<p>Die Landwirtschaft in Deutschland trägt maßgeblich zur Emission klimaschädlicher Gase bei. Dafür verantwortlich sind vor allem Methan-Emissionen aus der Tierhaltung (Fermentation und Wirtschaftsdüngermanagement von Gülle und Festmist) sowie Lachgas-Emissionen aus landwirtschaftlich genutzten Böden als Folge der Stickstoffdüngung (mineralisch und organisch).</p><p>Treibhausgas-Emissionen aus der Landwirtschaft</p><p>Das Umweltbundesamt legt im Rahmen des <a href="https://www.bmuv.de/gesetz/bundes-klimaschutzgesetz">Bundes-Klimaschutzgesetzes (KSG)</a> eine Schätzung für das Vorjahr 2024 vor. Für die Luftschadstoff-Emissionen wird keine Schätzung erstellt, dort enden die Zeitreihen beim letzten Inventarjahr 2023. Die Daten basieren auf aktuellen Zahlen zur Tierproduktion, zur Mineraldüngeranwendung sowie der Erntestatistik. Bestimmte Emissionsquellen werden zudem laut KSG der mobilen und stationären Verbrennung des landwirtschaftlichen Bereichs zugeordnet (betrifft z.B. Gewächshäuser). Dieser Bereich hat einen Anteil von rund 14 % an den Gesamt-Emissionen des Landwirtschaftssektors. Demnach stammen (unter Berücksichtigung der energiebedingten Emissionen) 76,0 % der gesamten Methan (CH4)-Emissionen und 77,3 % der Lachgas (N2O)-Emissionen in Deutschland aus der Landwirtschaft.</p><p>Im Jahr 2024 war die deutsche Landwirtschaft entsprechend einer ersten Schätzung somit insgesamt für 53,7 Millionen Tonnen (Mio. t) Kohlendioxid (CO2)-Äquivalente verantwortlich (siehe Abb. „Treibhausgas-Emissionen der Landwirtschaft nach Kategorien“). Das entspricht 8,2 % der gesamten <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>-Emissionen (THG-Emissionen) des Jahres. Diese Werte erhöhen sich auf 62,1 Millionen Tonnen (Mio. t) Kohlendioxid (CO2)-Äquivalente bzw. 9,6 % Anteil an den Gesamt-Emissionen, wenn die Emissionsquellen der mobilen und stationären Verbrennung mit berücksichtigt werden.</p><p>In den folgenden Absätzen werden die Emissionsquellen der mobilen und stationären Verbrennung des landwirtschaftlichen Sektors nicht berücksichtigt.</p><p>Den Hauptanteil an THG-Emissionen innerhalb des Landwirtschaftssektors machen die Methan-Emissionen mit 62,1 % im Schätzjahr 2024 aus. Sie entstehen bei Verdauungsprozessen, aus der Behandlung von Wirtschaftsdünger sowie durch Lagerungsprozesse von Gärresten aus nachwachsenden Rohstoffen (NaWaRo) der Biogasanlagen. Lachgas-Emissionen kommen anteilig zu 33,4 % vor und entstehen hauptsächlich bei der Ausbringung von mineralischen und organischen Düngern auf landwirtschaftlichen Böden, beim Wirtschaftsdüngermanagement sowie aus Lagerungsprozessen von Gärresten. Durch eine flächendeckende Zunahme der Biogas-Anlagen seit 1994 haben die Emissionen in diesem Bereich ebenfalls kontinuierlich zugenommen. Nur einen kleinen Anteil (4,5 %) machen die Kohlendioxid-Emissionen aus der Kalkung, der Anwendung als Mineraldünger in Form von Harnstoff sowie CO2 aus anderen kohlenstoffhaltigen Düngern aus. Die CO2-Emissionen entsprechen hier einem Anteil von weniger als einem halben Prozent an den Gesamt-THG-Emissionen (ohne <a href="https://www.umweltbundesamt.de/service/glossar/l?tag=LULUCF#alphabar">LULUCF</a>) und sind daher als vernachlässigbar anzusehen (siehe Abb. „Anteile der Treibhausgase an den Emissionen der Landwirtschaft 2024“).