API src

Found 1159 results.

Related terms

Esfandyar Ventures One SARL, Errichtung und Betrieb einer Notstromdieselmotorenanlage zur Sicherstellung der Elektrizitätsversorgung eines Rechenzentrums bei Ausfall der öffentlichen Stromversorgung, RPDA - Dez. IV/F 43.2-53 u 12.01/20-2023/1

Die Esfandyar Ventures One SARL, Avenue J. F. Kennedy 46A L-1855 Luxembourg hat einen Antrag auf Erteilung einer Genehmigung zur Errichtung und zum Betrieb der Notstromdieselmotoranlage eines noch zu errichtendes Rechenzentrums FRA03 südlich des Industrieparks Höchst gestellt. Vorgesehen ist die Errichtung und der Be-trieb von 59 Netzersatzanlagen (NEA) zur Notstromversorgung des Rechenzentrums sowie eine NEA zur Sicherheitsstromversorgung (Life Safety Generator) mit einer Feuerungswärmeleistung von insgesamt ca. 392 MW. Als Brennstoff wird dafür Die-selkraftstoff eingesetzt werden. Die NEA dienen der Sicherstellung einer unterbre-chungsfreien Stromversorgung des Rechenzentrums im Falle eines Stromausfalls. Für die Notstromversorgung sind beantragt:  59 Notstromaggregate (Motortyp MTU20V4000 G74F, CAT175-16, CAT 3516E oder Kohler KD3100) jeweils mit Kraftstoff-Tagestanks mit 800 l Volumen, Mo-torkühlsystemen und SCR-Systemen mit Urea-Tagestanks mit 1.500 l Volumen  Ein Notstromaggregat für die Sicherheitsstromversorgung des Gebäudes (Mo-tortyp MTU 18V2000 G26F oder CAT 3412C-C18) mit Kraftstoff-Tagestank mit 800 l Volumen, Motorkühlsystem und SCR-System mit Urea-Tagestank mit 1.500 l Volumen  Zwei Harnstofflagertanks mit einem Volumen von jeweils 40 m3  16 Sammel-Abgaskamine Für die Brennstoffversorgung sind beantragt:  20 unterirdische Kraftstofflagertanks mit einem Volumen von jeweils 100 m3 mit jeweils einer Kraftstofftauchpumpe  Zwei Kraftstoffpflegeanlagen  Zwei Abfüllplätze für Kraftstoff und Harnstoff  zugehörige Rohrleitungen Für die Anlage ist folgender Standort vorgesehen: Frankfurt am Main Gemarkung: Schwanheim, Flur: 30, Flurstück: 233/5, Rechts-/Hochwert: 32U 467195 / 5547455. Die Notstromdieselmotoranlage soll baldmöglichst in Betrieb genommen werden. Das Vorhaben bedarf nach § 4 des Bundes-Immissionsschutzgesetzes (BImSchG) in Verbindung mit Nr. 1.1 des Anhangs 1 der 4. Verordnung über genehmigungsbedürftige Anlagen (4. BImSchV) der Genehmigung durch das Regierungspräsidium Darmstadt.

Interview about the 35th GRDC anniversary on the BfG website

Question: Dr Mischel, why was GRDC set up, and how long has it been hosted by BfG? Dr Simon Mischel: GRDC has been hosted by BfG since 1988. However, its origins lie in the first Global Atmospheric Research Programme, for which the WMO collected discharge data in the early 1980s. In actual fact, the primary aim of this programme was to collect physical parameters to gain a better understanding of processes in the atmosphere. However, it quickly became clear that discharge data plays a huge role in improving understanding of the climate. To begin with, this initial data set, which forms the core of GRDC, was hosted by LMU Munich. To establish a permanent service provision, the WMO mandated BfG, a departmental research institute of the German Federal Government, to set up GRDC. Finally, on 14 November 1988, the Global Runoff Data Centre was officially established at BfG in Koblenz under the auspices of the WMO. What is the main function of GRDC, and where does the data come from? Ever since it was set up, the core function of GRDC has been to collect and maintain historical river discharge data and make this available for international research projects. The data comes primarily from the national hydrological services in the WMO member states. Data is transmitted on a voluntary basis, but various WMO resolutions encourage the member states to supply data to GRDC. Support from the WMO is therefore hugely important to us. Once we’ve received the data, we check it, convert it into a standardised format and add it to our database. Users anywhere in the world can then download the data via the GRDC data portal. We have been working successfully in this way – as a facilitator between producers and us-ers of hydrological data – for some 35 years. We have also been a key partner in a number of data collection and data management projects. Why is discharge data important, and for which studies is it used? The “discharge” hydrological parameter is an important variable, both in the global water cycle and for water resource management. Moreover, discharge is also a relevant climate variable, since the flow of freshwater into oceans has an impact on temperature distribution, the salt content of the seas and oceanographic circulation systems. According to our statistics, over the last two years, GRDC data was requested by users from more than 130 countries. Around three quarters of all the associated studies are connected to the climate or hydrometeorology, and the data is frequently used to calibrate and validate numerical models, such as in relation to hydrological drought and flood monitoring services. Users range from students who need the data for a thesis or dissertation to international research programmes and organisations conducting global studies. GRDC itself is also involved in some of these studies, such as the WMO “State of Global Water Resources” report and the “Global Climate Observing System (GCOS)” report, the findings of which directly inform UN Climate Change Conferences. How good is the data coverage, and in what resolution is the data available? GRDC hosts the most extensive global database of quality-controlled discharge data – year-book data or historical data. We collect only daily and monthly mean values – no unverified real-time data is collected. We currently have discharge data from approximately 10,700 stations in 160 countries in the database. Most of these stations are in Europe and North America, and the average time-record length is 40 years. The longest time record, which originates from the Dresden station on the Elbe, dates back to 1806. It is important that we map data sets that are as long and complete as possible for climate research and hydrological modelling. We particularly include data from stations that reflect the hydrology of a river or region. Stations located in the estuaries of major rivers are also important for better quantifying the volume of freshwater entering our oceans. Stations where there is minimal human influence are also valuable and attract a great deal of interest in relation to global change and climate change. Discharge is just one of many important hydrological parameters. Are there other global data centres? GRDC works in close collaboration with the International Centre for Water Resources and Global Change (ICWRGC), which is based at BfG. ICWRGC also hosts two other global water data centres, namely the GEMS/Water Data Centre (GWDC), which collects water quality data on behalf of the United Nations Environment Programme, and the International Soil Moisture Network ISMN. In Germany, there is also the Global Precipitation Climatology Centre (GPCC), which is operated by Germany’s National Meteorological Service DWD. World-wide, there are also other global water data centres, which are collectively responsible for collecting different parameters relating to the hydrological cycle (e.g. for groundwater, isotopes, lake observations and glacier observations). These are operated by other nations and under the auspices of various organisations. They are important partner data centres for us, and we work in close collaboration with them in the context of the Global Terrestrial Network – Hydrology (GTN-H), which is hosted in the ICWRGC under a mandate from the WMO. The GTN-H is a Global Climate Observing System (GCOS) programme. In this international network, we are a strong partner in the UN-Water “family” and contribute towards United Nations reporting. As the new head of GRDC, which challenges are you looking forward to? As the new head, I am naturally keen to successfully carry forward the GRDC brand – a brand that is held in high esteem all over the world – and to continue looking after and expanding existing collaborations. To give you some examples, these particularly include contact with our users, data suppliers, the WMO as patron, ICWRGC as an international partner at BfG and our partner data centres. However, as a team, we are, of course, also aware of the very fast technical progress that is being made in relation to data and digitalisation. For example, the global call for open and large datasets that comply with the FAIR (findable, accessible, interoperable, reusable) principles is constantly growing. We are therefore already working, step by step, on making GRDC “fair”. This includes use of free software and offering our users access to data via data repositories and programming interfaces. A recent milestone in this respect is the publication of the Caravan dataset. With this, we can offer researchers a partial dataset of free GRDC stations, including meteorological data and river basin attributes. Our aim is to develop GRDC as a digital service provider for global discharge data and operate it at BfG on the basis of reliable data infrastructure.

Timeline - Land Surface Temperature (Mean) Level 3 - Europe, Monthly

This dataset provides monthly maximum Land Surface Temperature (LST) values over Europe, derived from 1-km AVHRR observations. The data is generated by DLR and provided in the framework of the TIMELINE project. LST values are retrieved using physically-based split- and mono-window algorithms and corrected for atmospheric influences and surface emissivity. Only cloud-free observations with sensor view angles below 50 degrees are used. Due to reliance on infrared observations, data may be limited under persistent cloud cover. To ensure temporal consistency across sensors and overpass times, an orbit drift correction method was applied. This method harmonizes LST values to a fixed reference time of 13:00 local solar time, approximating the daily maximum temperature. The dataset is gridded in a 1-km LAEA ETRS89 projection. The product is provided in four tiles, covering the extent of the European Environmental Agency (EEA) reference grid, which includes the area from 900 000 m East and 900 000m North to 7 400 000m East and 5 500 000m North. The TIMELINE (TIMe Series Processing of Medium Resolution Earth Observation Data assessing Long-Term Dynamics In our Natural Environment) project, led by the German Remote Sensing Data Center (DFD) of the German Aerospace Center (DLR), focuses on generating a consistent, multi-decadal time series derived from NOAA and Metop AVHRR data. Spanning more than 40 years from the early 1980s to the present this dataset covers Europe and North Africa. TIMELINE establishes an operational environment for the systematic reprocessing of AVHRR raw data into Level 1b, Level 2, and Level 3 geoinformation products at 1.1 km spatial resolution. These products maintain uniform standards in format, projection, and spatial coverage. The dataset includes a comprehensive suite of land and atmospheric parameters such as atmospherically corrected surface reflectance, NDVI, snow cover, fire hotspots, burnt area, land and sea surface temperatures, and various cloud physical properties (e.g., cloud top temperature). By combining traditional and innovative remote sensing products with robust processing algorithms and state-of-the-art validation techniques, TIMELINE provides a unique, high-quality dataset for global change research.

