API src

Found 389 results.

Related terms

Planungshinweiskarte Hitze und Trinkbrunnen Koeln

<p>Die Planungshinweiskarte Hitze ist eine Klimaanalysekarte, welche die zukünftig zu erwartenden stadtklimatischen Gegebenheiten in Köln als flächenhafte Übersicht darstellt.</p> <p>Die Ausweisung der klimatisch aktiven Flächen ist nicht parzellenscharf und es bedarf bei großmaßstäbigen Planungen (z.B. Bebauungsplänen) einer zusätzlichen Auswertung der Grundlagendaten auf Detailebene.</p> <p>Grundlage für die Karte sind die Berechnungen der Anzahl der heißen Tage für die Periode 2021 bis 2050, die der Deutsche Wetterdienst mit dem Stadtklimamodell MUKLIMO_3 simuliert hat. Zur Erstellung der Karte wurde die MUKLIMO-3 Simulation basierend auf dem Regionalmodell CLM mit dem Emissionsszenario A1B ausgewählt. Für den Zeitraum 2021 bis 2050 zeigt sich im Vergleich mit dem Referenzzeitraum (1971 bis 2000) eine deutliche Zunahme der Hitzebelastung. Für die Stadt Köln bedeutet dies, dass längere Hitzeperioden mit Temperaturen über 25°C (Sommertage) und über 30°C (heiße Tage) vermehrt auftreten. Die Trinkbrunnen sind als Punktmarkierungen in der Karte dargestellt, die interaktiv angeklickt oder unten in der Detailansicht angeschaut werden können.</p>

Flood risk in a changing climate (CEDIM)

Das Projekt "Flood risk in a changing climate (CEDIM)" wird/wurde gefördert durch: Karlsruher Institut für Technologie (KIT), Center for Disaster Management and Risk Reduction Technology (CEDIM). Es wird/wurde ausgeführt durch: Karlsruher Institut für Technologie (KIT), Institut für Meteorologie und Klimaforschung, Department Troposphärenforschung.Aims: Floods in small and medium-sized river catchments have often been a focus of attention in the past. In contrast to large rivers like the Rhine, the Elbe or the Danube, discharge can increase very rapidly in such catchments; we are thus confronted with a high damage potential combined with almost no time for advance warning. Since the heavy precipitation events causing such floods are often spatially very limited, they are difficult to forecast; long-term provision is therefore an important task, which makes it necessary to identify vulnerable regions and to develop prevention measures. For that purpose, one needs to know how the frequency and the intensity of floods will develop in the future, especially in the near future, i.e. the next few decades. Besides providing such prognoses, an important goal of this project was also to quantify their uncertainty. Method: These questions were studied by a team of meteorologists and hydrologists from KIT and GFZ. They simulated the natural chain 'large-scale weather - regional precipitation - catchment discharge' by a model chain 'global climate model (GCM) - regional climate model (RCM) - hydrological model (HM)'. As a novel feature, we performed so-called ensemble simulations in order to estimate the range of possible results, i.e. the uncertainty: we used two GCMs with different realizations, two RCMs and three HMs. The ensemble method, which is quite standard in physics, engineering and recently also in weather forecasting has hitherto rarely been used in regional climate modeling due to the very high computational demands. In our study, the demand was even higher due to the high spatial resolution (7 km by 7 km) we used; presently, regional studies use considerably larger grid boxes of about 100 km2. However, our study shows that a high resolution is necessary for a realistic simulation of the small-scale rainfall patterns and intensities. This combination of high resolution and an ensemble using results from global, regional and hydrological models is unique. Results: By way of example, we considered the low-mountain range rivers Mulde and Ruhr and the more alpine Ammer river in this study, all of which had severe flood events in the past. Our study confirms that heavy precipitation events will occur more frequently in the future. Does this also entail an increased flood risk? Our results indicate that in any case, the risk will not decrease. However, each catchment reacts differently, and different models may produce different precipitation and runoff regimes, emphasizing the need of ensemble studies. A statistically significant increase of floods is expected for the river Ruhr in winter and in summer. For the river Mulde, we observe a slight increase of floods during summer and autumn, and for the river Ammer a slight decrease in summer and a slight increase in winter.

