Das im Boden vorkommende Bakterium Agrobacterium tumefaciens infiziert eine Vielzahl von Pflanzenarten und verursacht die Wurzelhalsgallenkrankheit. Es überträgt bakterielle DNA zusammen mit Effektorproteinen in Wirtszellen. Diese T-DNA (Transfer-DNA) wird stabil in das Pflanzengenom integriert, und die Expression der darin kodierten Onkogene führt zu Zellproliferation und Tumorbildung. Die Fähigkeit, DNA in das Wirtsgenom zu übertragen, hat A. tumefaciens zu einem der wichtigsten Werkzeuge in der pflanzlichen Gentechnik gemacht. Allerdings sind viele Pflanzenarten weiterhin schwierig zu transformieren, und es ist unklar, woran das liegt. Dies ist auch eine Folge unseres unzureichenden Wissens über die molekularen Voraussetzungen auf Seiten der Wirtszellen. In einer Reihe unabhängiger Experimente haben wir beobachtet, dass eine veränderte Sphingolipidzusammensetzung von Arabidopsispflanzen die Agrobakterien-Transformationseffizienz signifikant beeinflusst. Pflanzliche Sphingolipide wie Glucosylceramide und Glucosylinositolphosphorylceramide (GIPCs) sind vorwiegend in Nanodomänen der Plasmamembran lokalisiert. Frühere Studien in Arabidopsis haben gezeigt, dass Sphingolipide die Funktion von membranständigen Rezeptoren und Calciumkanälen beeinflussen können, welche für verschiedene Signaltransduktionsprozesse wichtig sind. Sphingolipide könnten daher in verschiedenen Phasen der Agrobacterium-Transformation eine Funktion haben, z. B. durch Beeinflussung membranständiger Rezeptoren, die Abwehrreaktionen auslösen, oder durch die Interaktion mit bakteriellen Proteinen des Typ-IV-Sekretionssystems während des T-DNA-Transfers durch die Plasmamembran. Dieses Projekt zielt daher darauf ab, diejenigen pflanzlichen Sphingolipid-Spezies zu identifizieren, die die Agrobacterium-Transformationseffizienz beeinflussen, und die Funktion dieser Lipide während der verschiedenen Transformationsstadien zu charakterisieren. Um die Auswirkungen verschiedener Sphingolipidprofile auf die Transformationseffizienz zu ermitteln, setzen wir einen etablierten in vivo Transformationseffizienztest ein. In diesem werden wir unsere Sammlung von Arabidopsis-Mutantenlinien mit veränderter Sphingolipidzusammensetzung, sowie eine Reihe von pharmakologischen und Temperatur-Behandlungen testen. Zur Identifizierung der relevanten Sphingolipide setzen wir Hochdruck-Flüssigkeitschromatographie und anschließende Massenspektrometrie (UPLC-MS/MS) ein. Anschliessend werden wir analysieren, in welcher Phase der Transformation diese Lipide beteiligt sind. Dazu werden wir im in vivo System Wachstum, Anheftung und die Expression von Virulenzgenen der Bakterien testen und parallel dazu die Abwehrreaktion der Pflanze und die subzelluläre Lipidzusammensetzung analysieren. Wir erwarten, dass die Charakterisierung dieser Sphingolipid-abhängigen Prozesse in der Wirtszelle unser Verständnis der Mechanismen der Pflanzentransformation durch Agrobakterien entscheidend verbessern wird.
Quantitative mikrobiologisch-toxikologische Testverfahren zur Erfassung der beginnenden Schadwirkung wassergefaehrdender Stoffe und Industrieabwaesser auf Modellorganismen der biologischen Selbstreinigung.
Pflanzen können zwischen 10 und 80% ihres P-Bedarfs aus Unterböden decken, aber in welchen Bindungsformen P im Unterboden von Wäldern vorliegt, wie gut es dort zugänglich ist und v.a. wie lange der Sauerstoff in den Unterboden-Phosphaten verweilt, ist nur wenig verstanden. Dieses Projekt hat zum Ziel, die Hypothese zu testen, dass mit zunehmendem P-Mangel im Oberboden die Pflanzen verstärkt auf P im Unterboden zugreifen. Als Grundlage hierfür werden wir in der ersten Phase des SPP aufklären, (i) wie hoch die P-Vorräte in den Unterboden der Versuchsstandorte sind, welche Bindungsformen dominieren und welche delta18O-Signaturen Bodenphosphate dort aufweisen, (ii) wie Pflanzenwurzeln die P-Gradienten im Unterboden verändern, (iii) wie gut die Phosphate im Unterboden für Mikroorganismen und damit 18Oisotopenaustauschreaktionen zugänglich sind, (iv) ob und wie abiotische, positionsabhängige isotopenaustauschreaktionen stattfinden können, anhand derer sich Informationen zur Verweilzeit der Phosphate im Unterboden ableiten lassen, und (v) welche Zusammenhänge zur Isotopensignatur in Phosphaten des Xylemsaftes bestehen. Die P-Bindungsformen und Konzentrationen werden mittels sequenziellen Fraktionierungsverfahren, NanoSIMS, XANES-und NMR-Spektroskopie erfasst. Isotopenbestimmungen und -austauschexperimente erfolgen mittels massenspektrometrischen und Raman-spektroskopischen Analysen unter Einbeziehung quantenchemischer Modellierungen.