Gesundheitsrisiken durch Hitze

<p>Sommerlich hohe Lufttemperatur birgt für Mensch und Umwelt ein hohes Schädigungspotenzial. Der Klimawandel führt nachweislich vermehrt zu extremer Hitze am Tag und in der Nacht, wodurch sich die gesundheitlichen Risiken für bestimmte Personengruppen erhöhen können. Für die Gesundheit von besonderer Bedeutung sind Phasen mit mehrtägig anhaltender, extremer Hitze.</p><p>Indikatoren der Lufttemperatur: Heiße Tage und Tropennächte</p><p>Die klimatologischen Kenngrößen „Heiße Tage“ und „Tropennächte“ des Deutschen Wetterdienstes (⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DWD#alphabar">DWD</a>⁠) werden unter anderem zur Beurteilung von gesundheitlichen Belastungen verwendet. So ist ein „Heißer Tag“ definiert als Tag, dessen höchste Temperatur oberhalb von 30 Grad Celsius (°C) liegt, und eine „Tropennacht“ als Nacht, deren niedrigste Temperatur 20 °C nicht unterschreitet.</p><p>Die raumbezogene Darstellung von „Heißen Tagen“ (HT) und „Tropennächten“ (TN) über die Jahre 2000 bis 2024 zeigt, dass diese zum Beispiel während der extremen „Hitzesommer“ in den Jahren 2003, 2015, 2018 und 2022 in Deutschland verstärkt registriert wurden (siehe interaktive Karte „Heiße Tage/Tropennächte“).</p><p>Zu beachten ist, dass ⁠<a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Heie_Tage#alphabar">Heiße Tage</a>⁠ und ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Tropennchte#alphabar">Tropennächte</a>⁠ regional unterschiedlich verteilt und ausgeprägt sein können, wie die Sommer der Jahre 2015, 2018, 2019 und 2022 zeigen. So traten Heiße Tage 2015 erheblich häufiger in Süddeutschland (maximal 40 HT) als in Norddeutschland (2015: maximal 18 HT) auf. Auch Tropennächte belasteten die Menschen im Süden und Westen Deutschlands häufiger: 2015 in Südwestdeutschland (maximal 13 TN). Besonders und wiederkehrend betroffen von extremer Hitze Demgegenüber betraf die extreme Hitze der Sommer 2018 und 2019 sind einige Teilregionen Süd- und Südwestdeutschlands (oberes Rheintal und Rhein-Maingebiet) sowie weite Teile Mittel- und Ostdeutschlands, wie Südbrandenburg und Sachsen (bis zu 45 HT und 13 TN). Während 2022 vor allem die Oberrheinische Tiefebene von Basel bis Frankfurt am Main sowie weitere Ballungsräume in Süddeutschland mit weit mehr als 30 Heißen Tage betroffen waren, lag der Hitzeschwerpunkt des Sommers 2024 mit bis zu 30 Heißen Tagen erneut in Brandenburg und Sachsen, bei nur sehr wenigen Tropennächten. 2025 gab es 11 Heiße Tage (gemittelt über die Fläche Deutschlands).</p><p>Informationen zur interaktiven Karte</p><p>Quellen: ⁠<a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Heie_Tage#alphabar">Heiße Tage</a>⁠ 2000-2025 – ⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DWD#alphabar">DWD</a>⁠/Climate Data Center, ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Tropennchte#alphabar">Tropennächte</a>⁠ 2000-2025 – DWD/Climate Data Center; Daten für 2025 – Persönliche Mitteilung des DWD vom 14.11.2025.</p><p>Die Bearbeitung der interaktiven Karte erfolgt durch das Umweltbundesamt, FG I 1.6 und I 1.7.</p><p>Gesundheitsrisiko Hitze</p><p>Der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a>⁠ beeinflusst in vielfältiger Weise unsere Umwelt. Klimamodelle prognostizieren, dass der Anstieg der mittleren jährlichen Lufttemperatur zukünftig zu wärmeren bzw. heißeren Sommern mit einer größeren Anzahl an Heißen Tagen und Tropennächten führen wird. Extreme Hitzeereignisse können dann häufiger, in ihrer Intensität stärker und auch länger anhaltend auftreten. Es gibt bereits belastbare Hinweise darauf, dass sich die maximale Lufttemperatur in Deutschland in Richtung extremer Hitze verschieben wird (vgl. Friedrich et al. 2023). Dieser Trend ist in der Abbildung „Anzahl der Tage mit einem Lufttemperatur-Maximum über 30 Grad Celsius“ bereits deutlich erkennbar.</p><p>Die mit der Klimaerwärmung verbundene zunehmende Hitzebelastung ist zudem von erheblicher gesundheitlicher Bedeutung, da sie den Organismus des Menschen in besonderer Weise beansprucht und zu Problemen des Herz-Kreislaufsystems führen kann. Außerdem fördert eine hohe Lufttemperatur zusammen mit intensiver Sonneneinstrahlung die Entstehung von gesundheitsgefährdendem bodennahem Ozon (siehe <a href="https://www.umweltbundesamt.de/daten/umwelt-gesundheit/gesundheitsrisiken-durch-ozon">„Gesundheitsrisiken durch Ozon“</a>). Anhaltend hohe Lufttemperatur während Hitzeperioden stellt ein zusätzliches Gesundheitsrisiko für die Bevölkerung dar. Bei Hitze kann das körpereigene Kühlsystem überlastet werden. Als Folge von Hitzebelastung können bei empfindlichen Personen Regulationsstörungen und Kreislaufprobleme auftreten. Typische Symptome sind Kopfschmerzen, Erschöpfung und Benommenheit. Ältere Menschen und Personen mit chronischen Vorerkrankungen (wie zum Beispiel Herz-Kreislauf-Erkrankungen) sind von diesen Symptomen besonders betroffen. So werden während extremer Hitze einerseits vermehrt Rettungseinsätze registriert, andererseits verstarben in den beiden Hitzesommern 2018 und 2019 in Deutschland insgesamt etwa 15.600 Menschen zusätzlich an den Folgen der Hitzebelastung (vgl. Winklmayr et al. 2022). Modellrechnungen prognostizieren für Deutschland, dass zukünftig mit einem Anstieg hitzebedingter Mortalität von 1 bis 6 Prozent pro einem Grad Celsius Temperaturanstieg zu rechnen ist, dies entspräche über 5.000 zusätzlichen Sterbefällen pro Jahr durch Hitze bereits bis Mitte dieses Jahrhunderts.</p><p>Der Wärmeinseleffekt: Mehr Tropennächte in Innenstädten</p><p>Eine Studie untersuchte die klimatischen Verhältnisse von vier Messstationen in Berlin für den Zeitraum 2001-2015 anhand der beiden Kenngrößen „Heiße Tage“ und „Tropennächte“. Während an den unterschiedlich gelegenen Stationen die Anzahl Heißer Tage vergleichbar hoch war, traten ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Tropennchte#alphabar">Tropennächte</a>⁠ an der innerhalb dichter, innerstädtischer Bebauungsstrukturen gelegenen Station wesentlich häufiger (mehr als 3 mal so oft) auf, als auf Freiflächen (vgl. <a href="https://www.umweltbundesamt.de/sites/default/files/medien/4031/publikationen/uba_krug_muecke.pdf">Krug &amp; Mücke 2018</a>). Eine Innenstadt speichert die Wärmestrahlung tagsüber und gibt sie nachts nur reduziert wieder ab. Die innerstädtische Minimaltemperatur kann während der Nacht um bis zu 10 Grad Celsius über der am Stadtrand liegen. Dies ist als städtischer Wärmeinseleffekt bekannt.</p><p>Hitzeperioden</p><p>Von besonderer gesundheitlicher Bedeutung sind zudem Perioden anhaltender Hitzebelastung (umgangssprachlich „Hitzewellen“), in denen ⁠<a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Heie_Tage#alphabar">Heiße Tage</a>⁠ in Kombination mit Tropennächten über einen längeren Zeitraum auftreten können. Sie sind gesundheitlich äußerst problematisch, da Menschen nicht nur tagsüber extremer Hitze ausgesetzt sind, sondern der Körper zusätzlich auch in den Nachtstunden durch eine hohe Innenraumtemperatur eines wärmegespeicherten Gebäudes thermophysiologisch belastet ist und sich wegen der fehlenden Nachtabkühlung nicht ausreichend gut erholen kann. Ein Vergleich von Messstellen des Deutschen Wetterdienstes (⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DWD#alphabar">DWD</a>⁠) in Hamburg, Berlin, Frankfurt/Main und München zeigt, dass beispielsweise während der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Hitzesommer#alphabar">Hitzesommer</a>⁠ 2003 und 2015 in Frankfurt/Main 6 mehrtägige Phasen beobachtet wurden, an denen mindestens 3 aufeinanderfolgende Heiße Tage mit sich unmittelbar anschließenden Tropennächten kombiniert waren&nbsp;(vgl. <a href="https://www.umweltbundesamt.de/sites/default/files/medien/4031/publikationen/uba_krug_muecke.pdf">Krug &amp; Mücke 2018</a>). Zu erwarten ist, dass mit einer weiteren Erwärmung des Klimas die Gesundheitsbelastung durch das gemeinsame Auftreten von Heißen Tagen und Tropennächten während länger anhaltender Hitzeperioden – wie sie zum Beispiel in den Sommern der Jahre 2003, 2006, 2015 und vor allem 2018 in Frankfurt am Main beobachtet werden konnten – auch in Zukunft zunehmen wird (siehe Abb. „Heiße Tage und ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Tropennchte#alphabar">Tropennächte</a>⁠ 2001 bis 2020“). Davon werden insbesondere die in den Innenstädten (wie in Frankfurt am Main) lebenden Menschen betroffen sein. Eine Fortschreibung der Abbildung über das Jahr 2020 hinaus ist aktuell aus technischen Gründen leider nicht möglich.&nbsp;</p><p><em>Tipps zum Weiterlesen: </em></p><p><em>Winklmayr, C., Muthers, S., Niemann, H., Mücke, H-G, an der Heiden, M (2022): Hitzebedingte Mortalität in Deutschland zwischen 1992 und 2021. Dtsch Arztebl Int 2022; 119: 451-7; DOI: 10.3238/arztebl.m2022.0202</em></p><p><em>Bunz, M. &amp; Mücke, H.-G. (2017): ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a>⁠ – physische und psychische Folgen. In: Bundesgesundheitsblatt 60, Heft 6, Juni 2017, S. 632-639.</em></p><p><em>Friedrich, K. Deutschländer, T., Kreienkamp, F., Leps, N., Mächel, H. und A. Walter (2023): Klimawandel und Extremwetterereignisse: Temperatur inklusive Hitzewellen. S. 47-56. In: Guy P. Brasseur, Daniela Jacob, Susanne Schuck-Zöller (Hrsg.) (2023): Klimawandel in Deutschland. Entwicklung, Folgen, Risiken und Perspektiven. 2. Auflage, 527 S., über 100 Abb., Berlin Heidelberg. ISBN 978-3-662-6669-8 (eBook): Open Access.</em></p>