Forschungsgruppe (FOR) 2694: Large-Scale and High-Resolution Mapping of Soil Moisture on Field and Catchment Scales - Boosted by Cosmic-Ray Neutrons, Koordinationsfonds

Das Projekt "Forschungsgruppe (FOR) 2694: Large-Scale and High-Resolution Mapping of Soil Moisture on Field and Catchment Scales - Boosted by Cosmic-Ray Neutrons, Koordinationsfonds" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Potsdam, Institut für Umweltwissenschaften und Geographie, Arbeitsgruppe Wasser- und Stofftransport in Landschaften.

Northern Eurasia Earth Science Partnership Initiative (NEESPI)

Das Projekt "Northern Eurasia Earth Science Partnership Initiative (NEESPI)" wird/wurde ausgeführt durch: Max-Planck-Institut für Biogeochemie.The Northern Eurasia Earth Science Partnership Initiative, or NEESPI, is a currently active, yet strategically evolving program of internationally-supported Earth systems science research, which has as its foci issues in northern Eurasia that are relevant to regional and Global scientific and decision-making communities (see NEESPI Mission Statement). This part of the globe is undergoing significant changes - particularly those changes associated with a rapidly warming climate in this region and with important changes in governmental structures since the early 1990s and their associated influences on land use and the environment across this broad expanse. How this carbon-rich, cold region component of the Earth system functions as a regional entity and interacts with and feeds back to the greater Global system is to a large extent unknown. Thus, the capability to predict future changes that may be expected to occur within this region and the consequences of those changes with any acceptable accuracy is currently uncertain. One of the reasons for this lack of regional Earth system understanding is the relative paucity of well-coordinated, multidisciplinary and integrating studies of the critical physical and biological systems. By establishing a large-scale, multidisciplinary program of funded research, NEESPI is aimed at developing an enhanced understanding of the interactions between the ecosystem, atmosphere, and human dynamics in northern Eurasia. Specifically, the NEESPI strives to understand how the land ecosystems and continental water dynamics in northern Eurasia interact with and alter the climatic system, biosphere, atmosphere, and hydrosphere of the Earth. The contemporaneous changes in climate and land use are impacting the biological, chemical, and physical functions of the northern Eurasia, but little data and fewer models are available that can be used to understand the current status of this expansive regional system, much less the influence of the northern Eurasia region on the Global climate. NEESPI seeks to secure the necessary financial and related institutional support from an international cadre of sponsors for developing a viable understanding of the functioning of northern Eurasia and the impacts of extant changes on the regional and Earth systems. Many types of ground and integrative (e.g., satellite; GIS) data will be needed and many models must be applied, adapted or developed for properly understanding the functioning of this cold and diverse regional system. Mechanisms for obtaining the requisite data sets and models and sharing them among the participating scientists are essential and require international and active governmental participation. (abridged text)

Nutzbare Lokale Klimainformationen für Deutschland, Teilprojekt 4: Evaluierte REMO-Input-Daten für die Wirkmodellierung

Das Projekt "Nutzbare Lokale Klimainformationen für Deutschland, Teilprojekt 4: Evaluierte REMO-Input-Daten für die Wirkmodellierung" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Universität Würzburg, Physikalisches Institut.

Modellentwicklung zur regionalen Vorhersage der N2O-Emissionen aus bodenchemischen und bodenphysikalischen Parametern unter spezieller Berücksichtigung des oberflächennahen N2O-Gehaltes in Böden

Das Projekt "Modellentwicklung zur regionalen Vorhersage der N2O-Emissionen aus bodenchemischen und bodenphysikalischen Parametern unter spezieller Berücksichtigung des oberflächennahen N2O-Gehaltes in Böden" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Bonn, Agrikulturchemisches Institut.Bisherige Ansätze zu Modellierung von Lachgasemissionen haben noch zu keinen zufriedenstellenden Ergebnissen geführt bzw. die Validierung von Modellen steht noch aus, da u.a. die Bestimmung der Gasdiffusion im Oberboden sowie der Gasübergang in Atmosphäre schwierig bestimmbar ist. Wir stellen für diesen Schritt einen empirischen Modellansatz zur Vorhersage von Lachgasemissionen aus oberflächennahen N2O-Gehalten des Bodens vor, der im Rahmen des Projektes zu einer allgemeinen Anwendbarkeit weiterentwickelt werden soll. Hierbei werden über empirische Transferfaktoren, die in Abhängigkeit von Bodenart, Wassergehalt und Temperatur ermittelt werden, die Emissionen aus Gasgehalten im Boden berechnet. Zur einfachen Bestimmung des N2O-Gehaltes im Oberboden steht ein in unserem Hause entwickeltes neuartiges Bodenprobenahmegerät zur Verfügung. Die Einfachheit der Probenahme und gleichzeitige Erfassung von Gas im Boden sowie den steuernden Größen Nmin und DOC, erlaubt zudem ein Monitoring der Spurengasemissionen auf regionaler Ebene sowie die Validierung bestehender Modelle.

