API src

Found 233 results.

Related terms

Verpressen von heimischen Nebenstoffströmen zu hochwertigen Formteilen, Teilvorhaben: Umweltbezogene Lebenszyklusanalyse

Grüner Digitaler Zwilling als Basis der nachhaltigen Transformation der Getränke- und Brauwirtschaft, Teilvorhaben: Steigerung der Nachhaltigkeit durch Optimierung energie- und emissionsintensiver Prozesse mit Hilfe grüner digitaler Zwillinge

ERA-NET SUSCROP: Knowldege-driven genomic predictions for sustainable disease resistance in wheat (WheatSustain)

Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: Reaktion von Insekten auf Lücken im Wald - von der Gemeinschaft zu zellulären Prozessen

Das Kronendach beeinflusst massive die mikroklimatischen Bedingungen eines Waldes und bestimmt damit die lokalen Habitat-Bedingungen für ektotherme Arten, die auf kleiner Skala agieren. In Mitteleuropa sind Waldarten mit Bindung an lichte Wälder aktuell stärker gefährdet als Arten der dichten Wälder. Dies spiegelt den Vorratsanstieg in den letzten hundert Jahren wider. Heutzutage wird das Kronendach durch natürliche Störungen aber auch durch Holznutzung beeinflusst. Die Differenzen im Mikroklima zwischen geschlossenen und offenen Waldbeständen können dabei größer sein als der aktuell beobachtete Anstieg der Temperatur durch die globale Erwärmung. Daher ist ein besseres Verständnis der Mechanismen hinter der Reaktion von Arten auf das Mikroklima sowohl für forstliches als auch naturschutzorientiertes Management von Bedeutung. In der Makroökologie hat die Reaktion von Arten auf Klimagradienten eine lange Tradition. Einige konsistente Muster haben zu ökogeographischen Regeln geführt. Diese sagen z.B. vorher wie die Antwort innerhalb und zwischen Arten auf sinkende Temperaturen, Feuchte oder generell auf harsche Umweltbedingungen aussieht. Wir beabsichtigen hier die Antwort dreier Insektengruppen, Totholzkäfer, Nachtschmetterlinge und Wanzen auf die Variation im Mikroklima unter Kontrolle der Ressourcenverfügbarkeit (Pflanzen, Totholz) zu untersuchen. Dazu werden wir zunächst einen bestehenden Datensatz aus 5 Waldgebieten (inklusive der Exploratorien) auswerten. Dabei werden wir auf drei Eigenschaften fokussieren, die sich in der Makroökologie als sensitiv erwiesen haben: Körpergröße, Flügel-Morphologie und Farbe. Im zweiten Schritt werden wir die Vorhersagen aus den Modellen in Schritt 1 mit neuen Daten aus dem Wald-Experiment der Exploratorien validieren. Im dritten Schritt werden wir anhand der Individuen im Experiment innerartliche Eigenschaft-Reaktionen ausgewählter Arten untersuchen. Im vierten Schritt werden wir Transkriptom-Sequenzierung an vier ausgewählten Arten durchführen, die experimentell in den Lücken und unter dem Kronendach exponiert werden. Damit versuchen wir transkriptionale Signaturen als Reaktion auf das Mikroklima zu identifizieren. Unsere Analysen zielen darauf ab die Mechanismen hinter den Reaktionen von Arten und Artengemeinschaften auf lichte und dichte Wälder besser zu verstehen.

