacht werden. Im Rahmen des angestrebten vorwettbewerblichen Projektes sollen insbesondere die technische und wirtschaftliche Machbarkeit erforscht sowie das Ausmaß der ökologischen Nachhaltigkeit ermittelt werden. Die Partner LIKAT und Universität Bayreuth entwickeln, immobilisieren und testen neue Katalysatoren für die photokatalytische Dehydrierung bzw. die Direktcarbonylierung von Alkanen und die Hydroformylierung von Alkenen mit CO2. Ausgehend von kinetischen Untersuchungen dieser Projektpartner wird von Evonik Degussa GmbH ein Reaktionsmodell erstellt, welches die Basis für eine Reaktorauslegung im technischen Maßstab schaffen soll. Darüber hinaus sollen die notwendigen Prozesse zur Abtrennung der Wertprodukte H2 und 1-Buten sowie Valeraldehyd aus den Reaktionsgemischen modelliert und energetisch bewertet werden. Die Zusammenstellung von rechnerischen Modulen aus der Reaktormodellierung und der Trenntechnik und der Abgleich mit den kinetischen Untersuchungen liefert eine quantitative Beschreibung des Gesamtverfahrens. Begleitend sollen Life-Cycle-Assessments für die zu entwickelnden Verfahren durchgeführt sowie eine Potentialanalyse unter Berücksichtigung ökonomischer und politischer Rahmenbedingungen erstellt werden.

Teilprojekt: Die Rolle von Hyperthermie im Massenaussterben an der Perm/Trias-Grenze

Das Projekt "Teilprojekt: Die Rolle von Hyperthermie im Massenaussterben an der Perm/Trias-Grenze" wird vom Umweltbundesamt gefördert und von Museum für Naturkunde - Leibniz-Institut für Evolutions- und Biodiversitätsforschung durchgeführt. Wir wollen die Rolle von Hyperthermie im Massenaussterben an der Perm/Trias-Grenze, der größten biotischen Krise in der Erdgeschichte, verstehen. Trotz ihrer erheblichen Bedeutung für die Evolution des Lebens werden die auslösenden Mechanismen für diese Krise noch immer sehr kontrovers diskutiert. Dieses Massenaussterben ist das gravierendste vergangene Beispiel einer durch Klimaveränderungen, besonders durch globale Erwärmung, ausgelöste Krise. Sie kann daher als ein Analogon für die Reaktion der Biodiversität auf die zukünftige anthropogene Klimaänderung angesehen werden. Wir schlagen hier ein Forschungsprojekt vor, in welchem die Konsequenzen von Stress durch Erwärmung während des end-Permischen Massenaussterbens und der Erholung in der frühen Trias untersucht wird. Wir wählen die Ostracoden als Modell-Organismen für simultane Untersuchungen ihrer Evolutionsgeschichte und ihrer Reaktion auf Klimaveränderungen (besonders hinsichtlich der Erwärmung am Perm/Trias-Grenzintervall). Die zu untersuchenden Aufschlüsse liegen im Nordwest-Iran (Region von Julfa), Zentraliran (Region von Abadeh) und dem Zagros-Gebirge (Region von Esfahan); diese Regionen repräsentieren Tiefschelf- bis Flachwasser-Habitate. Unsere Studie wird die Untersuchung von Isotopengeochemie (Analysen von delta13C und delta18O) unter Anwendung der SIMS-Technologie von Ostracodenschalen beinhalten. Außerdem werden die Ostracoden-Vergesellschaftungen hinsichtlich ihrer taxonomischen Diversität, morphologischen Disparität, Grad des Endemismus, Veränderungen in der Größe der Individuen usw. untersucht.

Entwicklung von Modellen fuer die Aerosol- und Wolkenchemie der Troposphaere

Das Projekt "Entwicklung von Modellen fuer die Aerosol- und Wolkenchemie der Troposphaere" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Troposphärenforschung e.V. durchgeführt. The proposed project is devoted to the development of adequate physico-chemical models for the description of heterogeneous and aqueous phase chemical processes taking place in the troposphere. The systems to be described by the model will be limited to aqueous phase systems, ie the droplets of clouds, fog and rain and the aqueous (wet) aerosol. The model development to be performed in the project will be limited to the so-called 'tropospheric aqueous phase' which includes the aqueous particles dispersed in air. Reactions occuring on solids (ie direct gas-solid interactions) will not be treated in the project. The objectives of this proposal are: 1) To develop an extensive aqueous phase chemical mechanism, including all relevant processes, that will be based on an evaluation of current scientific knowledge ('the overall mechanism'). In particular, the model will include an extended description of organic chemistry and radical processes, 2) To apply tools of sensitivity analysis to the above mechanism in order to check which processes are of the highest importance and also which classes of reaction do not contribute significantly to chemical conversions in the tropospheric aqueous phase, 3) To couple the overall aqueous phase mechanism with an existing and well accepted gas phase chemical RADM2 mechanism, 4) To develop a kinetic description of transport in the aqueous phase, the gas phase and a cross the gas/liquid interface and to use this description in the model, 5) To include heterogeneous gas/aqueous processes in the model and to describe them adequately, 6) To develop a reduced chemical mechanism which may in the future be applied in larger (global) models, 7) To couple the model to a simple description of cloud dynamics for a stratocumulus cloud and to couple the model to a simple wet aerosol model, 8) To introduce into the model emission scenarios which are typical for Europe, ie a marine, a continental polluted and a continental rural scenario, 9) To perform a limited set of laboratory studies on reaction kinetics and uptake coefficients on systems which are of central importance for the overall model but for which data either do not exist or are inconclusive