INSPIRE: German Regional Seismic Network (GRSN)

The German Regional Seismic Network (GRSN) consists of seismological stations equipped with 3-component broadband seismometer and digital data aquisition system. The recorded data are directly transmitted to the data center at BGR Hannover and made available to the public near realtime. The GML file together with a Readme.txt file are provided in ZIP format (GRSN-INSPIRE.zip). The Readme.text file (German/English) contains detailed information on the GML file content. Data transformation was proceeded by using the INSPIRE Solution Pack for FME according to the INSPIRE requirements.

Global reference histograms of the IMS infrasound broadband detection lists

This data set builds upon the broadband detection lists of the International Monitoring System (IMS)’s infrasound stations. The infrasound data of these stations are regularly (re-)processed at the German National Data Centre at BGR (e.g., Ceranna et al., 2019; https://doi.org/10.1007/978-3-319-75140-5_13) using the Progressive Multi-Channel Correlation (PMCC) array processing method (Cansi, 1995; https://doi.org/10.1029/95GL00468). The latest reprocessing with 26 one-third octave spaced frequency bands in the IMS band of interest (0.01 to 4 Hz) included all 53 stations that were certified within the period 2003 to 2020. Based on the resulting broadband detection lists, this data set expands on former analyses of the coherent ambient noise. For each station with a data availability of at least one year (by the end of 2020), monthly reference histograms for the detection parameters back azimuth, apparent speed, and root-mean-squared amplitude are provided. The histograms provide a means to determine the deviation from nominal monthly behaviour and thus enable assessing the plausibility of detections and potential anomalies – without determining their cause – in the detected parameters. Overall, these quality metrics will be, among other applications, a useful supplement to the open-access IMS infrasound data products provided by Hupe et al., which are also available in BGR’s product centre. Further details of the reference histograms are described in the following publication by Kristoffersen et al.: "Updated global reference models of broadband coherent infrasound signals for atmospheric studies and civilian applications" (https://doi.org/10.1029/2022EA002222).

