API src

Found 392 results.

Related terms

Datengetriebene und genom-editierte Züchtung lokal angepasster Weizensorten zur Steigerung der Agrarbiodiversität, der nachhaltigen Klimaresistenz und der Ressourceneffizienz, Teilvorhaben K

Datengetriebene und genom-editierte Züchtung lokal angepasster Weizensorten zur Steigerung der Agrarbiodiversität, der nachhaltigen Klimaresistenz und der Ressourceneffizienz, Teilvorhaben A

Substitution des kritischen Rohstoffs Cobalt in Hartmetallwerkzeugen und Steigerung der Ressourceneffizienz durch neue Ansätze zur Wiederaufarbeitung und Restauration

Substitution des kritischen Rohstoffs Cobalt in Hartmetallwerkzeugen und Steigerung der Ressourceneffizienz durch neue Ansätze zur Wiederaufarbeitung und Restauration, Teilvorhaben: Entwicklung Co-freier und restaurierter Schaftwerkzeuge sowie In-Situ-Verschleißdetektion

Energieeffiziente Herstellung und Verarbeitung eines recyclingfähigen und biobasierten Prepregmaterials mit vollständiger Darstellung des textilen Kreislaufprozesses, TP: Energetische Optimierung des Nassvliesprozesses zur Steigerung der Ressourceneffizienz

Optimierung der Energieeffizienz, Obsoleszenz und zirkulären Wirtschaft der additiven Fertigungsroute am Beispiel innovativer martensitischer Chromstähle

Der Megatrend des Additive Manufacturing (AM) ermöglicht im Produktdesign neben einer erhöhten Flexibilität, geometrischen Designfreiheit, insbesondere eine Erhöhung der Energie- und Ressourceneffizienz. Im Rahmen dieses Vorhabens wird die Wertschöpfungskette des AM ausgehend von der Herstellung der Rohmaterialien bis zum fertigen AM-Bauteil für die Branchen der Medizintechnik und der Schneidinstrumente durchdrungen. Als AM-Verfahren wird hierbei das pulverbettbasierte Laserstrahlschmelzen genutzt. Über höchste Verschleiß- und Korrosionsbeständigkeit kann eine hohe Lebensdauer der Endprodukte hier nur durch die martensitischen Chrom-Stähle erreicht werden. Diese lassen sich bisher jedoch nicht mittels Laserstrahlschmelzen verarbeiten. Zudem ist die ökologische Effizienz der AM-Route nur scheinbar hoch. Handlungsbedarf besteht, angefangen von der Pulverurformung bis zur Veredlung des AM-Produktes beim Endkunden an jedem Glied der Wertschöpfungskette. Hierbei lassen sich die Themenbereiche i) Ressourceneffizienz der Pulverurformung, ii) Verfahren zur Vorhersage und Optimierung der Qualität und Obsoleszenz der Metallpulver, iii) Vorhersage und Steigerung der Lebensdauer AM-gefertigter Produkte, iv) Designstrategie zur Erhöhung der Ressourceneffizienz der AM Route, sowie v) Etablierung einer geschlossenen Circular Economy, extrahieren. Das zentrale Anliegen des Projekts ist es einen ganzheitlichen Ansatz zur Effizienzsteigerung der Fertigungskette von additiv gefertigten Produkten aus martensitischen Cr-Stählen erstmalig zu ermöglichen. Angefangen von der Pulverurformung, der AM-Verarbeitung bis hin zum Endanwender werden die Herausforderungen entlang der Wertschöpfungskette adressiert. Das übergeordnete Ziel ist es, die Energieeffizienz vollständig über die Wertschöpfungskette zu analysieren und zu steigern. Hierbei sollen die energetische Effizienz aller Prozessschritte und Zwischenprodukte einzeln, aber besonders auch durch deren Zusammenwirken, erhöht werden.