</p><p>Klimagase aus der Viehhaltung</p><p>Das klimawirksame Spurengas Methan entsteht während des Verdauungsvorgangs (Fermentation) bei Wiederkäuern (wie z.B. Rindern und Schafen) sowie bei der Lagerung von Wirtschaftsdüngern (Festmist, Gülle). Im Jahr 2023 machten die Methan-Emissionen aus der Fermentation anteilig 76,7 % der Methan-Emissionen des Landwirtschaftsbereichs aus und waren nahezu vollständig auf die Rinder- und Milchkuhhaltung (93 %) zurückzuführen. Aus dem Wirtschaftsdüngermanagement stammten hingegen nur 18,8 % der Methan-Emissionen. Der größte Anteil des Methans aus Wirtschaftsdünger geht auf die Exkremente von Rindern und Schweinen zurück. Emissionen von anderen Tiergruppen (wie z.B. Geflügel, Esel und Pferde) sind dagegen vernachlässigbar. Der verbleibende Anteil (4,5 %) der Methan-Emissionen entstammte aus der Lagerung von Gärresten nachwachsender Rohstoffe (NawaRo) der Biogasanlagen. Insgesamt sind die aus der Tierhaltung resultierenden Methan-Emissionen im Sektor Landwirtschaft zwischen 1990 (45,8 Mio. t CO2-Äquivalente) und 2024 (33,2 Mio. t CO2-Äquivalente) um etwa 27,5 % zurückgegangen.</p><p>Wirtschaftsdünger aus der Einstreuhaltung (Festmist) ist gleichzeitig auch Quelle des klimawirksamen Lachgases (Distickstoffoxid, N2O) und seiner Vorläufersubstanzen (Stickoxide, NOx und Stickstoff, N2). Dieser Bereich trägt zu 16,2 % an den Lachgas-Emissionen der Landwirtschaft bei. Die Lachgas-Emissionen aus dem Bereich Wirtschaftsdünger (inklusive Wirtschaftsdünger-Gärreste) nahmen zwischen 1990 und 2024 um rund 34,2 % ab (siehe Tab. „Emissionen von Treibhausgasen aus der Tierhaltung“). Zu den tierbedingten Emissionen gehören ebenfalls die Lachgas-Emissionen der Ausscheidung beim Weidegang sowie aus der Ausbringung von Wirtschaftsdünger auf die Felder. Diese werden aber in der Emissionsberichterstattung in der Kategorie „landwirtschaftliche Böden“ bilanziert.</p><p>Somit lassen sich in 2024 rund 34,9 Mio. t CO2-Äquivalente direkte THG-Emissionen (das sind 64,5 % der Emissionen der Landwirtschaft und 5,4 % an den Gesamt-Emissionen Deutschlands) allein auf die Tierhaltung zurückführen. Hierbei bleiben die indirekten Emissionen aus der <a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Deposition#alphabar">Deposition</a> unberücksichtigt.</p><p> </p><p>Klimagase aus landwirtschaftlich genutzten Böden</p><p>Auch Böden sind Emissionsquellen von klimarelevanten Gasen. Neben der erhöhten Kohlendioxid (CO2)-Freisetzung infolge von <a href="https://www.umweltbundesamt.de/daten/klima/treibhausgas-emissionen-in-deutschland/emissionen-der-landnutzung-aenderung">Landnutzung und Landnutzungsänderungen</a> (Umbruch von Grünland- und Niedermoorstandorten) sowie der CO2-Freisetzung durch die Anwendung von Harnstoffdünger und der Kalkung von Böden handelt es sich hauptsächlich um Lachgas-Emissionen. Mikrobielle Umsetzungen (sog. Nitrifikation und Denitrifikation) von Stickstoffverbindungen führen zu Lachgas-Emissionen aus Böden. Sie entstehen durch Bodenbearbeitung sowie vornehmlich aus der Umsetzung von mineralischen Düngern und organischen Materialien (d.h. Ausbringung von Wirtschaftsdünger und beim Weidegang, Klärschlamm, Gärresten aus NaWaRo sowie der Umsetzung von Ernterückständen). Insgesamt wurden 2024 15,1 Mio. t CO2-Äquivalente Lachgas durch die Bewirtschaftung landwirtschaftlicher Böden emittiert.