Trockenheit in Deutschland – Fragen und Antworten

<p>Was bedeuten Trockenheit und Dürre für Vegetation, Grundwasser und Landwirtschaft? Ist das bereits der Klimawandel? Und wie können wir uns anpassen?</p><p>Trockenheit - aktuelle Situation</p><p>Der Deutsche Wetterdienst (⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DWD#alphabar">DWD</a>⁠) meldet, dass es deutschlandweit seit 1931 noch nie so trocken war wie 2025 von Anfang Februar bis Mitte April (<a href="https://www.dwd.de/DE/presse/pressemitteilungen/DE/2025/20250415_pm_trockenheit.pdf?__blob=publicationFile&amp;v=2">DWD Pressemitteilung vom 15.04.25</a>). Der März 2025 war mit einem Deutschlandmittel von nur 21% des Niederschlages im Vergleich zur Periode 1991-2020, der sechsttrockenste März seit 1881. Vor allem im Norden gab es größere Gebiete in denen nur wenige Liter pro Quadratmeter gefallen sind. Das starke Niederschlagsdefizit hat, vor allem in Teilen des norddeutschen Binnenlands, die Feuchte der oberen Bodenschichten markant unter die für die Jahreszeit üblichen Werte sinken lassen (<a href="https://www.dwd.de/DE/presse/pressemitteilungen/DE/2025/20250402_pm_trockenheit.pdf?__blob=publicationFile&amp;v=2">DWD Pressemitteilung vom 02.04.25</a>). Im Mai fielen mit rund 48 Litern pro Quadratmeter (l/m²) lediglich rund 68 Prozent der üblichen Niederschlagsmenge der Referenzperiode 1961–1990 (71 l/m²). Auch im Vergleich zur moderneren Periode 1991–2020 (70 l/m²) entsprach dies nur gut 68 Prozent (<a href="https://www.dwd.de/DE/presse/pressemitteilungen/DE/2025/20250530_pm_mai.pdf?__blob=publicationFile&amp;v=2">DWD Pressemitteilung vom 30.05.2025</a>). Auch der Juni 2025 war in Deutschland außergewöhnlich warm, viel zu trocken und üppig sonnig (<a href="https://www.dwd.de/DE/presse/pressemitteilungen/DE/2025/20250630_deutschlandwetter_juni.pdf?__blob=publicationFile&amp;v=3">DWD Pressemitteilung vom 30.06.2025</a>).</p><p>Im Winter 24/25 fielen mit rund 155 Litern pro Quadratmeter (l/m²) nur etwa 82 Prozent des durchschnittlichen Niederschlags der neuen Referenzperiode 1991–2020 (190 l/m²), sodass bereits der Winter insgesamt deutlich zu trocken ausfiel. Besonders niederschlagsarm war laut DWD der Februar, in dem nur etwa die Hälfte der üblichen Menge gemessen wurde (<a href="https://www.dwd.de/DE/presse/pressemitteilungen/DE/2025/20250227_pm_winter.pdf?__blob=publicationFile&amp;v=2">Pressemitteilung DWD vom 27.02.25</a>). Der März 2025 gehörte zu den trockensten seit Messbeginn im Jahre 1881.<strong> Mit </strong>19 Liter pro Quadratmeter (l/m²) war es gegenüber der Referenzperiode 1991 bis 2020 (57 l/m²) rund 70&nbsp;% trockener. Vor allem der Norden und Nordosten des Landes litt im März unter Trockenheit, dort fielen in der Fläche nur um 9 l/m², wodurch der Oberboden besonders stark austrocknen konnte (<a href="https://www.dwd.de/DE/presse/pressemitteilungen/DE/2025/20250331_pm_maerz.pdf?__blob=publicationFile&amp;v=3">DWD Pressemitteilung vom 31.03.25</a>). Die Trockenheit fand im Juni ihre Fortsetzung. Mit gerade 61 Liter pro Quadratmeter (l/m²) war der zurückliegende Juni erneut viel zu trocken. Damit war es seit Februar der fünfte Monat in Folge, der weniger Niederschlag brachte als im klimatologischen Mittel (<a href="https://www.dwd.de/DE/presse/pressemitteilungen/DE/2025/20250630_deutschlandwetter_juni.pdf?__blob=publicationFile&amp;v=3">DWD Pressemitteilung vom 30.06.2025</a>).</p><p>Monatliche Klimastatusberichte veröffentlicht der Deutsche Wetterdienst <a href="https://www.dwd.de/DE/presse/pressemitteilungen/pressemitteilungen_archiv_2025_node.html">hier</a>.</p><p>Inwieweit in den Winter- und Frühlingsmonaten der Bodenwasservorrat aufgefüllt wird und ein Defizit der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Bodenfeuchte#alphabar">Bodenfeuchte</a>⁠ ausgeglichen werden kann, ist regional unterschiedlich. Der <a href="https://www.dwd.de/DE/fachnutzer/landwirtschaft/appl/bf_view/_node.html">Bodenfeuchteviewer</a> des Deutschen Wetterdienstes zeigt Ende Juli 2025 im Oberboden in 20-30 cm Tiefe in der Mitte Deutschlands in den meisten Landesteilen ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Trockenstress#alphabar">Trockenstress</a>⁠, nur im Norden in Schleswig-Holstein, in Mecklenburg-Vorpommern und Brandenburg und im Süden in den Alpen und im Alpenvorland sowie in Mittelgebirgsregionen ist der Oberboden gut mit Wasser versorgt. In einer Tiefe von 180 -190 cm besteht Trockenstress im Pfälzer Wald und im nördlichen Bayern. Die übrigen Landesteile Deutschlands zeigen in dieser Tiefe zum Teil leichten Trockenstress, sonst aber eine gute Versorgung mit Wasser bis hin zu Sauerstoffmangel (Stand 30.07.2025).</p><p>Der „<a href="https://www.ufz.de/index.php?de=37937">Dürremonitor Deutschland</a>“ des Helmholtz Zentrums für Umweltforschung (UFZ) setzt die aktuellen Werte der Bodenfeuchte ins Verhältnis mit langjährigen statistischen Auswertungen. Dieser zeigt Ende Juli 2025 im Oberboden bis 25 cm Tiefe bis auf Brandenburg, Mecklenburg-Vorpommern und Schleswig-Holstein deutschlandweit Trockenheit und ⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Drre#alphabar">Dürre</a>⁠. Im Gesamtboden bis in 1,8 m Tiefe herrscht nahezu in allen Teilen Deutschlands Dürre (Stand 30.07.2025).</p><p>Gibt es in Deutschland ein Problem mit Wasserknappheit? </p><p>Wir haben in Deutschland ein potenzielles ⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Wasserdargebot#alphabar">Wasserdargebot</a>⁠, gemittelt über viele Jahre, von 176 Milliarden Kubikmeter pro Jahr. Das ⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Wasserdargebot#alphabar">Wasserdargebot</a>⁠ ist eine Größe des regionalen Wasserkreislaufs und umfasst die Menge an Grund- und Oberflächenwasser, die wir theoretisch nutzen können. In die Berechnung der jährlich ermittelten erneuerbaren Wasserressourcen fließen der Niederschlag, die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/v?tag=Verdunstung#alphabar">Verdunstung</a>⁠ sowie die Zuflüsse nach und die Abflüsse aus Deutschland ein. Neben dem über viele Jahre gemittelten Wasserdargebot zeigt das jährliche Wasserdargebot starke witterungsbedingte Schwankungen. So lagen die erneuerbaren <a href="https://www.umweltbundesamt.de/daten/wasser/wasserressourcen-ihre-nutzung">Wasserressourcen</a> im Jahr 2023 als Folge der ungewöhnlich hohen Niederschläge im Dezember 2023 mit 212 Milliarden Kubikmeter deutlich oberhalb des langjährigen Mittels.&nbsp;</p><p>Die <a href="https://www.umweltbundesamt.de/daten/wasser/wasserressourcen-ihre-nutzung">Wasserentnahmen sind über die letzten Jahrzehnte deutlich zurückgegangen</a>. Das liegt an Wasserkreislaufführung in der Industrie, an der Reduzierung der Entnahme von Kühlwasser für Kraftwerke und Einsparungen bei der öffentlichen Wasserversorgung. Derzeit lassen sich die zukünftigen Bedarfe (insbesondere neuer Technologien wie Wasserstofferzeugung und Kühlung von Rechenzentren, aber auch erhöhte Bewässerungsbedarfe in der Landwirtschaft) auf Bundes- und Länderebene nicht hinreichend quantifizieren, weil potentielle Entwicklungen nicht oder nur unzureichend und uneinheitlich vorausgesehen werden können. Das Umweltbundesamt lässt deshalb die <a href="https://www.umweltbundesamt.de/dokument/entwicklung-des-zukuenftigen-wasserbedarfs-in">zukünftige Entwicklung der Wasserbedarfe</a> genauer untersuchen um neben besseren Prognosen zu den verfügbaren Wassermengen auch die Entwicklung der Wasserbedarfe, also der Entnahmen, besser einschätzen zu können.&nbsp;</p><p>Die <a href="https://www.umweltbundesamt.de/daten/wasser/wasserwirtschaft/oeffentliche-wasserversorgung">öffentliche Wasserversorgung</a> entnimmt mit 3,0 Prozent nur einen Bruchteil der erneuerbaren Wasserressourcen. In privaten Haushalten ist die Wassernutzung von 1990 bis heute erheblich zurückgegangen (von 144 Litern/Person/Tag 1991 auf 125 Liter 2022). Allerdings sieht man zwischen 2013 wieder einen Anstieg der Wassernutzung im Haushalt von 121 Liter /Person und Tag auf zwischenzeitlich 129 Liter / Person und Tag im Jahr 2019. Der <a href="https://www.bdew.de/presse/presseinformationen/zahl-der-woche-121-liter-leitungswasser/">BDEW</a> gibt die private Wassernutzung für das Jahr 2023 mit 121 Litern/Person/Tag an. Insgesamt gibt es erhebliche Unterschiede zwischen den Bundesländern (s. S. 56 und 57 der <a href="https://www.umweltbundesamt.de/publikationen/wasserwirtschaft-in-deutschland-grundlagen">Broschüre „Wasserwirtschaft in Deutschland“</a>).</p><p>Bisher gibt es in Deutschland keinen flächendeckenden Wasserstress. Man spricht von Wasserstress, wenn die gesamte Wasserentnahme eines betrachteten Jahres mehr als 20 Prozent des langjährigen mittleren Wasserdargebots beträgt. Das ist in Deutschland nicht der Fall, es sind nach der neusten Erhebung <a href="https://www.umweltbundesamt.de/daten/wasser/wasserressourcen-ihre-nutzung">10,1 Prozent (2022)</a>. Die Schwelle zum Wasserstress wurde in Deutschland letztmalig 2004 überschritten, die gesamten Wasserentnahmen lagen damals laut Statistischem Bundesamt bei 20,2 Prozent.</p><p>Entscheidend ist aber das Wasserdargebot vor Ort. Hier gibt es deutliche regionale Unterschiede in der Wasserverfügbarkeit. Dies hat sich auch in den trockenen Jahren 2018, 2019, 2020 und 2022 gezeigt. In einigen Orten gab es lokale oder regionale Engpässe gegeben. Dies hatte verschiedene Ursachen. Eine Rolle spielten die unterschiedlichen klimatischen Randbedingungen. Weiterhin kam eine hohe Wassernutzung zu bestimmten Tageszeiten besonders bei warmem ⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Wetter#alphabar">Wetter</a>⁠ hinzu, die die Verteilungssysteme einiger Wasserversorgungsunternehmen an die Grenzen brachten (Spitzenwasserbedarf). Teilweise konnte nicht auf zusätzliche örtliche Ressourcen zugegriffen werden, da bei diesen die <a href="https://www.umweltbundesamt.de/themen/wasser/grundwasser/nutzung-belastungen/faqs-zu-nitrat-im-grund-trinkwasser">Nitratwerte zu hoch</a> waren. Dies ist oft ein Ergebnis zu hoher landwirtschaftlicher Düngung.&nbsp;</p><p>Aufeinander folgende trockene Sommer mit zusätzlich wenig Niederschlag im Winter haben negative Auswirkungen auf die Wasserverfügbarkeit. Die Landwirtschaft, die Wasserversorgung, die Wasserführung in Gewässern, Ökosysteme wie Feuchtgebiete und Wälder und auch weitere wasserbezogene Nutzungen wie die Schifffahrt können betroffen sein. Darauf müssen sich alle Wassernutzer*innen, auch die Wasserversorgungen, einstellen.</p><p>Häufigere trockene Sommer bedeuten auch, dass der Bedarf zur Bewässerung in der Landwirtschaft steigen wird. Derzeit hat die Bewässerungslandwirtschaft in Deutschland mit einer <a href="https://www.umweltbundesamt.de/daten/wasser/wasserressourcen-ihre-nutzung">Wasserentnahme von ca. 2,5 Prozent&nbsp; der gesamten Entnahmemenge</a> noch eine geringe Bedeutung. Nach Angaben des <a href="https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Landwirtschaft-Forstwirtschaft-Fischerei/Produktionsmethoden/Tabellen/bewaesserungsmoeglichkeiten.html%20">Statistischen Bundesamtes</a>&nbsp;hat die für die Bewässerung ausgestattete Fläche von 2009 bis 2019 jährlich um 1,86&nbsp;% zugenommen und lag 2022 bei 791.000 Hektar, tatsächlich bewässert wurden 554.000 Hektar landwirtschaftliche Fläche in Deutschland (2022). Die Beregnungsbedürftigkeit wird deutschlandweit tendenziell zunehmen, allerdings ist dies regional sehr unterschiedlich. Die Bewässerungsmenge ist stark abhängig von der landwirtschaftlichen Produktion. So wird der Obst- und Gemüsebau bisher stärker bewässert, als dies für viele Ackerkulturen der Fall ist. Hingegen werden Wälder, die ebenfalls stark unter der anhaltenden Trockenheit leiden, nicht bewässert.