Sedimentfallen und magmatogene Waesser als geochemische Referenzen fuer die gegenwaertige Oberflaechensedimente der vulkanischen Eifel

Das Projekt "Sedimentfallen und magmatogene Waesser als geochemische Referenzen fuer die gegenwaertige Oberflaechensedimente der vulkanischen Eifel" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Köln, Institut für Mineralogie und Petrographie.Die natuerliche Belastung der Gesteine, Waesser und Boeden an umweltrelevanten Spurenstoffen im Vorfeld der anthropogenen Verschmutzung, soll fuer ein regionales Modell anhand von jungtaertiaeren Sedimentfallen und Quellwaessern aufgeklaert werden. Rezente Boeden, Sedimente und Waesser sollen zu den regionalen geochemischen Standard in Beziehung gesetzt werden.

Schwerpunktprogramm (SPP) 1889: Regional Sea Level Change and Society (SeaLevel), Regionale Schwankungen des Meeresspiegels in den Randmeeren Südost-Asiens: Mechanismen und Projektionen möglicher Trends im 21.Jahrhundert

Das Projekt "Schwerpunktprogramm (SPP) 1889: Regional Sea Level Change and Society (SeaLevel), Regionale Schwankungen des Meeresspiegels in den Randmeeren Südost-Asiens: Mechanismen und Projektionen möglicher Trends im 21.Jahrhundert" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR), Forschungsbereich 1: Ozeanzirkulation und Klimadynamik, Forschungseinheit Theorie und Modellierung.Durch hochauflösende Ozeanmodellsimulationen sollen verbesserte Einblicke in die Mechanismen von multi-dekadischen Meeresspiegelschwankungen in den Schelfmeeren Südostasiens und des Indonesischen Archipels gewonnen werden und verfeinerte Projektionen möglicher Trends infolge der Klimaänderungen im 21. Jahrhundert erstellt werden.

Schwerpunktprogramm (SPP) 1006: Bereich Infrastruktur - Internationales Kontinentales Bohrprogramm (ICDP); International Continental Drilling Program (ICDP), Teilprojekt: Charakterisierung der PIER-ICDP Bohrungen Mytina and Neualbenreuth Maar durch die Abbildung der elektrischen Leitfähigkeit auf lokaler und regionaler Skala (ConeEM)