</p><p>Es werden direkte und indirekte Emissionen unterschieden:</p><p>Die <strong>direkten Emissionen</strong> stickstoffhaltiger klimarelevanter Gase (Lachgas und Stickoxide, siehe Tab. „Emissionen stickstoffhaltiger Treibhausgase und Ammoniak aus landwirtschaftlich genutzten Böden“) stammen überwiegend aus der Düngung mit mineralischen Stickstoffdüngern und den zuvor genannten organischen Materialien sowie aus der Bewirtschaftung organischer Böden. Diese Emissionen machen mit 46 kt bzw. 12,3 Mio. t CO2-Äquivalenten den Hauptanteil (51,9 %) an den gesamten Lachgasemissionen aus.</p><p>Quellen für <strong>indirekte Lachgas-Emissione</strong>n sind die atmosphärische <a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Deposition#alphabar">Deposition</a> von reaktiven Stickstoffverbindungen aus landwirtschaftlichen Quellen sowie die Lachgas-Emissionen aus Oberflächenabfluss und Auswaschung von gedüngten Flächen. Indirekte Lachgas-Emissionen belasten vor allem natürliche oder naturnahe Ökosysteme, die nicht unter landwirtschaftlicher Nutzung stehen.</p><p>Im Zeitraum 1990 bis 2024 nahmen die Lachgas-Emissionen aus landwirtschaftlichen Böden um 24 % ab.</p><p>Gründe für die Emissionsentwicklung</p><p>Neben den deutlichen Emissionsrückgängen in den ersten Jahren nach der deutschen Wiedervereinigung vor allem durch die Verringerung der Tierbestände und den strukturellen Umbau in den neuen Bundesländern, gingen die THG-Emissionen erst wieder ab 2017 deutlich zurück. Die Folgen der extremen <a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Drre#alphabar">Dürre</a> im Jahr 2018 waren neben hohen Ernteertragseinbußen und geringerem Mineraldüngereinsatz auch die erschwerte Futterversorgung der Tiere, die zu einer Reduzierung der Tierbestände (insbesondere bei der Rinderhaltung aber seit 2021 auch bei den Schweinebeständen) beigetragen haben dürfte. Wie erwartet setzt sich der abnehmende Trend fort bedingt durch die anhaltend schwierige wirtschaftliche Lage vieler landwirtschaftlicher Betriebe vor dem Hintergrund stark gestiegener Energie-, Düngemittel- und Futterkosten und damit höherer Produktionskosten.</p><p>Maßnahmen in der Landwirtschaft zur Senkung der Treibhausgas-Emissionen</p><p>Das von der Bundesregierung in 2019 verabschiedete und 2021 und 2024 novellierte <a href="https://www.bmuv.de/gesetz/bundes-klimaschutzgesetz">Bundes-Klimaschutzgesetz</a> legt für 2024 für den Landwirtschaftssektor eine Höchstmenge von 67 Mio. t CO2-Äquivalente fest, welche mit 62 Mio. t CO2-Äquivalente unterschritten wurde.