</p><p>Trockenperioden, veränderte Niederschlagsmuster und damit einhergehend sinkende Grundwasserspiegel und Flusswasserstände können zu einem Ungleichgewicht zwischen Wasserbedarf und -dargebot führen. Die daraus entstehenden regionalen und saisonalen Knappheitsphasen verschärfen Nutzungskonflikte zwischen verschiedenen Wassernutzungen wie beispielsweise Energieerzeugung, Trinkwasserversorgung, Industrie und Landwirtschaft und führen zu Konflikten mit den Wasserbedarfen der Ökosysteme. Künftig werden also mehr Nutzer*innengruppen als heute um eine knapper werdende Ressource konkurrieren. Deshalb müssen wir über eine gerechte Verteilung bei langanhaltender Trockenheit, also über eine <a href="https://www.umweltbundesamt.de/themen/wasser/wasser-bewirtschaften/nationale-wasserstrategie">Priorisierung</a> nachdenken, die auch die Bedürfnisse der (Gewässer-)Ökosysteme berücksichtigt. Aktuell arbeitet das Umweltbundesamt zusammen mit der Bund-Länder- Arbeitsgemeinschaft Wasser (⁠<a href="https://www.umweltbundesamt.de/service/glossar/l?tag=LAWA#alphabar">LAWA</a>⁠) an <a href="https://www.umweltbundesamt.de/dokument/entwicklung-von-leitlinien-fuer-den-umgang">Leitlinien zu Wasserknappheit</a>, damit die zuständigen Behörden &nbsp;regional transparente Entscheidungen zur Verteilung von Wasser treffen können, die auf harmonisierter wissenschaftlicher und wasserrechtlicher Grundlage basieren. Alle Wassernutzer*innen sind außerdem aufgefordert, die Wasserressourcen zu schonen, d.h. mit Wasser sparsam umzugehen und das entnommene Wasser so effizient wie möglich zu verwenden sowie die Gewässer und das Grundwasser nicht zu verschmutzen.</p><p>Um bei Wasserknappheit nicht nur auf Oberflächengewässer und Grundwasser zurückzugreifen, kann Wasserwiederverwendung, d.h. die Nutzung von aufbereitetem Wasser, eine Alternative darstellen. Dies ist in vielen südeuropäischen Ländern bereits gängige Praxis. Seit 2020 ist eine neue <a href="https://www.umweltbundesamt.de/themen/wasser/wasser-bewirtschaften/wasserwiederverwendung/eu-verordnung-zu-wasserwiederverwendung">EU-Verordnung über Mindestanforderungen an die Wasserwiederverwendung</a> für die landwirtschaftliche Bewässerung in Kraft, die seit Juni 2023 auch in Deutschland gilt. Allerdings sind an die <a href="https://www.umweltbundesamt.de/themen/wasser/wasser-bewirtschaften/wasserwiederverwendung">Wasserwiederverwendung</a> strenge hygienische und Umweltanforderungen zu stellen.</p><p>Was bedeutet „Bodenfeuchte“, und welche Rolle spielt sie für die Trockenheit?</p><p>Die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Bodenfeuchte#alphabar">Bodenfeuchte</a>⁠ wird über den Wassergehalt und die vom Porenraum des Bodens ausgehende Bodenwasserspannung beschrieben. Je nach Porenraum und Bodenfeuchte haben die Böden eine unterschiedliche Fähigkeit, Wasser zu speichern. Wasser ist mit der Bodensubstanz und der Bodenluft eines der drei Bestandteile des Bodens. Ohne Bodenwasser und Bodenluft ist es kein Boden, wie wir ihn als Produktionsgrundlage vieler unserer Nahrungsmittel kennen. Weiterhin muss bedacht werden, dass nur ein Teil des im Boden enthaltenen Wassers wirklich für die Pflanzen verfügbar ist.</p><p>Welche Folgen kann Trockenheit für die Ernteerträge bzw. die Pflanzen im Allgemeinen haben? </p><p><strong>Landwirtschaft:</strong>&nbsp;Trockenheit vermindert das Pflanzenwachstum und die Erträge. Mit dem ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klima#alphabar">Klima</a>⁠ ändert sich das ⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Wetter#alphabar">Wetter</a>⁠, und damit ändern sich die Bedingungen für die Landwirtschaft immer grundlegender. Die Veränderungen sind mittlerweile regelrecht mit den Händen zu greifen und spiegeln sich auch in den vergangenen <a href="https://www.bmel.de/SharedDocs/FAQs/DE/faq-erntedaten-erntebericht/FAQ-erntedaten-erntebericht_List.html#f71088">BMEL Ernteberichten </a>.</p><p>Normalerweise können Pflanzen während einer Trockenperiode, in der der Wasserbedarf die Niederschlagsmenge übersteigt, auf den Wasserspeicher im Boden zurückgreifen und diese Phase überstehen. Ist der Wasserspeicher jedoch aufgrund von vorangegangener Trockenheit deutlich reduziert, kann es bereits bei kurzzeitig ausbleibenden Niederschlägen zu Ertragsverlusten kommen.&nbsp;</p><p>Ein aus Umweltsicht problematischer Nebeneffekt von Trockenheit und Ernteausfällen ist, dass diese in aller Regel zu hohen Nährstoffüberschüssen von Stickstoff und Phosphor führen, weil die Kulturpflanzen nicht in der Lage waren, die Düngemengen vollständig aufzunehmen. Die so entstehenden Nährstoffüberschüsse haben vielfältige negative Umweltwirkungen, etwa durch die Beeinträchtigung der Wasserqualität, negative Wirkungen auf die Artenvielfalt und erhöhte Treibhausgasemissionen (z.B. in Form von Lachgas).</p><p><strong>⁠<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Erosion#alphabar">Erosion</a>⁠ durch Wind</strong>: Starker Wind bewirkt einen Verlust humusreichen Feinmaterials aus den Ackerflächen durch Erosion. An diesen Stellen sind dann geringeres Pflanzenwachstum und in der Erntezeit geringere Erträge festzustellen – noch bis in die folgenden Jahre und Jahrzehnte. Auch an Stellen, in die das Feinmaterial eingeweht wird, kommt es zunächst zu Ertragseinbußen, wenn sich das Material dort auf Keimlingen und Pflanzen abgelagert hat. Besonders groß ist die Gefahr der Winderosion auf Ackerflächen ohne geschlossene Bodenbedeckung. Kommen dann noch im Frühjahr starke Winde hinzu oder entsteht Erosion durch die Bewirtschaftung (Bodenbearbeitung bei extremer Trockenheit und Wind), kann humusreiches Feinmaterial durch Winderosion verdriftet, d.h. ausgeweht werden. Die Bodenfruchtbarkeit und das Pflanzenwachstum leiden darunter.&nbsp;</p><p><strong>Straßenbäume</strong>: Bäume an Straßen, d.h., Alleen, Baumreihen oder auch Bäume im urbanen Raum wachsen häufig unter schlechteren Standortbedingungen als Bäume in der freien Natur – neben dem begrenzten Raum für Wurzelwachstum können die Verdichtung des Bodens, Schadstoffe oder Streusalz die Bäume schädigen. Trockenheit verschlechtert diese Standortbedingungen zusätzlich: Sie verschärft das durch Versiegelung und Verdichtung ohnehin schon bestehende Problem der unzureichenden Wasserversorgung der Wurzeln und mindert das Baumwachstum, so dass junge Bäume absterben können, bevor sie richtig groß geworden sind.</p><p>Welche Regionen in Deutschland könnten besonders von Trockenheit betroffen sein? </p><p>Die Niederschlagsverteilung in Deutschland ist regional sehr unterschiedlich. So zeigen die „Normalwerte“ des Jahresniederschlags (langjähriges Mittel 1971 – 2000), dass es Regionen in Deutschland mit deutlich unter 500 mm und Regionen mit deutlich über 1000 mm Jahresniederschlag gibt. Die Gebiete mit den niedrigen Niederschlägen liegen vor allem im Osten und Nordosten Deutschlands. Regionen mit hohen Niederschlägen finden sich im Westen und Süden Deutschlands. Der zunehmende Temperaturanstieg aufgrund des globalen Klimawandels hat auch Auswirkungen auf das Niederschlagsgeschehen in Deutschland. So können sich die Jahresniederschläge bis zum Ende des Jahrhunderts mit regionalen Unterschieden um bis zu 15 % erhöhen. Betrachtet man nur die Winterniederschläge können diese sich um 5-20 % bis zur Mitte des Jahrhunderts erhöhen. Die Aussagen für die Sommerniederschläge sind bis zur Mitte des Jahrhunderts nicht eindeutig, bis zum Ende des Jahrhunderts zeigen die Modelle aber Tendenzen zu mehr Trockenheit (siehe <a href="https://www.dwd.de/DE/klimaumwelt/klimaatlas/klimaatlas_node.html">DWD-Klimaatlas</a>, <a href="https://www.lawa.de/documents/kompaktinfos_zum_lawa_klimawandel-bericht_2020_1637921187.pdf">LAWA-Klimawandelbericht</a>).</p><p>Welche Regionen letztlich von Trockenheit besonders betroffen sind, hängt weiterhin von den Böden und der Entwicklung der <a href="https://www.umweltbundesamt.de/service/glossar/g?tag=Grundwasserneubildung#alphabar">Grundwasserneubildung</a> ab. In Verbindung mit den Wasserbedarfen einer Region und ihrer zukünftigen Entwicklung lässt sich erkennen, wo eine Konkurrenzsituation um Wasser entstehen könnte. Vor diesem Hintergrund hat das Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=BMUV#alphabar">BMUV</a>⁠) zusammen mit dem Umweltbundesamt (⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>⁠) 2020 das Projekt „Auswirkung des Klimawandels auf die Wasserverfügbarkeit / Anpassung an Trockenheit und ⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Drre#alphabar">Dürre</a>⁠ in Deutschland“ (<a href="https://www.umweltbundesamt.de/publikationen/auswirkung-des-klimawandels-auf-die">WADKlim</a>) initiiert. Die Ergebnisse wurden 2024 veröffentlicht und verschaffen unter anderem einen Überblick über die gegenwärtige Wasserverfügbarkeit in Deutschland, sowie deren zukünftige Entwicklung unter Klimawandelbedingungen. In der Studie analysierten die Forschenden den Zeitraum von 1961 bis 2020 und erstellten eine deutschlandweite Karte der „Wasser-Bilanz-Risiko-Gebiete“, das heißt Regionen, in denen der als nachhaltig geltende Grenzwert für die Nutzung von Grundwasser überschritten wird. Das bedeutet, dass mehr Wasser entnommen wird, als auf natürliche Weise dem Grundwasser wieder zuströmt (siehe Kapitel 3.3 in <a href="https://www.umweltbundesamt.de/dokument/wadklim-zusammenfassung-der-ergebnisse">Zusammenfassung und Ergebnisse WADKlim</a>).</p><p>Besonders von Winderosion gefährdet sind die eiszeitlich geprägten Gebiete im Nordwesten, Nordosten und Osten von Deutschland (Schleswig-Holstein, weite Teile von Mecklenburg-Vorpommern, Niedersachsen, das Münsterland und Ostwestfalen-Lippe in Nordrhein-Westfalen, Sachsen-Anhalt, Brandenburg und Ost-Sachsen). Fehlt auf feinsandreichen und lehmig-sandigen Böden dann noch eine geschlossene Bodenbedeckung, kann bei Trockenheit die Winderosion angreifen. <a href="https://www.umweltbundesamt.de/publikationen/bundesweite-gefaehrdung-der-boeden-durch">Prognosen</a> zeigen, dass bis in das Jahr 2040 in allen Landschaftsräumen mit einem Anstieg der natürlichen Erosionsgefährdung durch Wind gerechnet werden muss, vor allem in den küstennahen Gebieten.</p><p>Hat eine anhaltende Trockenheit Auswirkungen auf das Grundwasser – und damit auch auf das Trinkwasser? </p><p>Grundwasser wird über den Niederschlag gespeist. Langanhaltende Trockenheit mit fehlenden Niederschlägen, reduzierter Sickerwasserrate und ⁠<a href="https://www.umweltbundesamt.de/service/glossar/g?tag=Grundwasserneubildung#alphabar">Grundwasserneubildung</a>⁠ führt zu einer veränderten Tiefenlage der Grundwasseroberfläche. So sind zum Beispiel in den trockenen Jahren 2018, 2019, 2020 und 2022 aufgrund der langanhaltenden Trockenheit in einigen Regionen die Grundwasserstände in den oberflächennahen Grundwasserleitern deutlich gefallen.