Das Projekt "Schwerpunktprogramm (SPP) 1006: Bereich Infrastruktur - Internationales Kontinentales Bohrprogramm (ICDP); International Continental Drilling Program (ICDP), Teilprojekt: Charakterisierung der PIER-ICDP Bohrungen Mytina and Neualbenreuth Maar durch die Abbildung der elektrischen Leitfähigkeit auf lokaler und regionaler Skala (ConeEM)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum.Das böhmische Massiv als östlichster Teil des Variszischen Gebirgsgürtels ist eines der größten stabilen intrakontinentalen Einheiten in Zentraleuropa. Trotzdem finden sich im westlichen Teil geodynamische Aktivitäten, wie z.B. Schwarmbeben und erhöhter CO2 Fluss und Entgasungen, was auf tiefe magmatische Prozesse, Fluide aus dem Erdmantel und deren Aufstieg durch die Kruste hindeutet. Es scheint eine Verbindung zwischen dem Auftreten krustaler Erdbebenschwärme, und Änderungen des Gasflusses sowie der Isotopenzusammensetzung in den Mofetten und Quellen zu geben. Darüber hinaus, wurden in der Gegend quartäre Vulkane entdeckt; ihre magmatischen Aufstiegspfade und das Zusammenwirken mit tiefen magmatischen Prozessen und den tektonischen Rahmenbedingungen sind allerdings noch nicht vollständig verstanden. Diese offenen geowissenschaftlichen Fragen anzugehen, ist Teil des geförderten PIER-ICDP Eger Rift Projekts. In diesem Rahmen wurden in 2015/2016 magnetotellurische (MT) Experimente im Eger Rift durchgeführt, welche Auskunft über die elektrische Leitfähigkeit des Untergrundes geben. Dieser physikalische Parameter ist sensitive gegenüber gut leitenden Phasen wie Wässer und Fluide, partielle Schmelzen oder metallische Verbindungen. Mit diesen Messungen konnte zum ersten Mal ein regionales Modell der elektrischen Leitfähigkeit erstellt werden. Die auffälligsten Leitfähigkeitsanomalien waren tief reichende Kanäle, die als Wegsamkeiten für Fluide aus dem Mantel interpretiert wurden. Diese befanden sich unterhalb der Bublak und Hartousov Mofetten und unterhalb der Maare im südlichen Bereich des MT Profils. Da diese Messungen auf das Gebiet der Mofetten und Erdbebenschwärme fokussiert waren, ist die Stationsüberdeckung über den Maaren nicht ausreichend, um die beobachtete Leitfähigkeitsanomalie eindeutig zu interpretieren. Mögliche Interpretationen sind magmatische Zufuhrkanäle oder aber die Abbildung der nahegelegenen Tachov Störungszone oder der Suturzone zwischen Saxothuringikum und Tepla-Barrandium.Deshalb beantrage ich ein MT Experiment in der Region der quartären Vulkane, zumal zwei davon Kandidaten für geplante ICDP Bohrungen sind. Die Hauptziele sind (i) eine Untergrundcharakterisierung der PIER-ICDP Bohrungen durchzuführen, (ii) die Abbildung der regionalen und lokalen Leitfähigkeitsverteilung der Erdkruste und der erbohrbaren Tiefe, um besonders die flachen Maarstrukruren aber auch tektonische Strukturen, wie Scher- und Suturzonen aufzulösen, (iii) die Abbildung von Fluidwegsamkeiten und ihre Verbindung zu angenommenen tiefen magmatischen Reservoiren, (iv) die Untersuchung des Zusammenhangs zwischen quartärem Vulkanismus, der Tachov Störungszone und der nahegelegenen Suturzone zwischen Saxothuringikum und Tepla-Barrandium und (v) die Entwicklung eines konsistenten Untergrundmodells auf Basis von unterschiedlichen geophysikalischen, petrophysikalischen, geologischen und mikrobiologischen Beobachtungen.

Aerosol-Wolken-Niederschlags-Wechselwirkungen für regionale Emissionen

Das Projekt "Aerosol-Wolken-Niederschlags-Wechselwirkungen für regionale Emissionen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Leipzig, Institut für Meteorologie.Aerosol-Wolken-Wechselwirkungen stellen einen der wesentlichen Unsicherheitsfaktoren bei Verständnis und Quantifizierung der geographischen Verteilung von Wolken- und Niederschlagseigenschaften, aber auch des Strahlungsantriebs des globalen Klimawandels dar. Die grundlegende Idee des Projekts ist es, regional unterschiedliche Trends in anthropogenenen Emissionen von Aerosolen zu nutzen, um deren Einfluss auf Trends in Wolken-, Niederschlags- und Strahlungsgrößen zu bestimmen. Hierzu sollen verschiedene Szenarien in Multi-Klimamodell-Ensembles ('historische' Simulationen mit allen Strahlungsantrieben und 'Aerosol'-Simulationen mit allen Antrieben außer anthropogenem Aerosol) analysiert werden und mit Beobachtungsdaten verglichen werden. Konkret werden vier Fragen untersucht:(i) Welche Beziehung besteht zwischen regionalen Trends in Aerosolemissionen und Wolken-Strahlungs-Effekten? - Diese Studien analysieren Simulationen aus dem Multi-Modell-Ensemble.(ii) Wie erfolgreich reproduzieren die Modelle beobachtete Trends? Hier werden die Klimamodelle mit Beobachtungsdaten verglichen.(iii) Welchen Einfluss haben Emissionstrends für Aerosole und resultierende Strahlungsantriebe auf die atmosphärische Zirkulation? Simulationen mit dem Aerosol-Klima-Modell ECHAM6-HAM2 sollen für drei Zeitscheiben durchgeführt und analysiert werden.(iv) Welche Rolle spielen Emissionstrends für Änderungen in Extremniederschlägen in Südost-Asien? - Mit speziellen Simulationen sollen die verschiedenen Hypothesen getestet werden.

1 2 3 4 537 38 39