</p><p>Weiterführende Informationen zur Senkung der <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>-Emissionen finden Sie auf den Themenseiten <a href="https://www.umweltbundesamt.de/themen/landwirtschaft/umweltbelastungen-der-landwirtschaft/ammoniak-geruch-staub">„Ammoniak, Geruch und Staub“</a>, <a href="https://www.umweltbundesamt.de/themen/landwirtschaft/umweltbelastungen-der-landwirtschaft/lachgas-methan">„Lachgas und Methan“</a> und <a href="https://www.umweltbundesamt.de/themen/landwirtschaft/umweltbelastungen-der-landwirtschaft/stickstoff">„Stickstoff“</a>.</p>
Gemäß § 22 der Verordnung über die Verbrennung und die Mitverbrennung von Abfällen (17. BImSchV) sind Anlagenbetreiber verpflichtet jährlich einen Emissionsbericht gegenüber der zuständigen Umweltschutzbehörde abzugeben. Der Emissionsbericht beinhaltet die Emissionen an Schwefeloxiden (SOx), Stickstoffoxiden (NOx) und Gesamtstaub jeder einzelnen Anlage, die eine Feuerungswärmeleistung von mind. 50 Megawatt aufweist. Die Erfassung und Abgabe der Emissionsberichte erfolgt in elektronischer Form über die Webanwendung „BUBE-Online“ (Betriebliche Umweltdaten Bericht Erstattung). Das LANUK erhält den Gesamtdatensatz der Berichte für NRW und übermittelt diesen an das Umweltbundesamt (UBA). Die Berichtsdaten der Großfeuerungsanlagen (GFA) gemäß der 13. BImSchV veröffentlicht das UBA auf der Webseite https://thru.de. Dieser Datensatz umfasst folgende Angaben der Emissionsberichte nach §22 der 17. BImSchV, beginnend mit dem Berichtsjahr 2016: zuständige Umweltschutzbehörde; Name, Adresse und Koordinaten der Betriebsstätte; Bezeichnung der Anlage bzw. des Anlagenteils, sowie die Feuerungsanlagenart; Jahresgesamtemissionen und Ermittlungsart von Schwefeloxiden, Stickstoffoxiden und Gesamtstaub, berichtete Fehlanzeige (eine Fehlanzeige wird angegeben, wenn kein Betrieb der Anlage bzw. des Anlagenteils im Berichtsjahr vorlag).
Informationen zur verkehrsbedingten Luftbelastung im Straßenraum (PM10 und NO2) im übergeordneten Straßennetz 2015
Mikrotrennflächen spielen eine zentrale Rolle in der Ingenieurgeologie, Gesteinsphysik und Felsmechanik. Um die Entwicklung von Mikrorissen und Risssystemen in Gesteinen besser vorhersagen zu können, soll in Fortsetzung der bisherigen Arbeiten am GeoForschungsZentrum Potsdam das Mikrorisswachstum unter Modus I und II Belastung untersucht werden. Hierzu sollen fortgeschrittene Verfahren zur Analyse der bei der Rissbildung abgestrahlten akustischen Emissionen (AE) eingesetzt werden, um den Anteil unterschiedlicher Mikrorisstypen bei Rissbildung unter Modus I und II Belastung zu bestimmen. Diese Untersuchungen sollen dazu beitragen, den Zusammenhang zwischen Mikrorissverteilung in der Prozesszone und Bruchzähigkeit für unterschiedliche Belastungsarten zu erfassen. Im ersten Teil der Studie wurde ein Verfahren zur Bestimmung der Modus II Bruchzähigkeit (PTS-Test) entwickelt. Dies soll nun weiterentwickelt werden, um es in der Anwendung als Standardverfahren (International Society of Rock Mechanics (ISRM) Suggested Method) einsetzen zu können. Hierzu sollen der Einfluss der Probengröße und der Belastungsgeschwindigkeit auf die Bruchzähigkeit untersucht werden.