</p><p>Etwa 70 Prozent des deutschen Trinkwassers stammt aus Grund- und Quellwasser. Es herrscht in Deutschland noch kein Mangel an Trinkwasser und es gibt bisher keine flächendeckenden negativen Auswirkungen auf Trinkwasser aus Grundwasserressourcen. Allerdings kam z.B. im Sommer 2018 in den besonders betroffenen Regionen die Eigenversorgung mit Trinkwasser teilweise zum Erliegen, weil Hausbrunnen trockenfielen. Wasserversorgungsunternehmen berichten für den Sommer 2018, dass es bis auf wenige -lokale Ausnahmen- keine Ausfälle bei der zentralen Wasserversorgung gab. Allerdings nutzen einer Umfrage des <a href="https://energie-wasser-praxis.de//wp-content/uploads/2023/05/ewp_1020_04-05_Inhalt.pdf">DVGW</a> zufolge 1/3 der befragten Wasserversorgungsunternehmen an den Spitzentagen ihre genehmigten Wasserressourcen zu bzw. über 90 % und bei 34 % der Wasserersorgungsunternehmen war an den Spitzentagen die Aufbereitungskapazität mit 90 % oder mehr belastet.</p><p>In Trockenperioden mit steigenden Temperaturen, erhöhter ⁠<a href="https://www.umweltbundesamt.de/service/glossar/v?tag=Verdunstung#alphabar">Verdunstung</a>⁠ und verlängerten Vegetationsphasen sind niedrige Grundwasserstände nicht nur problematisch für die Wasserentnahme zur Trinkwassergewinnung, sondern auch für flachwurzelnde Bäume und grundwasserabhängige Biotope. Des Weiteren werden Flüsse und Seen in unseren Breiten unterirdisch durch Grundwasser gespeist. Bei sinkenden Grundwasserständen verringert sich der unterirdische ⁠<a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Abfluss#alphabar">Abfluss</a>⁠ in die Oberflächengewässer, möglicherweise bis zu einer Umkehrung der Fließrichtung.</p><p>Statistisch signifikant ist der Rückgang des Grundwasserdargebots in der vergangenen Dekade 2011 – 2020, wie die Simulationen im Projekt WADKlim zeigen (siehe Kapitel 3.1 in <a href="https://www.umweltbundesamt.de/dokument/wadklim-zusammenfassung-der-ergebnisse">Zusammenfassung und Ergebnisse WADKlim</a>). Aussagen zur zukünftigen Entwicklung der jährlichen ⁠Grundwasserneubildung⁠ sind aufgrund der unsicheren Informationslage zur Niederschlagsentwicklung sowie angesichts der komplexen Wechselwirkungen mit anderen Wirkfaktoren wie Bodenart, Vegetation, ⁠<a href="https://www.umweltbundesamt.de/service/glossar/l?tag=Landnutzung#alphabar">Landnutzung</a>⁠ und Flächenversiegelung weiterhin mit Unsicherheiten behaftet. Projektionen einer zukünftigen Entwicklung stellen sich je nach verwendetem Klimaszenarium unterschiedlich dar, tendenziell liegen die Zeiträume mit Trockenheit in großen Teilen Deutschlands noch eher in der Zukunft, als in der Vergangenheit. Allerdings deutet nichts darauf hin, dass in Zukunft alle Regionen Deutschlands nahezu gleichzeitig von ausgeprägten und aus klimatologischer Perspektive minimaler Grundwasserneubildung betroffen sein könnten (<a href="https://www.umweltbundesamt.de/publikationen/auswirkung-des-klimawandels-auf-die">WADKlim</a>).</p><p>Das Potsdam-Institut für Klimafolgenforschung (PIK) hat unter „klimafolgenonline“ (<a href="http://www.klimafolgenonline.com/">http://www.klimafolgenonline.com/</a>) Karten zur simulierten Grundwasserneubildung in Deutschland veröffentlicht.</p><p>Ist das nur ⁠Wetter⁠ oder schon ⁠Klimawandel⁠? </p><p>Die Abnahme der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Bodenfeuchte#alphabar">Bodenfeuchte</a>⁠ ist ein langfristiger Prozess, der vom ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a>⁠ beeinflusst wird (siehe <a href="https://www.umweltbundesamt.de/publikationen/monitoringbericht-2023">Monitoringbericht 2023</a>). In Deutschland sind dabei vor allem Regionen mit leichtem, sandigem Boden, das heißt Teile Ostdeutschlands und das Rhein-Main-Gebiet, betroffen.</p><p>Bei Extremereignissen wie ⁠<a href="https://www.umweltbundesamt.de/service/glossar/s?tag=Starkregen#alphabar">Starkregen</a>⁠ ist es schwieriger, einen Zusammenhang zum Klimawandel herzustellen: Die Zuordnung, eines Einzelereignisses zu einem ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Trend#alphabar">Trend</a>⁠ ist beim Klimawandel wissenschaftlich schwierig, da die „normale“ Variabilität des Wetters sehr hoch ist. Doch die gestiegene Summe an Extremereignissen, die wir in den letzten Jahren beobachten, weist deutlich auf Effekte des Klimawandels hin.&nbsp;</p><p>Bei vergangenen Hitzesommern ist ein Zusammenhang zum Klimawandel wahrscheinlich: So wurde der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Hitzesommer#alphabar">Hitzesommer</a>⁠ 2018, wie auch andere Hitzewellen in den vergangenen Jahrzehnten, z.B. 2003, <a href="https://www.pik-potsdam.de/aktuelles/pressemitteilungen/wetterextreme-im-sommer-2018-waren-verbunden-durch-stockende-riesenwellen-im-jetstream">von einem schwachen Jetstream mit stagnierenden Wellenmustern beeinflusst</a>. Ein solcher Jetstream wiederum ist eine Folge des <a href="https://www.nature.com/articles/srep45242">Erwärmens des Nordpols durch den globalen Temperaturanstieg</a>. Eine <a href="https://www.worldweatherattribution.org/human-contribution-to-record-breaking-june-2019-heatwave-in-france/">2019 veröffentlichte Untersuchung</a> zeigt den Zusammenhang zwischen Klimawandel und Rekordtemperaturen – demnach sind Hitzewellen inzwischen mindestens fünfmal wahrscheinlicher als im Jahr 1900.</p><p>Wichtig ist, die vergangenen bzw. künftigen Schäden und Umweltwirkungen durch Extremereignisse systematisch zu erfassen, um Maßnahmen zur ⁠<a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Anpassung_an_den_Klimawandel#alphabar">Anpassung an den Klimawandel</a>⁠ passgenau zu gestalten.&nbsp;</p><p>Stichwort Anpassung: Was können wir tun, um uns besser auf Trockenheit und Dürre vorzubereiten?</p><p>In der Wasserwirtschaft und der Landwirtschaft existieren vielfältige Möglichkeiten der Anpassung an Trockenheit und ⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Drre#alphabar">Dürre</a>⁠. Wichtig ist dabei, zwischen langfristigen Maßnahmen mit vorsorgendem Charakter und kurzfristigen Maßnahmen zu unterscheiden. So bietet eine an den ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a>⁠ angepasste Landbewirtschaftung langfristig besseren Schutz gegenüber Extremereignissen wie Hitzewellen und Trockenheit.&nbsp;</p><p>Deutsche ⁠<a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Anpassungsstrategie#alphabar">Anpassungsstrategie</a>⁠ an den Klimawandel: Im Jahr 2008 legte die Bundesregierung die Deutsche Anpassungsstrategie an den Klimawandel vor (<a href="https://www.bmu.de/download/deutsche-anpassungsstrategie-an-den-klimawandel/">DAS</a>). Diese zielt auf die Verbesserung der Anpassung an die Folgen des Klimawandels in ganz unterschiedlichen Handlungsfeldern. Seitdem wird in einem regelmäßigen <a href="https://www.umweltbundesamt.de/publikationen/monitoringbericht-2023">Monitoringbericht</a> (zuletzt 2023) dargestellt, wie sich der Klimawandel entwickelt. Mit dem <a href="https://www.bmu.de/download/zweiter-fortschrittsbericht-zur-deutschen-anpassungsstrategie-an-den-klimawandel/">Fortschrittsbericht</a> und dem Aktionsprogramm Anpassung (zuletzt 2020) werden ressortübergreifend Maßnahmen aufgezeigt. Die <a href="https://www.umweltbundesamt.de/presse/pressemitteilungen/neue-analyse-zeigt-risiken-der-erderhitzung-fuer">Klimawirkungs- und Risikoanalyse</a> (zuletzt 2021) analysiert die zukünftigen Folgen des Klimawandels in Deutschland und die Handlungsnotwendigkeiten in den verschiedenen Handlungsfeldern. In der im Juni 2021 veröffentlichten Studie werden für das Handlungsfeld Wasserwirtschaft, Wasserhaushalt die Klimarisiken ohne Anpassung heute, in der Mitte und am Ende des Jahrhunderts bei einem schwächeren Klimawandel als „mittel“ eingeschätzt. Bei einem stärkeren Klimawandel in der Mitte und zum Ende des Jahrhunderts werden die Klimarisiken für diesen Handlungsfeld als „hoch“ eingestuft. Durch weitreichende Anpassungsmaßnahmen lassen sich die Klimarisiken im Handlungsfeld Wasser zur Mitte des Jahrhunderts auf „gering“ bzw. „mittel“ absenken. Das bedeutet, es gibt Klimarisiken für den Wasserhaushalt und die Wasserwirtschaft, aber es gibt auch Handlungsmöglichkeiten.</p><p><u>Die Nationale Wasserstrategie</u>: Neben demografischem Wandel und Digitalisierung sind die Herausforderungen durch den Klimawandel wichtige Treiber für Veränderungen und Anpassungen der Wasserwirtschaft. Zur Unterstützung und Gestaltung dieses Prozesses hat das Bundeskabinett am 15.03.2023 die <a href="https://www.bmuv.de/wasserstrategie">Nationale Wasserstrategie</a> beschlossen. Mit der Vision <em>„Der Schutz der natürlichen Wasserressourcen und der nachhaltige Umgang mit Wasser in Zeiten des globalen Wandels sind in Deutschland in allen Lebens- und Wirtschaftsbereichen zum Wohle von Mensch und Umwelt verwirklicht“</em>. Langfristig soll der Zugang zu qualitativ hochwertigem Trinkwasser erhalten, der verantwortungsvolle Umgang mit Grund- und Oberflächengewässern auch in anderen Sektoren gewährleistet und der natürliche Wasserhaushalt und die ökologische Entwicklung unserer Gewässer unterstützt werden. In den 78 Aktionen des „Aktionsprogramms Wassers“ sind umfassende Maßnahmen enthalten, die die Anpassung der Wasserwirtschaft an den Klimawandel, aber auch andere Themenfelder, wie das Risiko der Stoffeinträge oder die Bewusstseinsbildung im Kontext Wasser voranbringen. Mit Blick auf die Anpassung an die Folgen des Klimawandels, insbesondere an Trockenheit und Dürre wird eine breite Palette an Maßnahmen vorgeschlagen. So sollen z.B. die Daten und Prognosemöglichkeiten für den Wasserhaushalt sowie das Grundwassermonitoring verbessert werden. Dies ermöglicht die frühzeitige Reaktion auf langfristige Veränderungen in den Grundwasserressourcen, aber auch die kurzfristige Steuerung von Wasserentnahmen, um eine Übernutzung unserer Wasserressourcen zu vermeiden. Es sollen Standards für Wasserversorgungskonzepte und Konzepte für die wassereffiziente Nutzung für alle Sektoren sowie den Umgang mit Wassernutzungskonflikten entwickelt und etabliert werden. Maßnahmen zur Renaturierung und für den Wasserrückhalt in der Fläche werden ebenfalls zentral vorgeschlagen. Sie leisten einen wichtigen Beitrag für einen ausgeglichenen Wasserhaushalt und helfen so den Auswirkungen von Trockenheit vorzubeugen.</p><p>Das ⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>⁠ empfiehlt landwirtschaftliche Anpassungsmaßnahmen, die die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/r?tag=Resilienz#alphabar">Resilienz</a>⁠ (Robustheit) der Landwirtschaft gegen extreme Wetterbedingungen steigern. Kritisch sind aus Sicht des UBA langfristige und pauschale Subventionierungen der Landwirtschaft bei trockenheitsbedingten Ernteausfällen, da diese das ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimarisiko#alphabar">Klimarisiko</a>⁠ der Landwirtschaft von der Betriebsebene auf die Gesamtgesellschaft verlagern und zur Folge haben können, dass sinnvolle Anpassungsmaßnahmen auf Betriebsebene weniger engagiert in Angriff genommen werden.