Emissionsreduzierung, Erhöhung der Ressourceneffizienz und des Nutzwertes durch Klebstoffeinsparung mittels belastungsdifferenzierter Auslegung von Formschicht- und Formsperrholzbauteilen

Die Werkstoffe Formsperrholz und Formschichtholz wurde im 19. Jahrhundert als kostengünstiges Substitut von Massivholzprodukten entwickelt. Dies änderte sich zu Beginn des 20. Jahrhunderts, als das Potential des Leichtbaumaterials zur Herstellung von Formteilen bis hin zu Flugzeugrümpfen in Monocoque Bauweise erkannt und zum Hightech Material weiterentwickelt wurde. Nach dem Zweiten Weltkrieg nutzten Designer wie Alvar Aalto oder Charles und Ray Eames die Entwicklungen zur Umsetzung von Möbelentwürfen mit einer revolutionären eigenständigen Formensprache und Materialeffizienz. Seither ist Formsperrholz und Formschichtholz vor allem im Bereich von Sitzmöbeln, ob als Hidden Champion verdeckt unter Polstern, als Objektmöbel u.a. in Schulen, Universitäten, Museen, Institutionen oder als Grundlage vieler Designikonen bekannt. In der Industrie werden zur Verbindung der einzelnen Furnierlagen hauptsächlich formaldehydhaltige Klebstoffe verwendet, die Gesundheitsrisiken mit sich bringen, sowie aus nicht regenerativen Quellen stammen. Das Gesamtziel des Vorhabens ist daher die Einsparung von Klebstoff in Formschicht- und Formsperrholzbauteilen und die Erhöhung des Nutzwertes durch die dabei entwickelte belastungsdifferenzierte Auslegung und mögliche Funktionalisierung der Bau- und Möbelbauteile. Es wird ein Klebeauftrags- und Registrierungsverfahren entwickelt, dass eine selektive Verklebung und statische Auslegung der Bauteile ermöglicht. Formsperrholz und Formschichtholz wird so zu einem Gradientenwerkstoff entwickelt, der in seinen Eigenschaften von biegesteif bis hin zu flexibel innerhalb eines Bauteils mit fließenden Übergängen gradiert werden kann. Mögliche Anwendungen reichen von der Optimierung von Sitzschalen, über den Ersatz von konventionellen Dämpfungs-, Feder- und Polsterelementen, bis hin zu integrierten Funktionselementen wie Möbelscharnieren und Hightech Anwendungen, wie z.B. Schockabsorber im Automotive Sektor.

Emissionsreduzierung, Erhöhung der Ressourceneffizienz und des Nutzwertes durch Klebstoffeinsparung mittels belastungsdifferenzierter Auslegung von Formschicht- und Formsperrholzbauteilen, Teilvorhaben 4: Identifikation von Anwendungsfeldern und Anwendungsorientierte Materialentwicklung