Die stratosphärische Ozonschicht bietet der Erde einen wirkungsvollen Schutzschild gegen den ultravioletten, schädigenden Anteil der solaren Strahlung. Der anthropogene Ozonabbau, verursacht durch Emissionen von langlebigen Fluorchlorkohlenwasserstoffen (FCKWs), war eines der größten Umweltprobleme der letzten Jahrzehnte. Emissionen von FCKWs wurden infolge des Montrealer Abkommens von 1987 stark reduziert und eine langsame Erholung der Ozonschicht wird im Laufe der nächsten Jahrzehnte erwartet. Im Gegensatz dazu werden die Emissionen von sehr kurzlebigen Halogenverbindungen (Very Short-Lived Halocarbons, VSLH), welche auch stratosphärisches Ozon zerstören, aufgrund von neuen Technologien ansteigen. Chemische Oxidationsprozesse in der marinen Umwelt, insbesondere die neuartigen Behandlungsverfahren von Ballastwasser, und anwachsende tropische Makroalgenkulturen beeinflussen biogeochemische Kreisläufe und können zu einem starken Anstieg der VSLH Produktion und Emission führen. Zusätzlich zu ihrem schädlichen Effekt auf die Ozonschicht, beeinflussen VSLH den atmosphärischen Strahlungsantrieb und das Vermögen der Atmosphäre viele natürliche und anthropogene Spurenstoffe zu entfernen (atmosphärische Oxidationspotential). Momentan ist nur sehr wenig über die zukünftig zu erwartenden anthropogenen VSLH Emissionen aus dem Ozean sowie ihre bedrohliche Wirkung auf die atmosphärische Chemie bekannt und fundierte wissenschaftliche Untersuchungen sind dringend erforderlich. Das Ziel dieses Antrages ist es, momentane und zukünftige Emissionen anthropogener VSLH und ihren Einfluss auf atmosphärische Zusammensetzung und Chemie zu quantifizieren. Ein besonderer Fokus liegt auf der Untersuchung einer möglichen neuen Bedrohung der stratosphärischen Ozonschicht. In einem ersten Schritt werden globale Karten der ozeanischen Emissionen von anthropogenen VSLH erstellt. Im zweiten Schritt wird, basierend auf atmosphärischer Chemie-Transport Modellierung, die Entwicklung der anthropogenen VSLH in der Atmosphäre quantifiziert. Zu diesem Zweck werden Küsten-auflösende Modellsysteme entwickelt, welche später dazu beitragen Parametrisierungen anthropogener VSLH Prozesse für globale Klima-Chemie Modelle zu erstellen. In einem dritten Schritt wird der globale Einfluss der anthropogenen VSLH auf Ozonabbau, Strahlungsantrieb und atmosphärisches Oxidationspotential bestimmt und mögliche Rückkopplungsmechanismen werden identifiziert. Der interdisziplinäre Forschungsplan umfasst die Synthese existierender Daten, Messungen, sowie Ozean-Zirkulation-, Biogeochemie- und atmosphärische Klima-Chemie Modellierung. Das Forschungsvorhaben wird die Frage beantworten, ob anthropogene Aktivitäten in der marinen Umwelt eine Bedrohung für die stratosphärische Ozonschicht darstellen. Solch eine Risikoabschätzung ist von großer gesellschaftlicher Bedeutung und liefert entscheidende Information für politische Entscheidungsträger bezüglich der Planung zukünftiger menschlicher Aktivitäten.
Untersuchungen an Eiskernen auf Grönland zeigen Temperaturschwankungen in Polargebieten von 5 bis 10 Grad C innerhalb weniger Dekaden in den letzten 15000 Jahren. Derartige Schwankungen könnten zukünftig, trotz steigender CO2-Emissionsraten, zu extremen Abkühlungen des Erdklimas führen. Sedimentationsraten von bis zu 20 cm/100 Jahre in den Fjorden, die sowohl marine als auch terrestrische Signale in den Sedimenten archivieren, dokumentieren Ursachen und Konsequenzen dieser rapiden Klima- wechsel. Unter besonderer Berücksichtigung des organischen Kohlenstoffflusses sollen hochauflösende Zeitreihen mit folgenden Zielen erstellt werden: - Charakterisierung und Quantifizierung vertikaler(autochthoner) und lateraler (alochthoner) organischer Stoffflüsse in Fjorden und ihre Erhaltung im Sediment. - Klimagesteuerter Eintrag von organischer Substanz in Fjorde hoher Breiten; hochauflösende Rekonstruktion spätglazialer und holozäner Klimazyklen. - Computersimulation verschiedener Ablagerungsszenarien kohlenstoffreicher Sedimente in Fjorden sowie laterale und vertikale Organo-Faziesveränderungen.