</p><p>Ist die Trockenheit erst einmal da, ist es in der Regel bereits zu spät. Doch im Vorfeld sind viele Maßnahmen sinnvoll, die sich positiv auf den Wasserrückhalt auswirken, aber häufig auch positive Effekte in Hinblick auf andere Umweltgüter haben. Mulchsaat und Pflugverzicht (konservierende Bodenbearbeitung) können beispielsweise die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/v?tag=Verdunstung#alphabar">Verdunstung</a>⁠ reduzieren und haben weitere positive Wirkungen auf die Bodenfruchtbarkeit. Auch durch Sorten und Kulturarten, die besser mit ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Trockenstress#alphabar">Trockenstress</a>⁠ zurechtkommen, können Ertragsausfälle reduziert werden. Überhaupt kann durch eine größere Diversifizierung an angebauten Sorten und Kulturarten das Risiko starker Ernteeinbußen oder gar eines Totalausfalls deutlich reduziert werden, denn jede Kulturart hat eigene Ansprüche an die Menge und den Zeitpunkt der Wasserversorgung.&nbsp;&nbsp;Wenn bewässert wird, sollte dies bedarfsgerecht, effizient und mit möglichst geringen Verdunstungsverlusten erfolgen.</p><p>Weiterhin ist es wichtig, Wasser stärker in der Fläche, in der Landschaft zu halten. Wo es die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/l?tag=Landnutzung#alphabar">Landnutzung</a>⁠ ermöglicht, helfen Wiedervernässung, die Reduzierung von Entwässerungen und das Zulassen von Überschwemmungen Wasser in der Landschaft zu halten. Dieses bereitet auf trockene Perioden vor und könnte helfen, sie zu überstehen. Wenn Flächen für die Wiedervernässung von Mooren zur Verfügung gestellt werden können, hilft das dem lokalen Wasserhaushalt und Klimagase können gebunden werden. Im Projekt <a href="https://www.umweltbundesamt.de/publikationen/auswirkung-des-klimawandels-auf-die">WADKlim</a> haben die Forschenden im Auftrag des UBA einen <a href="https://www.umweltbundesamt.de/dokument/katalog-wasserrueckhalt-flaeche">Maßnahmenkatalog zum Wasserrückhalt</a> erstellt, der 69 Maßnahmen zur Erhöhung des Wasserrückhalts in der Landschaft enthält. Die Auswertung zeigt, dass die meisten Maßnahmen positive oder sehr positive Wirkungen auf die verschiedenen Ziele für den lokalen Wasserhaushalt, die Verzögerung des Abflusses, den Wasserrückhalt in Böden, die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/g?tag=Grundwasserneubildung#alphabar">Grundwasserneubildung</a>⁠ oder das ⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Wasserdargebot#alphabar">Wasserdargebot</a>⁠ in Trockenzeiten haben.</p><p>Winderosion ist eine Herausforderung für den Bodenschutz. Gegen Winderosion bei trockener ⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Witterung#alphabar">Witterung</a>⁠ helfen neben der Wahl geeigneter Fruchtfolgen Mulchsaat, Untersaaten oder Zwischenfruchtanbau, vor allem bei Kulturen mit späten Aussaatterminen wie Sommergetreide, Mais und Zuckerrübe. Bei der Bodenbearbeitung kann viel durch die Erhöhung der Oberflächenrauigkeit und eine intensive Humuswirtschaft gewonnen werden, die die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Bodenfeuchte#alphabar">Bodenfeuchte</a>⁠ im Oberboden erhält.</p><p>Agroforst (d.h. landwirtschaftliche Kulturen und Baumreihen im Wechsel) wirkt ebenfalls als Schutz vor Winderosion und verbessert durch höhere Gehalte von Bodenkohlenstoff die Wasserhaltefähigkeit und das Kleinklima vor Ort.</p><p>In der Forstwirtschaft haben die zuständigen Stellen bereits seit einigen Jahren den Waldumbau begonnen, um mit angepassten Arten und der Gestaltung von Mischwäldern die Monokulturen zu reduzieren und die Resilienz (Fähigkeit des Ökosystems, auf Störungen zu reagieren) zu verbessern. So sieht die Schaffung klimarobuster Wälder im Bundesforst die stabile, strukturreiche und standortgerechte Entwicklung von Mischwäldern vor. Dies muss konsequent fortgesetzt werden.</p><p>Auch die Kommunen müssen sich an Hitze und Trockenheit anpassen. Das setzt ein neues Denken und einen Paradigmenwechsel voraus. Ein Ziel in der Stadtentwicklung und in der Wasserwirtschaft muss daher die Annäherung an die natürliche Wasserbilanz sein. Mit Hilfe naturnaher Maßnahmen wird Wasser nicht mehr abgeführt, sondern verbleibt im ⁠<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Einzugsgebiet#alphabar">Einzugsgebiet</a>⁠. Mögliche Maßnahmen neben der Versickerung von Regenwasser sind die Entsiegelung befestigter Flächen, lokale grüne und blaue Infrastrukturen, wie Straßenbäume, Fassaden- und Dachbegrünungen sowie Verdunstungsmöglichkeiten von gespeichertem Regenwasser. Ferner fördern Frischluftschneisen sowie die Kühlung und Verschattung von Gebäuden und öffentlichen Räumen ein gesundes Stadtklima. Naturnahe Elemente, wie etwa Mulden-Rigolen Systeme, stärken die dezentrale Regenwasserversickerung und -verdunstung und helfen Bodenfeuchte und Grundwasserneubildung in urbanen Räumen zu erhöhen. Dies verbessert die Pflanzenversorgung in Trockenphasen und verringert Hitzeeffekte. Für Dürreperioden können darüber hinaus Bewässerungsmöglichkeiten etabliert werden, die jedoch effizient und wassersparend gestaltet sein müssen. Bei der Verwendung von Brauchwasser (z.B. Regenwasser, aufbereitetes Grauwasser (gering verschmutztes Abwasser), aufbereitetes Kommunalabwasser) zur Bewässerung von urbanen Grünflächen sind chemische und hygienische Anforderungen abzuleiten bzw. zu berücksichtigen.</p><p>Darüber hinaus wird ⁠<a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Anpassung_an_den_Klimawandel#alphabar">Anpassung an den Klimawandel</a>⁠ in der Städtebauförderung gestärkt, indem beispielsweise grüne Infrastrukturen wie Stadtgrün gefördert werden.</p><p>Was können Bürger*innen bei Trockenheit tun? </p><p>Die Trinkwassernutzung ist in den letzten Jahrzehnten durch ein hohes Bewusstsein bei den Bürger*innen und zum Beispiel den Einsatz von wassersparenden Armaturen und Geräten kontinuierlich zurückgegangen. So hat sich die Trinkwassernutzung im Haushalt bei etwa 129 Litern pro Person und Tag eingependelt. Wir müssen aber davon ausgehen, dass gerade in heißen und trockenen Sommern diese Werte höher liegen. Grundsätzlich sollte mit Wasser – insbesondere mit Warmwasser – sorgsam umgegangen werden. Dazu gehört, Waschmaschine und Geschirrspüler nur anzuschalten, wenn sie voll beladen sind oder das Vollbad durch eine Dusche zu ersetzen. Außerdem gilt: Alle Maßnahmen, die zu einer geringeren Verschmutzung der Gewässer beitragen, erhöhen die Wasserverfügbarkeit. Dazu tragen zum Beispiel der Kauf von Lebensmittel aus ökologischer Landwirtschaft, der Verzicht auf ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Pflanzenschutzmittel#alphabar">Pflanzenschutzmittel</a>⁠ und Bioziden in Garten und Haushalt und die ordnungsgemäße Entsorgung von Arzneimitteln bei. Weitere Tipps finden sich <u>im Flyer </u><a href="https://www.umweltbundesamt.de/publikationen/flyer-unser-wasser-unsere-verantwortung-was-kann">„Unser Wasser – unsere Verantwortung</a><u>“ und </u><a href="https://www.umweltbundesamt.de/umwelttipps-fuer-den-alltag/heizen-bauen/warmwasser">hier</a>.</p><p>An Hitzetagen ist ein angepasstes Verhalten mit entsprechender Kleidung, Aufenthalt im Schatten und ausreichendem Trinken wichtig.</p><p>Das Gießen sollte nicht bei Hitze in der Mittagszeit erfolgen, sondern am frühen Morgen oder am späten Abend – dann verdunstet das Wasser nicht so schnell. Am frühen Morgen ist es sogar besser als am späten Abend, da dann die Bodentemperaturen und folglich auch die Verluste durch Bodenevaporation (⁠<a href="https://www.umweltbundesamt.de/service/glossar/v?tag=Verdunstung#alphabar">Verdunstung</a>⁠) niedriger sind. Ansonsten gilt: Lieber seltener gießen und gut durchfeuchten, als häufig und wenig (im ersten Fall bilden sich die Wurzelsysteme dann auch in die Tiefe aus). Der Deutsche Wetterdienst empfiehlt regional in welchem <a href="https://www.dwd.de/DE/leistungen/bereg_interv/beregintervall.html?nn=588520#buehneTop">Intervall</a> bewässert werden sollte.</p><p>Am besten sollten nicht die Blätter, sondern direkt der Erdboden gegossen werden – dann bilden sich weniger Pilze und die Blätter riskieren nicht, durch den Lupen-Effekt zu verbrennen. Nach Möglichkeit sollte gesammelte Regenwasser zur Bewässerung von Garten und Balkonpflanzen zum Einsatz kommen. Das Gießen von Pflanzen, Bäumen, Obst und Gemüse in Haus und Garten ist die einfachste und sinnvollste Nutzung von Regenwasser. Bei anhaltender Trockenheit können Kommunen und Wasserversorgungsunternehmen weitergehende Hinweise zur Gartenbewässerung und dem Befüllen von Pools geben.</p><p>Weitere Praxistipps gibt es in den <a href="https://www.umweltbundesamt.de/umwelttipps-fuer-den-alltag/garten-freizeit/regenwassernutzung">UBA-Umwelttipps für den Garten</a>.&nbsp;</p><p>Der Wert unserer Stadt- und Straßenbäume ist unschätzbar. Sie regulieren zum Beispiel das Mikroklima, spenden Schatten, filtern Emissionen aus Luft und Boden, werten das Stadtbild auf und sind Lebensraum stadttypischer Vogel- und Insektenarten. Stadtbäume wachsen meist unter schlechteren Standortbedingungen als Bäume in der Natur und leiden unter Verdichtung, Schadstoffen oder Streusalz, so dass die Folgen des Klimawandels – wie Trockenheit – sie zusätzlich belasten. Gesunde Straßenbäume sind jedoch für die Kühlung der Städte durch deren kombinierte Wirkung aus Verdunstungsleistung und Schattenwurf von besonderer Bedeutung, da sie der Aufheizung entgegenwirken.&nbsp;</p><p>Wie bei jungen Stauden und Gemüse auch, brauchen gerade junge Straßenbäume besonders viel Wasser. Ihre Wurzeln reichen meist noch nicht bis zum Grundwasserspiegel. Mittlerweile gibt es eine Reihe von Maßnahmen, um eine Wasserversorgung der jungen Bäume auch bei Trockenheit zu ermöglichen, z.B. über Baumbewässerungsbeutel oder Gießringe. Aber auch weiterhin ist Eigeninitiative gefragt. Bei länger anhaltender Trockenheit sind dabei Informationen von Kommunen und Wasserversorgungsunternehmen zu beachten, ob eine Bewässerung in Gärten und auf kommunalen Flächen mit Trinkwasser ggf. eingeschränkt ist. „Pi mal Daumen“ braucht ein Baum mindestens zehn Liter Wasser pro Tag (d.h. einen Wassereimer), idealerweise in ein bis zwei größeren Wassergaben pro Woche. Der Berliner Bezirk Friedrichshain-Kreuzberg hat beispielsweise Ende April 2019 eine Nachbarschafts-Aktion angestoßen, die Bürger*innen aufruft, beim Gießen von Straßenbäumen zu helfen.&nbsp;Ein weiteres Beispiel ist das <a href="https://www.hamburg.de/politik-und-verwaltung/behoerden/bukea/themen/hamburgs-gruen/baeume/strassenbaeume-online">Straßenbaumkataster in Hamburg,</a> das über seine interaktive Karte das Spenden für einen Baum ermöglicht (Spenden-Aktion Mein Baum – Meine Stadt). Wie Sie den Bäumen in Ihrer Umgebung richtig helfen können, erfahren Sie mit einem Klick auf eine Initiative der Stadt Berlin mit „<a href="https://www.giessdenkiez.de/">Gieß den Kiez</a>“.</p>

