API src

Found 4097 results.

Similar terms

s/ressourcheneffizienz/Ressourceneffizienz/gi

Intra- und interspezifische Vielfalt für Stabilität, effiziente Ressourcennutzung und Anpassung an den, Intra- und interspezifische Vielfalt für Anpassung an den Klimawandel

KI gestützte Produktionsplanung und -steuerung für die Oberflächentechnik, KI-PrOT: KI gestützte Produktionsplanung und -steuerung für die Oberflächentechnik

Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: pETchy: Jahreszeitlich veränderliche Muster der Evapotranspiration

Untersuchungen der funktionalen Aspekten der pflanzlichen Biodiversität haben in der Regel die Biodiversität mit über Flächen-integrierenden Maßen bestimmt und diese mit mittleren Standorteigenschaften, der mittleren Wasser- und Nährstoff-Nutzungseffizienz etc. verglichen. Die oft beobachteten positiven Auswirkungen hoher Biodiversität auf die Effizienz der Ressourcennutzung und auf die Ökosystemstabilität werden damit begründet, dass verschiedene Arten zeitlich und räumlich unterschiedliche Nischen für die Wasser- und Nährstoffaufnahme nutzen. Es bietet sich daher an, zu untersuchen, inwiefern höhere Biodiversität tatsächlich zu höherer räumlicher und zeitlicher Variabilität funktionaler Muster wie dem der Wasseraufnahme führen. Unter 'zeitlicher Variabilität' wird hier die zeitliche Änderung räumlicher Muster der Wasser- und Nährstoffaufnahme verstanden, abhängig von den hydrologischen Randbedingungen, die einzelne Arten oder funktionale Gruppen begünstigen oder benachteiligen. Das beantragte Projekt zielt darauf ab, sowohl die innerhalb der einzelnen experimentellen Plots gemittelte Evapotranspiration als auch räumliche Muster und den Grad der Heterogenität der Evapotranspiration innerhalb der experimentellen Plots sowie die zeitliche Stabilität dieser räumlichen Muster zu untersuchen. Dazu werden zwei innovative Ansätze kombiniert. Mittels Drohnen-gestützter Thermal- und Multispektral-Aufnahmen können räumliche Muster der aktuellen Evapotranspiration mit hoher räumlicher Auflösung und mit geringem Aufwand bestimmt werden. Mittels modernen Verfahren zur Analyse großer Datensätze hydrologischer Zeitreihen können die jeweiligen Beiträge verschiedener Prozesse auf die beobachtete Dynamik quantitativ erfasst werden. Die Kombination dieser beiden Ansätze ermöglicht eine Verschneidung räumlicher und zeitlicher Aspekte, um die Auswirkungen der Biodiversität auf die pflanzliche Wasseraufnahme besser zu verstehen. Im Einzelnen ist vorgesehen: 1. Mittels räumlich hoch aufgelöster Drohen-gestützter Fernerkundung wird die räumliche Heterogenität der Evapotranspiration innerhalb der experimentellen Plots bestimmt. Wir erwarten, dass höhere räumliche Variabilität mit höherer Widerstandfähigkeit gegen Trockenstress einhergeht. 2. Effekte der pflanzlichen Diversität auf die räumlichen Muster der Evapotranspiration werden von Effekten kleinskaliger Bodenheterogenitäten hinsichtlich der Verfügbarkeit von Nährstoffen, der Wasserhaltekapazität und der Bodenfeuchte unterschieden. Wir erwarten gegenseitige Abhängigkeiten zwischen Pflanzen und Boden, aber auch Effekte der pflanzlichen Diversität, die über die des Bodens hinausgehen. 3. Mittels zeitlich wiederholter Befliegungen werden die räumlichen Muster auf zeitliche Stabilität überprüft. Wir erwarten einen negativen Zusammenhang zwischen der zeitlichen Stabilität räumlicher Muster innerhalb der einzelnen Flächen und dem Grad der Biodiversität.