Zielsetzung: Die Degradation von Ökosystemen und der Verlust der Biodiversität sind zwei der drängendsten Probleme unserer Zeit. Die EU-Biodiversitätsstrategie für 2030 sieht vor, geschädigte Ökosysteme zu restaurieren und die Natur langfristig zu schützen. Für Waldökosysteme wurden bereits verschiedene Naturschutzkonzepte erarbeitet und etabliert, um Waldwirtschaft nachhaltig und in Einklang mit Biodiversitätsförderung zu gestalten. Unter anderem soll der Anteil von Totholz gesteigert werden sowie die strukturelle Vielfalt durch den Erhalt alter Bäume und der Schaffung von Lichtungen. Neben der Steigerung der Habitatqualität muss jedoch auch gewährleistet sein, dass bedrohte und seltene Arten die neu geschaffenen Lebensräume besiedeln können, was insbesondere bei Arten mit Individuen-armen Populationen und stark eingeschränktem Verbreitungsarealen kaum möglich ist. Im Projekt „Wiederansiedlung vom Aussterben bedrohter Pilze in Mitteleuropäischen Wäldern“ sollen seltene Pilzarten, die sich vom Abbau organischer Substanz ernähren, durch gezielte Wiederansiedlung gefördert werden. Pilze sind bisher im institutionellen Naturschutz sowie in den gängigen Naturschutzgesetzgebungen unterrepräsentiert. Ziel des Projektes ist es, ausgewählte Naturnähezeiger verschiedener Lebensräume erfolgreich im Labor zu kultivieren, in geeigneten Habitaten anzusiedeln und Artenschutzkonzepte für diese Arten zu entwickeln. Die Relevanz, für welche Arten Schutzkonzepte und Wiederansiedlungen durchgeführt werden sollen, basieren hierbei auf verschiedenen Kriterien, wie der Listung als Naturnähezeiger, der allgemeinen Seltenheit sowie der Isoliertheit bestehender Vorkommen. Es sollen gleichermaßen Arten berücksichtigt werden mit einem sehr engen und weiterem Wirtsspektrum. Die ermöglicht, Erkenntnisse darüber zu gewinnen wie sich Wirtsspektren durch die Forstwirtschaft im Klimawandel (z.B. Nutzung von klimawandelresistenten Baumarten als Wirt) verändern könnten. Die ausgewählten Pilzarten habe große naturschutzfachliche Relevanz über das Projektgebiet Bayerischer Wald hinaus in ganz Deutschland und stellen somit geeignete Modelorganismen dar. Übergeordnetes Ziel ist es, ein wissenschaftlich fundiertes Modellkonzept zur Erhaltung besonders seltener, wirtsgebundener Baumpilze zu entwickeln. Die im Anschluss und auf Basis der gewonnenen Erkenntnisse ausgearbeiteten Artenhilfsprogramme sollen ein Zeichen zur stärkeren Beachtung des Reiches der Pilze im Naturschutz setzen.