Verbessertes Verständnis der Emissionen von leichten flüchtigen organischen Verbindungen (VOCs) und deren genaue Zusammensetzung aus großen Populationszentren sowie deren chemische Veränderung windabwärts. Dies beinhaltet die Messung möglichst vieler VOCs mit unterschiedlichen Eigenschaften wie chemische Lebensdauern, chemische Eigenschaften (z.B. unterschiedliche Abbauprozesse wie z.B. Reaktion mit OH, NO3, O3, Photolyse), Wasserlöslichkeit (Auswaschung und/oder trockene Deposition), Dampfdruck (auswirkend auf Bildung und Wachstum von organischen Aerosolen). Eine wichtige Frage ist diesbezüglich die Rolle von biogenen Emissionen in asiatischen Megastädten. Die gesammelten Daten sollen mit Simulationen des neuen Klimamodells ICON-ART in Kollaboration mit der Modellgruppe des IMK (Institut für Meteorologie und Klimaforschung) verglichen werden. Hierbei geht es darum Schwachstellen in den verwendeten Emissionsdaten und der chemischen Prozessierung entlang der Transportpfade aufzudecken. Des Weiteren können hier auch die Wechselwirkungen mit organischen Aerosolen sowie Mischungs- und Verdünnungsprozesse mit Hintergrundluftmassen untersucht werden.Ausserdem sollen die Quelltypen und deren Aufteilung von europäischen und asiatischen Megastädten identifizert und quantifiziert werden. Unterschiede diesbezüglich werden erwartet und wurden bereits identifiziert (Guttikunda, 2005; von Schneidemesser et al., 2010; Borbon et al., 2013), z.B. aufgrund von unterschiedlichen Treibstoffen, PKW und LKW - Typen / Alter, Abfall-Zusammensetzungen / Management, Energieerzeugung, etc. Zum Beispiel ist Acetonitril ein verlässlicher Marker für Biomassenverbrennung und es wird vermutet, dass dessen Bedeutung in Asien wesentlich größer ist als in Europa. Eine weitere Frage ist, ob die photochemische Ozonbildung windabwärts von Megastädten durch NOx oder durch VOCs limitiert ist und wie verändert sich dies entlang der Transportpfade bzw. mit dem Alter der Luftmasse. Gibt es diesbezüglich allgemeine Unterschiede zwischen asiatischen und europäischen Megastädten und wie ist der Einfluss biogener Emissionen?
Folgende Schwerpunkte werden bearbeitet: - Elektroantrieb fuer Honda CRX, - CVT-Getriebe fuer Pkw - Einsparungspotential, - Kombiantriebe Muskelkraft/Elektro-/kleiner Verbrennungsmotor, - Muskelkraftfahrzeug fuer hohe Geschwindigkeiten, - 2-Takt-Schichtladungsmotoren fuer niedrige Emissionen und geringen Verbrauch.
| Origin | Count |
|---|---|
| Bund | 3679 |
| Kommune | 6 |
| Land | 48 |
| Wissenschaft | 316 |
| Zivilgesellschaft | 1 |
| Type | Count |
|---|---|
| Daten und Messstellen | 4 |
| Ereignis | 1 |
| Förderprogramm | 3554 |
| Text | 33 |
| Umweltprüfung | 4 |
| unbekannt | 421 |
| License | Count |
|---|---|
| geschlossen | 99 |
| offen | 3590 |
| unbekannt | 328 |
| Language | Count |
|---|---|
| Deutsch | 3186 |
| Englisch | 1126 |
| Resource type | Count |
|---|---|
| Archiv | 5 |
| Bild | 1 |
| Datei | 9 |
| Dokument | 29 |
| Keine | 2950 |
| Webdienst | 25 |
| Webseite | 1047 |
| Topic | Count |
|---|---|
| Boden | 3702 |
| Lebewesen und Lebensräume | 3702 |
| Luft | 3703 |
| Mensch und Umwelt | 4017 |
| Wasser | 3702 |
| Weitere | 3949 |