Die Werkstoffe Formsperrholz und Formschichtholz wurde im 19. Jahrhundert als kostengünstiges Substitut von Massivholzprodukten entwickelt. Dies änderte sich zu Beginn des 20. Jahrhunderts, als das Potential des Leichtbaumaterials zur Herstellung von Formteilen bis hin zu Flugzeugrümpfen in Monocoque Bauweise erkannt und zum Hightech Material weiterentwickelt wurde. Nach dem Zweiten Weltkrieg nutzten Designer wie Alvar Aalto oder Charles und Ray Eames die Entwicklungen zur Umsetzung von Möbelentwürfen mit einer revolutionären eigenständigen Formensprache und Materialeffizienz. Seither ist Formsperrholz und Formschichtholz vor allem im Bereich von Sitzmöbeln, ob als Hidden Champion verdeckt unter Polstern, als Objektmöbel u.a. in Schulen, Universitäten, Museen, Institutionen oder als Grundlage vieler Designikonen bekannt. In der Industrie werden zur Verbindung der einzelnen Furnierlagen hauptsächlich formaldehydhaltige Klebstoffe verwendet, die Gesundheitsrisiken mit sich bringen, sowie aus nicht regenerativen Quellen stammen. Das Gesamtziel des Vorhabens ist daher die Einsparung von Klebstoff in Formschicht- und Formsperrholzbauteilen und die Erhöhung des Nutzwertes durch die dabei entwickelte belastungsdifferenzierte Auslegung und mögliche Funktionalisierung der Bau- und Möbelbauteile. Es wird ein Klebeauftrags- und Registrierungsverfahren entwickelt, dass eine selektive Verklebung und statische Auslegung der Bauteile ermöglicht. Formsperrholz und Formschichtholz wird so zu einem Gradientenwerkstoff entwickelt, der in seinen Eigenschaften von biegesteif bis hin zu flexibel innerhalb eines Bauteils mit fließenden Übergängen gradiert werden kann. Mögliche Anwendungen reichen von der Optimierung von Sitzschalen, über den Ersatz von konventionellen Dämpfungs-, Feder- und Polsterelementen, bis hin zu integrierten Funktionselementen wie Möbelscharnieren und Hightech Anwendungen, wie z.B. Schockabsorber im Automotive Sektor.

Emissionsreduzierung, Erhöhung der Ressourceneffizienz und des Nutzwertes durch Klebstoffeinsparung mittels belastungsdifferenzierter Auslegung von Formschicht- und Formsperrholzbauteilen, Teilvorhaben 3: Mechanische Auslegung und Validierung

Die Werkstoffe Formsperrholz und Formschichtholz wurde im 19. Jahrhundert als kostengünstiges Substitut von Massivholzprodukten entwickelt. Dies änderte sich zu Beginn des 20. Jahrhunderts, als das Potential des Leichtbaumaterials zur Herstellung von Formteilen bis hin zu Flugzeugrümpfen in Monocoque Bauweise erkannt und zum Hightech Material weiterentwickelt wurde. Nach dem Zweiten Weltkrieg nutzten Designer wie Alvar Aalto oder Charles und Ray Eames die Entwicklungen zur Umsetzung von Möbelentwürfen mit einer revolutionären eigenständigen Formensprache und Materialeffizienz. Seither ist Formsperrholz und Formschichtholz vor allem im Bereich von Sitzmöbeln, ob als Hidden Champion verdeckt unter Polstern, als Objektmöbel u.a. in Schulen, Universitäten, Museen, Institutionen oder als Grundlage vieler Designikonen bekannt. In der Industrie werden zur Verbindung der einzelnen Furnierlagen hauptsächlich formaldehydhaltige Klebstoffe verwendet, die Gesundheitsrisiken mit sich bringen, sowie aus nicht regenerativen Quellen stammen. Das Gesamtziel des Vorhabens ist daher die Einsparung von Klebstoff in Formschicht- und Formsperrholzbauteilen und die Erhöhung des Nutzwertes durch die dabei entwickelte belastungsdifferenzierte Auslegung und mögliche Funktionalisierung der Bau- und Möbelbauteile. Es wird ein Klebeauftrags- und Registrierungsverfahren entwickelt, dass eine selektive Verklebung und statische Auslegung der Bauteile ermöglicht. Formsperrholz und Formschichtholz wird so zu einem Gradientenwerkstoff entwickelt, der in seinen Eigenschaften von biegesteif bis hin zu flexibel innerhalb eines Bauteils mit fließenden Übergängen gradiert werden kann. Mögliche Anwendungen reichen von der Optimierung von Sitzschalen, über den Ersatz von konventionellen Dämpfungs-, Feder- und Polsterelementen, bis hin zu integrierten Funktionselementen wie Möbelscharnieren und Hightech Anwendungen, wie z.B. Schockabsorber im Automotive Sektor.

Anpassung der Strahlformung zur Steigerung der Ressourceneffizienz beim Laser-Pulver-DED-Verfahren

1 2 3 4 538 39 40