Entwicklung eines Verkehrssimulationsmodells auf Binnenwasserstraßen

Untersuchung des Verkehrsflusses durch KI-Anwendungen Verschiedene Fragestellungen der Wasserstraßen- und Schifffahrtsverwaltung im Zusammenhang mit Auslastung und Nutzung der Binnenwasserstraßen sind nur mithilfe eines Verkehrssimulationsmodells effizient bewertbar. Beispiele sind Fragen nach Kapazitäten, Engstellen und Transportmengen. Aufgabenstellung und Ziel Die performante Untersuchung von Verkehrsströmen ist eine wichtige Komponente für verkehrliche und wirtschaftliche Untersuchungen an Binnenwasserstraßen. Verkehrssimulationsmodelle ermöglichen es, auch unbeobachtete Verkehrsflüsse zu analysieren und zukünftige Entwicklungen zu prognostizieren. Als Beispiele sind Engstellenanalysen sowie Untersuchungen zu Verkehrskapazitäten und Transportmengen in Abhängigkeit von Flottenstrukturen zu nennen. Eine Veränderung der Flottenstruktur kann durch unterschiedliche Faktoren begründet sein. Diese sind zum einen langzeitige Entwicklungen, wie Tendenzen zu größeren Schiffen, Änderungen wirtschaftlicher Konjunkturphasen oder mögliche Anpassungen an klimatische Änderungen und zum anderen kurzzeitige Einflüsse, wie extreme Wetterlagen und Wasserstände oder verkehrliche Engstellen. Engstellen können z. B. durch Havarien, Baumaßnahmen, aber auch Fehltiefen verursacht werden. Alle genannten Faktoren wirken sich auf die verkehrliche Leistungsfähigkeit der Wasserstraße und die Gütertransportmengen aus. In Kooperation mit der „Professur für Ökonometrie und Statistik, insbesondere im Verkehrswesen“ der TU Dresden wird das Mikrosimulationsmodell für Binnenwasserstraßen PERSIST (Performant Simulation of Inland Ship Traffic) entwickelt (Stachel und Hart 2021), welches vorrangig am Niederrhein, darüber hinaus aber auch an anderen Wasserstraßen, angewendet werden soll. Bedeutung für die Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV) Mithilfe des Verkehrssimulationsmodells lassen sich an hochfrequentierten Abschnitten Engstellen identifizieren, die eventuell die Kapazität der Wasserstraßen vermindern. Zudem können Sicherheit und Leichtigkeit des Schiffsverkehrs unter Berücksichtigung veränderter hydrologischer Bedingungen, z. B. infolge des Klimawandels, untersucht werden. Damit erhält die WSV frühzeitig Informationen über potentielle verkehrliche Engstellen, welche die Wirtschaftlichkeit der Binnenschifffahrt einschränken. Die Verkehrssimulation ist darüber hinaus ein Werkzeug, mit dem sich, z. B. im Rahmen einer Verkehrsprognose und Reiseunterstützung, voraussichtliche Ankunftszeiten (ETA = Estimated Time of Arrival) von Schiffen an Schleusen und Zielhäfen ermitteln lassen. Untersuchungsmethoden Im bisherigen Projekt wurde bereits die Lateral and Longitudinal Control Policy zur lateralen und longitudinalen Steuerung eines Schiffes hinsichtlich des logischen Koordinatensystems sowie eine Decision Making Policy, welche die Überholentscheidungen des Schiffes kontrolliert, entwickelt. Um die Einsetzbarkeit von PERSIST als Fast-Time Simulator auch für anspruchsvolle Simulationsszenarien (mehr als 100 Schiffe, große Teile des Rheins) aufrecht zu erhalten, wurde PERSIST für die Parallelisierung auf Rechensystemen mit vielen CPU-Kernen vorbereitet. Anstatt alle Schiffe in einem Prozess auf einem Rechner zu simulieren, kann die Simulation nun auf beliebig viele unabhängige Prozesse verteilt werden, auch auf mehreren miteinander vernetzten Rechnern oder auf einem Großrechner mit vielen Rechenkernen. Auf einem physischen Rechenkern läuft jeweils nur ein Prozess. Bei der Verkehrssimulation bietet es sich an, den gesamten zu simulierenden räumlichen Bereich in mehrere gleich große Abschnitte zu unterteilen, den Schiffsverkehr auf diesen Abschnitten getrennt zu simulieren, d. h. zu prozessieren, und anschließend wieder zusammenzufügen. Die Anzahl der Abschnitte kann somit vor Beginn der Simulation flexibel an die Ressourcenverfügbarkeit des (Groß-)Rechners angepasst werden. (Text gekürzt)

Forschergruppe (FOR) 918: Carbon flow on belowground food webs assessed by isotope tracers, Nematodes as link between microbial and faunal food web