Klimaatlas NRW - Niederschlag: Precipitation Stripes

Der Datensatz bestehend aus sogenannten Precipitation Stripe-Diagrammen der mittleren jährlichen Niederschlagssumme der folgenden Flächeneinheiten: Gemeinden, Kreise, Regierungsbezirke, Planungsregionen, Großlandschaften und NRW. Die Darstellung als Niederschlagsstreifen beruhen auf der Idee von Ed Hawkings, University of Reading, UK, jeweils umgesetzt durch das Landesamt für Natur, Umwelt und Klima NRW mit den flächenhaften Mittelwerten aus den Temperaturrastern des Deutschen Wetterdienstes, Climate Data Center (CDC). Je höher eine Jahresniederschlagssumme, desto desto dunkel-blauer, je geringer desto brauner. Die Zeitreihe beginnt 1881 und endet 2025. Die Zeitreihe beginnt 1881 und endet 2025. In jeder .zip-Datei befindet sich das Streifendiagramm als .jpeg-Datei oder .pdf -Datei. Zusätzlich werden die Mittelwerte 1881-2025 als CSV-Tabelle bereitgestellt, ebenso wie eine Übersichtstabelle der jeweiligen Minimal- und Maximalwerte der jeweiligen Gebietskulisse.

Klimaatlas NRW - Temperatur: Warming Stripes

Der Datensatz enthält die Warming Stripe-Diagramme der mittleren jährlichen Lufttemperatur der folgenden Flächeneinheiten: Gemeinden, Kreise, Regierungsbezirke, Planungsregionen, Großlandschaften und NRW. Die Darstellung als Temperaturstreifen beruhend auf der Idee von Ed Hawkings, University of Reading, UK, jeweils umgesetzt durch das Landesamt für Natur, Umwelt und Klima NRW mit den flächenhaften Mittelwerten aus den Temperaturrastern des Deutschen Wetterdienstes, Climate Data Center (CDC). Je wärmer eine Jahresmitteltemperatur, desto dunkel-roter der Streifen, je kühler, desto dunkel-blauer. Die Zeitreihe beginnt 1881 und endet 2025. In jeder .zip-Datei befindet sich das Streifendiagramm als .jpeg-Datei oder .pdf -Datei. Zusätzlich werden die Mittelwerte 1881-2025 als CSV-Tabelle bereitgestellt, ebenso wie eine Übersichtstabelle der jeweiligen Minimal- und Maximalwerte der jeweiligen Gebietskulisse.

Information System and Data Center for geoscientific data

ISDC's online service portal is an access point for all manner of geoscientific geodata, its corresponding metadata, scientific documentation and software tools. The majority of the data and information, the portal currently offers to the public, are global geomonitoring products such as satellite orbit and Earth gravity field data as well as geomagnetic and atmospheric data for the exploration. These products for Earths changing system are provided via state-of-the art retrieval techniques. The projects hosted are: CHAMP, GGP, GRACE, GNSS, GGSP, GGOS, GPS-PDR, ICGEM, TerraSAR-x (TSX-TOR) and TanDEM-X.

1 2 3 4 5114 115 116