Nitrogen deposition in tropical areas is projected to increase rapidly in the next decades due to increase in N fertilizer use, fossil fuel consumption and biomass burning. As tropical forest ecosystems cover about 17 percent of the land surface and are responsible for about 40 percent of net primary production, even small changes in N (and consequently C) cycling can have global consequences. Until now studies an consequences of enhanced N input in tropical forest ecosystems have been very limited and even very rarely addressed its deleterious effects to the environment. There is undoubtedly a huge discrepancy between the expected increase in N deposition in the tropics and the present knowledge an how tropical forest ecosystems will react to this extra input of reactive N. Our research aims at quantifying the changes in processes of N retention (plant growth, biotic and abiotic N immobilization in the soil) and losses (gaseous N losses, nitrification, denitrification, leaching of different forms of dissolved N). Implementation of policy and management tools, like the international trading of carbon credits under the Kyoto Protocol, need researches that allow us to better understand the consequences of environmental change (N deposition) an forest productivity. Our research will have important implications for predicting future responses of forest C cycle to changes in N deposition, and for the role of N deposition in tropical forests to affect potential feedback mechanisms of CO2 fertilization and climate change.
Die in den äquatornahen Bereichen der Tropen innerhalb des ganzen Jahres relativ gleichbleibenden Lufttemperaturen veranlassten viele Wissenschaftler dazu, zu glauben, dass die Jahrringforschung in den gesamten Tropen nicht bzw. nur sehr schwer möglich ist. Sie gingen von einem kontinuierlichen Wachstum der Bäume und infolgedessen von einem Nichtvorhandensein von Jahrringen aus. In den letzten Jahren gelang es jedoch verschiedenen Wissenschaftlern die Existenz von Jahrringen und Zuwachszonen anderer Periodizität in tropischen Hölzern nachzuweisen. Somit konnten die bereits zu Beginn des 20. Jahrhunderts erbrachten Ergebnisse früher Pioniere auf dem Gebiet der Jahrringforschung bestätigt werden. Zuwachszonen in tropischen Hölzern entstehen dann, wenn die kambiale Aktivität aufgrund ungünstiger Wuchsbedingungen reduziert wird oder zum erliegen kommt. Als Ursache können hier die Trockenphasen in Gebieten mit Trockenzeiten sowie die submerse Phase in periodisch überschwemmten Gebieten genannt werden. Die Periodizität des Wachstums tropischer Bäume zu erkennen und zu verstehen, ist eine wichtige Voraussetzung für die Beantwortung vieler Fragen zu Zustand und Entwicklung der tropischen Wälder. Nur mit diesem Wissen und durch die Kenntnis der Zusammenhänge zwischen Umwelt und Wachstum können ökologische Fragestellungen angegangen, Fragen bezüglich der nachhaltigen Bewirtschaftung tropischer Waldökosysteme geklärt und auch die gerade in jüngster Zeit an Bedeutung gewinnenden Aspekte der Bedeutung der tropischen Wälder für das globale Klimageschehen ausreichend genau beantwortet werden. Das Institut für Waldwachstum erforscht in Zusammenarbeit mit Partnern an der Universidade Federal de Santa Maria (Brasilien) das Wachstum verschiedener wertvoller heimischer Baumarten aus Rio Grande do Sul (Brasilien). Es werden Ansätze zur nachhaltigen Bewirtschaftung naturnaher Wälder hergeleitet. Das Institut für Waldwachstum hat darüber hinaus das Ziel, für tropische Bäume geeignete Analysemethoden zu schaffen, mit deren Hilfe auch große Stichproben weitestgehend automatisiert analysiert werden können. In diesem Zusammenhang besteht eine enge Kooperation in Forschung und Lehre mit Dr. Martin Worbes, Universität Göttingen.
In komplexen Ökosystemen wie tropischen Regenwäldern bietet die Analyse von Umweltgradienten, insbesondere Höhengradienten, die beste Möglichkeit, Muster und Ursachen der Diversität sehr artenreicher Organismengruppen zu verstehen. Die Nachtfalterfamilie Geometridae hat sich als Modellgruppe unter anderem in Untersuchungen in Ecuador sehr bewährt. Nun soll im Rahmen eines renommierten internationalen Projektes (ALAS) in Costa Rica eine neue Studie durchgeführt werden. Hier besteht die weltweit einmalige Möglichkeit, die Diversität der Geometridae entlang eines mehr als 2600 m umfassenden Höhengradienten zu untersuchen und mit anderen Arthropodengruppen sowie Parametern der Vegetation und des Klimas zu korrelieren. Dabei sollen die für Artenreichtum und Artenturnover verantwortlichen Umweltparameter gefunden werden. Messungen der Körpertemperaturen sollen klären, ob es einen unmittelbaren Zusammenhang zwischen der niedrigen Flugtemperatur von Geometriden und ihrer Höhenverbreitung gibt. Zuchten und Fraßexperimente werden zusätzlich wichtige Ergebnisse zur Frage der Spezialisierung tropischer herbivorer Insekten erbringen.