The proposed project examines the nematode fauna at the two field experiments 'Long-term recalcitrant C input' and 'Carbon flow via the herbivore and detrital food chain'. A gradient from resource rich to deeper oligotrophe habitats, i.e. from high to low diverse food webs, is investigated. The impact of resource availability and quality (recalcitrant versus labile) and presence or absence of living plants (rhizosphere versus detritusphere) on the nematode population are assessed. Insight into micro-food web structure is gained by application of the nematode faunal analysis concept, based on the enrichment, structure and channel index. In laboratory model systems carbon flux rates for food web links are determined between bacteria/fungi and their nematode grazers for dominant taxa in the arable field. Further, carbon leakage from plant roots induced by herbivore nematode is studied as link between root and bacterial energy channels. By using 13C/12C stable isotope probing (FA-SIP) fatty acids serve as major carbon currency. Coupling qualitative and quantitative data on nematode field populations, with carbon flow via biomarker fatty acids in microorganisms and grazers will allow to connect microbial and faunal food web, and to directly link nematode functional groups with specific processes in the soil carbon cycle.

Mobilitätsverbund werthaltige ländliche Lebensräume, Teilprojekt: B: Automatisiertes und vernetztes Fahren

Synchronisierte und energieadaptive Produktionstechnik zur flexiblen Ausrichtung von Industrieprozessen auf eine fluktuierende Energieversorgung, Teilvorhaben: V4-3_Intense AG

Grüner Digitaler Zwilling als Basis der nachhaltigen Transformation der Getränke- und Brauwirtschaft

Steuerung benthischer Algenbiomasse durch Weidegänger: Die Rolle der Nahrungsqualität auf unterschiedlichen räumlichen Skalen

In Nahrungsnetzen kontrollieren sowohl bottom-up (Ressourcen) als auch top-down Faktoren (Fraß durch höhere trophische Ebenen) die Biomasse intermediärer Stufen wie z. B. benthischer Algen (Periphyton). Die Wichtigkeit beider Mechanismen konnte gezeigt werden; allerdings scheint die Stärke der top-down Kontrolle in verschiedenen natürlichen Systemen stark zu variieren und die Faktoren, welche die Stärke der top-down Kontrolle bestimmen, sind bisher nur unzureichend verstanden. Die zentrale Hypothese dieses Projekts ist, dass die Stärke der top-down Kontrolle durch die Nahrungsqualität der Algen bestimmt wird, die ihrerseits durch die Allokation essentieller Ressourcen (wie Licht und Nährstoffe) beeinflusst wird. Insbesondere in räumlich gegliederten Gemeinschaften wie Periphyton zeigt die Nahrungsqualität eine große räumliche Heterogenität. Zusammen mit davon abhängigen dynamischen Verhaltensanpassungen der Herbivoren ist dies vermutlich besonders wichtig für die Kontrolle der Biomasseentwicklung des Periphytons, wenngleich diese Faktoren bisher nicht ausreichend untersucht wurden. In diesem Projekt untersuchen wir diese Hypothese auf verschiedenen Skalen und Komplexitätsstufen, sowohl in hochkontrollierten Laborexperimenten, als auch in freilandnahen Mesokosmosexperimenten. Dies umfasst die lokale, homogene Patchgröße, die komplexere Multi-Patch-Ebene mit räumlicher Heterogenität und der Möglichkeit zur Futterwahl für die Herbivoren bis hin zu hochkomplexen Szenarien unter Berücksichtigung von Wachstum und Migrationsverhalten der Herbivoren in Mesokosmosexperimenten. Auf diesen Komplexitätsstufen wird die Ressourcenverfügbarkeit (des limitierenden Nährstoffs P und Lichtenergie) experimentell manipuliert und die Kontrolle der Periphytonbiomasse durch Herbivorie auf zwei Wegen quantifiziert: a) als Biomasseflux zwischen Algen und Herbivoren und b) als Reduktion der Periphytonbiomasse durch Weidegänger im Vergleich zu konsumentenfreien Kontrollansätzen. Insgesamt wird dieses Projekt zeigen, welche Mechanismen die Stärke der top-down Kontrolle auf das Periphyton regulieren und wird dazu beitragen, die Kontrolle der Eutrophierung natürlicher Oberflächengewässer besser zu verstehen.

1 2 3 4 522 23 24