Phasensensitive Terahertz-Aufwärtskonversion für ultraschnelle Schichtdickenmessung

Ressourceneffizienz: KreiSBau - Kreislaufführung von Sanden im Bauwesen - Entwicklung eines großtechnischen Verfahrens zur Aufbereitung und Verwendung von Bauschuttsanden in Bauprodukten, Teilvorhaben 2: Entwicklung des großtechnischen Verfahrens und Pilotanlage

Intelligente ökonomische & ökologische Ressourceneffizienzsteuerung mittels Digitalem Prozesspass im Kontext sektorübergreifender Anforderungen am Beispiel der abwärmeintensiven Oberflächentechnik, TV: Aufbau, Pilotierung und Anwendung eines Systems zur Erstellung eines digitalen Prozesspasses

5G Pilot Region zu Cloud Infrastructure, Smart Farming & effizienter Düngung im Landkreis Böblingen, Teilvorhaben: Technologiebewertung und Use Case Entwicklung

Innovative Technologien zur Entwicklung eines neuartigen reaktiven Betonzusatzstoffs aus feinem Betonabbruch (Brechsand) - Ressourceneffizienz im Baustoffrecycling, Teilvorhaben: Reduktion des Klinkeranteils in Beton als Betonzusatzstoff und in Zement als Hauptbestandteil

Beton ist ein unverzichtbarer Baustoff, ohne den es nicht gelingt, systemrelevante Bauwerke in tragfähiger und dauerhafter Art und Weise zu errichten. Bei der Herstellung von Zement als Bindemittel werden jedoch große Mengen thermischer Energie benötigt und prozessbedingt erhebliche Mengen Kohlenstoffdioxid freigesetzt. Der bisher maßgebliche verfolgte Ansatz, Zement anteilig durch Betonzusatzstoffe (z.B.Flugasche) auszutauschen, stößt jedoch aufgrund ihrer in Zukunft eher sinkenden Verfügbarkeit an seine Grenzen. Das Ziel dieses Forschungsantrags umfasst daher die Entwicklung eines neuartigen reaktiven Betonzusatzstoffs, der durch eine thermomechanische Aufbereitung aus rezykliertem Betonbruch gewonnen werden soll. Hierfür wird die gesamte Prozesskette von der Rohstoffverfügbarkeit über die prozesstechnischen Randbedingungen der Betonzusatzstoffherstellung im Labor sowie kurz- und langzeitige Bindemittel- und Betoneigenschaften, die Produkt- und Bauteilherstellung im Technikumsmaßstab bis hin zur Ökobilanzierung untersucht. Für die Betonherstellung streben wir einen reaktiven Betonzusatzstoff an, der Flugasche und andere Betonzusatzstoffe vollständig substituieren und ggf. übertreffen kann. Ziel ist ein k-Wert größer als 0,4. Bei Zement ist eine Hauptbestandteilreduktion des Klinkers von 35-50% Ziel des Forschungsprojektes. Hier soll ein CEM II/B und ein CEM II/C entwickelt werden.

Ideenumsetzung und Demonstration elektrischer Antriebs- und Leistungselektroniklösungen mit einer verbesserten Energie- und Ressourcen-Effizienz, Teilvorhaben: Hocheffizientes Antriebssystem