Nutzung der Kuestenressourcen in Ecuador: Die Mongrovenwaelder und ihre Beeintraechtigung durch die Garnelenzucht.' 'Arten- und Biotopschutzfunktion linienfoermiger Biotope in den Agrarlandschaft.' 'Graphische Ueberflutungssimulationen unter Einsatz eines digitalen Hoehenmodells.
Im Rahmen eines Kooperationsprojektes mit dem Kölner Zoo und Partnern in Vietnam hat das Projekt das Ziel, die Herpetodiversität in Vietnam zu erfassen und verschiedene Naturschutzprojekte zu realisieren.
Neben Studien zur Diversität von Gefäßpflanzen in ausgewählten Untersuchungsflächen wurde der Erforschung der endemischen Palmenart Normanbya normanbyi besondere Aufmerksamkeit gewidmet. Im Mittelpunkt stehen Studien zur Blüten- und Fruchtökologie. Dabei wurde u.a. eine bisher unbeschriebene Gattung der Gallmücken entdeckt. Der interdisziplinäre Forschungsansatz soll wesentliche Erkenntnisse über Tier-Pflanze-Interaktionen in Regenwäldern liefern. Hauptaugenmerk liegt auf der Erfassung der Blüten- und Fruchtphänologie eines tropischen Tieflandregenwaldes in Nordostqueensland. Das Projekt beinhaltet die Erfassung der Phänologie aller Unterwuchsarten, Lianen und Baumarten in einer 1 ha großen Untersuchungsfläche. Weiterführend wird die Blühphänologie einer ausgewählten Palmenart Normanbay normanbyi erfasst und mit Hilfe molekulargenetischer Methoden im Zusammenhang mit der Verwandtschaftsstruktur ausgewählter Populationen betrachtet. Die Feldarbeiten für das 2003 begonnene Projekt wurden im Juli 2005 abgeschlossen.
In diesem Projekt werden wir ein integriertes Modell zu Biodiversität, ökologischen und sozioökonomi-schen Funktionen in sumatrischen Transformationssystemen entwickeln, implementieren und analy-sieren. Dazu soll ein agentenbasiertes Haushaltsmodell mit einem Landnutzungsmodell gekoppelt werden, um 1) Synergien und Trade-offs innerhalb und zwischen Diversität und Funktionen zu untersuchen und 2) von der lokalen Ebene zur Landschaftsebene und höher zu extrapolieren. Das Modell wird in Zusammenarbeit mit einer großen Zahl von Teilprojekten des SFBs entwickelt. Aus dem Modell werden wir Hypothesen für zukünftige ökologisch-ökonomische Forschung ableiten.
Unter Einsatz der wichtigsten bekannten morphologischen und funktionellen Parameter eines Regenwaldes wurde auf der Basis einer individiumsbezogenen Berechnung und naturnahen Bildschirmdarstellung ein Regenwaldmodell konstruiert, mit dem die wesentlichsten Vorgänge simuliert werden können. Dazu gehören etwa Regeneration, Artenverteilung, Konkurrenz, Artendominanz, Biomasseverteilung und -entnahme, Trockenheitstoleranz u. v. m. Dadurch ist es möglich sowohl angewandte Probleme der Forstwirtschaft als auch theoretische Fragestellungen zu lösen. In einem komplexen praxisorientierten Computermodell können Abläufe des Regenwaldwachstums und der Regenwaldevolution wirklichkeitsnahe simuliert werden. Zusätzlich zu Nährstoffbilanzen, Lichtwerten und zahlreichen ökologischen Einflüssen wird das Wachstum und Aussehen des Waldes naturnahe am Bildschirm sichtbar gemacht und kann per Maus analysiert und verändert werden. Nachdem nunmehr das Modell funktioniert, soll es als Experimentalfeld für auch angewandte Fragestellungen dienen.
Der hochdiverse tropische Regenwald weist eine Fülle verschiedener struktureller Parameter auf, die sich je nach Exposition und Meereshöhe graduell oder abrupt ändern. Schichtung, Bestandesarchitektur, Lebensformenanteile (Palmen, Baumfarne, Hochstauden, Epiphyten etc.), Diversitätsgrößen, Durchwurzelung, Nähr- und Spurenelementverteilung ändern sich entlang von Höhengradienten oder auch entsprechend unterschiedlicher Störungsregime. Beispiele dieser Kenngrößen und ihrer Funktion sollen erfasst werden und insbesondere mit dem Auftreten der Baumlücken verknüpft werden. Baumlücken ('gaps') spielen für die Regeneration und damit Erhaltung der hohen Biodiversität und heterogenen Bestandesstruktur in Primärwäldern eine entscheidende Rolle. Wahrscheinlich lässt sich in Primärwäldern ein großer Teil der für jede Art wesentlichen Kennfaktoren, wie Regenerationsdynamik, Keimung, Jungwuchs, Alterspyramide, Zuwachsraten, etc. aus der Baumlückendynamik ableiten. Für Bergregenwälder muß dies allerdings erst noch aufgezeigt werden. Die Einbeziehung verschiedener Störungsursachen rezenter Baumfallücken gibt Hinweise auf mögliche Entwicklungsrichtungen der Waldlücken, also auch auf ihre mögliche weitere Sukzession. Je nach Artenzahl an vorkommenden Baumarten sind vergleichende Untersuchungstransekte notwendig, die in Ecuador einerseits, in Costa Rica andererseits zur Verfügung stehen und damit ideale Vergleichsmöglichkeiten bieten.