Diffusion, Sorption and Reactions in Micro- and Mesopores

Das Projekt "Diffusion, Sorption and Reactions in Micro- and Mesopores" wird vom Umweltbundesamt gefördert und von Technische Universität Darmstadt, Institut für Angewandte Geowissenschaften durchgeführt. Diffusion in micro- and mesopores is in many cases limiting for mass transfer and reaction rates in porous natural or synthetic materials. Accessibility and reactivity of micro- and mesopore domains should be a function of the pore sizes as well as pore polarities. In natural porous media both parameters can be assumed to show a distribution, depending on the type of the porous material. Moreover, educts and products of a reaction may show different polarities resulting in a distribution of diffusivities with an impact on overall reaction rates. The objective of this work is the synthesis and characterization of well-defined porous materials with different pore sizes and polarities containing catalytically active sites, and study their accessibility with various methods. The catalytic hydrodehalogenation of chlorinated hydrocarbons (trichloroethylene (TCE) and chlorobenzene) and the hydrogenation of benzene serve as model reactions resulting in different product distributions in terms of polarity and molecular size. The use of well-characterized model solids should allow to relate diffusion rates and reactivities of the different materials to pore sizes and pore polarities. It is expected that the results will lead to a better understanding of naturally occurring abiotic degradation processes in water saturated natural porous media. Results could also have an impact on the development of tailired porous catalytic acti materials for the clean up of ground water contaminated with organic hydrcarbon compunds.

Uebung zum Ringvergleich von Peroxyradikalen

Das Projekt "Uebung zum Ringvergleich von Peroxyradikalen" wird vom Umweltbundesamt gefördert und von Forschungszentrum Jülich GmbH, Institut für Chemie und Dynamik der Geosphäre durchgeführt. PRICE II is a formal laboratory intercomparison of techniques to measure atmospheric concentrations of peroxy radicals (HO2 and RO2). It follows up the intercalibration exercise PRICE performed in 1994 as part of OCTA. The project joins the expertise of eight laboratories from four European and two North American countries. The main objectives of the project are: - To characterise and compare existing calibration methods for peroxy radicals. - To determine the relative response of the Chemical Amplifier for HO2 and different organic peroxy radicals (RO2). - To develop a common model of chemical amplifiers based on the laboratory results. - To define the optimum operating conditions for chemical amplifiers with respect to HO2 and RO2 detection.

Teilprojekt A

Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von Technische Universität Bergakademie Freiberg, Institut für Organische Chemie durchgeführt. Nach REACH müssen Industriechemikalien mit einem Marktvolumen größer als 1 t/a auf ihr Hautsensibilisierungspotential beurteilt werden, wofür als Tierversuch der Lokale Lymphknoten-Assay (LLNA) vorgesehen ist. Zur Reduzierung dieser Tierversuche soll eine Chemoassay-Strategie entwickelt werden, welche für elektrophile sowie für pro-elektrophile Chemikalien eine Unterscheidung zwischen nicht-hautsensibilisierend und potenziell hautsensibilisierend ermöglicht und zudem für letztgenannte eine reaktivitätsbasierte Prognose der zu erwartenden LLNA-Wirkkategorie erlaubt. Ein Primärschritt der Hautsensibilisierung ist die chemische Reaktion des Fremdstoffs mit nukleophilen Gruppen von Proteinen. Das Potenzial hierfür soll anhand der elektrophilen Reaktivität gegenüber Modell-Nukleophil-Systemen beurteilt werden. Zur Entwicklung der Chemoassay-Teststrategie werden Haptene und Pro-Haptene mit bereits vorhandenen LLNA-Daten ausgewählt, welche alle fünf toxizitätsrelevanten Reaktionsmechanismen und die fünfstufige LLNA-Sensibilisierungsskala abdecken. Die vorgesehenen Untersuchungen umfassen Bestimmungen der Reaktivität gegenüber Modell-Nukleophilen und Modell-Peptiden/Proteinen sowie die Analyse der Adduktmuster ausgewählter Elektrophil-Nukleophil/Peptid/Protein-Reaktionen mittels NMR und Massenspektrometrie. Zusätzlich werden für die Pro-Haptene Analysen zur abiotischen und biotischen Transformation sowie zur Struktur der dabei entstandenen Metaboliten durchgeführt.

1 2 3 4 518 19 20