Das Projekt IDEALER nutzt Ergebnisse des Vorprojekts Ide3AL. In dem Vorprojekt wurde grundsätzlich gezeigt, dass ein Schaltschrank-Umrichter mit integriertem Sinusfilter unter Nutzung von schnellschaltenden SiC-Leistungshalbleitern zu einer besseren Energieeffizienz des Antriebssystems führt als ein konventioneller Umrichter mit IGBT-Transistoren. Durch die hohe Schaltfrequenz können die Filtergröße reduziert, die Umrichter-Baugröße kompakt gehalten sowie die umladungsbedingten Verluste in Motorleitung und Motor minimiert werden. Weiterhin konnte gezeigt werden, dass die technische Motorleitungslängen-Begrenzung durch geschirmte Leitungen von einigen 10 Metern aufgehoben ist, so dass in Zukunft sehr viele bisher ungesteuerte Antriebsanwendungen mit drehzahlgeregelten Antrieben gelöst werden können. Damit ergeben sich zusätzliche Energiesparpotentiale, die bisher nicht wirtschaftlich erschlossen werden konnten. Allerdings hat sich auch gezeigt, dass die hohe Schaltgeschwindigkeit der SiC-Leistungshalbleiter nicht einfach beherrschbar ist. Die elektrischen Felder, die von der Schaltzelle und den Sinusfiltern abgestrahlt bzw. als leitungsgebundene Störaussendung in die Motorleitung eingespeist werden, übertreffen die aktuellen EMV-Grenzwerte für ungeschirmte Motorleitungen. Aus dem gleichen Grund treten noch Zusatzverluste im Motor und seinen Zuleitungen auf, weshalb die gesetzten Effizienzziele nicht vollständig erreicht wurden. Diese Zusatzverluste lassen sich auch mit den normativ vorgegebenen Berechnungsmethoden nicht ermitteln. Weiterhin bestehen elektromagnetische Kopplungen der Filterelemente zwischen Ein- und Ausgang, so dass bisherige Entstörkonzepte auf der Netzseite nicht übertragbar sind.

Ideenumsetzung und Demonstration elektrischer Antriebs- und Leistungselektroniklösungen mit einer verbesserten Energie- und Ressourcen-Effizienz, Teilvorhaben iFE: EMV-optimale Ein- und Ausgangsfilter mittels 3D-Simulation

Das Projekt IDEALER nutzt Ergebnisse des Vorprojekts Ide3AL. In dem Vorprojekt wurde grundsätzlich gezeigt, dass ein Schaltschrank-Umrichter mit integriertem Sinusfilter unter Nutzung von schnellschaltenden SiC-Leistungshalbleitern zu einer besseren Energieeffizienz des Antriebssystems führt als ein konventioneller Umrichter mit IGBT-Transistoren. Durch die hohe Schaltfrequenz können die Filtergröße reduziert, die Umrichter-Baugröße kompakt gehalten sowie die umladungsbedingten Verluste in Motorleitung und Motor minimiert werden. Weiterhin konnte gezeigt werden, dass die technische Motorleitungslängen-Begrenzung durch geschirmte Leitungen von einigen 10 Metern aufgehoben ist, so dass in Zukunft sehr viele bisher ungesteuerte Antriebsanwendungen mit drehzahlgeregelten Antrieben gelöst werden können. Damit ergeben sich zusätzliche Energiesparpotentiale, die bisher nicht wirtschaftlich erschlossen werden konnten. Allerdings hat sich auch gezeigt, dass die hohe Schaltgeschwindigkeit der SiC-Leistungshalbleiter nicht einfach beherrschbar ist. Die elektrischen Felder, die von der Schaltzelle und den Sinusfiltern abgestrahlt bzw. als leitungsgebundene Störaussendung in die Motorleitung eingespeist werden, übertreffen die aktuellen EMV-Grenzwerte für ungeschirmte Motorleitungen. Aus dem gleichen Grund treten noch Zusatzverluste im Motor und seinen Zuleitungen auf, weshalb die gesetzten Effizienzziele nicht vollständig erreicht wurden. Diese Zusatzverluste lassen sich auch mit den normativ vorgegebenen Berechnungsmethoden nicht ermitteln. Weiterhin bestehen elektromagnetische Kopplungen der Filterelemente zwischen Ein- und Ausgang, so dass bisherige Entstörkonzepte auf der Netzseite nicht übertragbar sind.

1 2 3 4 5408 409 410