Niedrige Wolken sind Schlüsselbestandteile vieler Klimazonen, aber in numerischen Modellen oft nicht gut dargestellt und schwer zu beobachten. Kürzlich wurde gezeigt, dass sich während der Haupttrockensaison im Juni und September im westlichen Zentralafrika eine ausgedehnte niedrige Wolkenbedeckung (engl. „low cloud cover“, LCC) entwickelt. Eine derart wolkige Haupttrockenzeit ist in den feuchten Tropen einzigartig und erklärt wahrscheinlich die dichtesten immergrünen Wälder in der Region. Da paläoklimatische Studien auf eine Instabilität hinweisen, kann jede Verringerung des LCC aufgrund des Klimawandels einen Kipppunkt für die Waldbedeckung darstellen. Daher besteht ein dringender Bedarf, das Auftreten, die Variabilität und die bioklimatischen Auswirkungen des LCC in westlichen Zentralafrika besser zu verstehen.Um diese Ziele zu erreichen, wurde ein Konsortium aus französischen, deutschen und gabunischen Partnern aufgebaut, zu dem Meteorologen, Klimatologen und Experten für Fernerkundung und Waldökologie gehören. Die meteorologischen Prozesse, welche die Bildung und Auflösung der LCC im Tagesgang steuern, werden anhand von zwei Ozean-Land-Transekten auf der Grundlage einer synergistischen Analyse von historischen In-situ Beobachtungen, von Daten einer Feldkampagne und anhand von atmosphärischen Modellsimulationen untersucht. Die Ergebnisse werden mit einem kürzlich entwickelten konzeptionellen Modell für LCC im südlichen Westafrika verglichen.Die intrasaisonale bis interannuale Variabilität des LCC wird durch die Analyse von In-Situ-Langzeitdaten und Satellitenschätzungen quantifiziert. Unterschiede im Jahresgang des LCC (d.h. jahreszeitlicher Beginn und Rückzug, wolkenarme Tage) und die Ausdehnung ins Inland werden dokumentiert. Ansätze, die auf Wettertypen und äquatorialen Wellen basieren, werden verwendet, um intrasaisonale Variationen des LCC zu verstehen. Die Auswirkungen lokaler und regionaler Meeresoberflächentemperaturen auf die LCC-Entwicklung und ihre Jahr-zu-Jahr Variabilität werden bewertet, wobei statistische Analysen und spezielle Sensitivitätsversuche mit einem regionalen Klimamodell verknüpft werden.Schließlich wird der Einfluss von LCC auf die Licht- und Wasserverfügbarkeit bzw. die Waldfunktion anhand von In-Situ-Messungen untersucht. Die Ergebnisse werden mit Messungen aus der nördlichen Republik Kongo, wo die Trockenzeit sonnig ist, sowie mit einem einfachen Wasserhaushaltsmodells, das an die Region angepasst ist, verglichen. Die Wasserhaushaltsanalysen sollen die Kompensations- oder Verstärkungseffekte von Regen im Vergleich zur potenziellen Evapotranspiration, beide moduliert durch die LCC, auf das Wasserdefizit aufzeigen.Die Ergebnisse von DYVALOCCA werden zum ersten konzeptionellen Modell für Wolkenbildung und -auflösung im westlichen Zentralafrika führen und eine Hilfestellung für die Bewertung von Klimawandel-Simulationen mit Blick auf potentielle Kipppunkte für die immergrünen Regenwälder in der Region geben.
Origin | Count |
---|---|
Bund | 358 |
Land | 10 |
Wissenschaft | 4 |
Type | Count |
---|---|
Ereignis | 26 |
Förderprogramm | 316 |
Strukturierter Datensatz | 3 |
Text | 24 |
unbekannt | 2 |
License | Count |
---|---|
geschlossen | 21 |
offen | 346 |
unbekannt | 4 |
Language | Count |
---|---|
Deutsch | 323 |
Englisch | 83 |
Resource type | Count |
---|---|
Archiv | 4 |
Bild | 1 |
Datei | 30 |
Dokument | 12 |
Keine | 238 |
Unbekannt | 3 |
Webseite | 123 |
Topic | Count |
---|---|
Boden | 280 |
Lebewesen & Lebensräume | 371 |
Luft | 220 |
Mensch & Umwelt | 364 |
Wasser | 207 |
Weitere | 364 |