Seit Beginn der 80er Jahre wird in der Ursachenforschung der Waldschaeden bestimmten Luftschadstoffen eine entscheidende Rolle beigemessen. Aus diesem Grund wurde von der Forstlichen Versuchs- und Forschungsanstalt Baden-Wuerttemberg ein Pilotprojekt begonnen. Ziel dieses Vorprojektes war die Entwicklung und Erprobung einer Grosskammer zur Untersuchung von Filterwirkung, Wintertauglichkeit und Kammerklima. Solche 'oben offenen Experimentierkammern' bieten die Moeglichkeit, Luftschadstoffe der Umgebungsluft auszuschliessen. Aus den Kontrollen mit den jeweiligen Freiluftbaeumen lassen sich dann Rueckschluesse auf die Auswirkungen der verschiedenen Schadstoffe ziehen. Dieses Pilotprojekt wurde im Muenstertal im Suedschwarzwald in 850 m ue NN durchgefuehrt. Die praktische Erprobung waehrend zweier Betriebsjahre zeigte einen weitgehend stoerungsfreien Kammerbetrieb. Die hoelzerne Konstruktion und die Folienbespannung widerstanden allen Belastungen durch Wind und Schnee. Lueftungs- und Filterungssystem arbeiteten befriedigend. Im Gegensatz zum technischen Kammerbetrieb bleiben die qualitativen Kammerbedingungen hinter den Erfordernissen zurueck. Eine wesentliche Abweichung von den Freilandbedingungen stellten die fehlenden Nebel- und Tauereignisse dar. Aus immissionsoekologischer Sicht entfielen hierdurch Depositionen, die fuer das aktuelle Schadensphaenomen der montanen Nadelvergilbung von besonderer Bedeutung sein koennten. Die nahezu lueckenlosen Messreihen der Klimawerte belegten ferner, dass die grundlegende Forderung nach einem freilandaehnlichen Kammerklima in den getesteten Kammern nur bedingt erfuellt werden konnte. Dies traf insbesondere fuer Luft- und Bodentemperaturen, fuer die relative Luftfeuchtigkeit und die Strahlungsverhaeltnisse zu. Aufgrund der beobachteten Klimaeffekte sowie des Fehlens wesentlicher immissionsoekologischer Feuchtefaktoren lassen die Testpflanzen sowohl kurz- als auch langfristig Wuchs- und Symptomreaktionen erwarten, die nicht mit denen des Freilandes vergleichbar sind. Unter diesen Bedingungen ist nur der Vergleich von Kammer zu Kammer statthaft. Die Durchfuehrung spezieller Kurzzeitexperimente (zB waehrend einer Vegetationsperiode) mit den Behandlungsvarianten Rein- und Umgebungsluft scheiterte an der relativ geringen Luftschadstoffbelastung des Projektstandortes. Gegen Langzeit-Experimente sprachen die nicht vergleichbaren Wachstumgsbedingungen innerhalb und ausserhalb der Kammern. Um uebertragbare Kammerergebnisse zu erzielen, muessten kostenintensive Optimierungsmassnahmen vorgenommen werden. Vorrangige Verbesserungen waeren im Bereich der Lichtbedingungen und der Temperaturreduktion angezeigt. Die Steuerungsgruppe kam zu dem abschliessenden Ergebnis, dass das Projekt im Vorprojektstadium abgeschlossen und am Standort 'Muenstertal' nicht in ein langfristiges Abschlussprojekt uebergeleitet werden sollte.
Biosynthetische Polymere werden in zunehmender Zahl und Menge eingesetzt und sind aus vielen Bereichen des Alltags nicht mehr wegzudenken. Waren es frueher vorwiegend von hoeheren Lebewesen synthetisierte Polymere, so gewinnen nun von Mikroorganismen synthetisierte Polymere als Werkstoffe sowie als Hilfs- und Nebenstoffe an Bedeutung. Mikroorganismen synthetisieren in vielfaeltiger Form Polymere fuer technische Anwendungen. Die meisten technisch genutzten mikrobiellen Polymere werden heute als Hilfs- und Nebenstoffe eingesetzt, einige auch direkt zu Werkstoffen verarbeitet. Mikrobielle Polymere werden als Rohstoffe zu anderen Werkstoffen oder Hilfs- und Nebenstoffen verarbeitet oder dienen als Ausgangsmittel fuer weitere chemische Synthesen. Der Einsatz von Mikroorganismen bei der biotechnologischen Produktion von Polymeren ermoeglicht haeufig die Nutzung nachwachsender Rohstoffe als Substrate und Kohlenstoffquelle fuer die Produktion wie zB die Nutzung pflanzlicher Photosynthetate, die von der Land- und Forstwirtschaft in grossen Mengen bereitgestellt werden koennen. Die Kenntnis der Biosynthesewege fuer Polymere in Bakterien in Verbund mit der Gentechnik ermoeglicht zudem die Erzeugung transgener Pflanzen, die zur Produktion neuer Polymere anstelle von Bakterien herangezogen werden koennen. 1) Biosynthese von Polyestern: Mikrobielle, aus Hydroxyfettsaeuren aufgebaute Polyester (PHF) machen seit einigen Jahren als neue biologische abbaubare Werkstoffe von sich reden. Neben 3-Hydroxybuttersaeure sind mittlerweile mehr als 100 verschiedene Hydroxyfettsaeuren als Bausteine von PHF bekannt. Seit ca 10 Jahren wird in der Arbeitsgruppe die Biosynthese dieser wasserunloeslichen Polyester untersucht. Als Modellorganismen dienten zunaechst Alcaligenes eutrophus und Pseudomonas aeruginosa; Rhodococcus ruber und zahlreiche anoxygene phototrophe Bakterien wie zB Chromatium vinosum wurden spaeter ebenfalls untersucht. Diese Untersuchungen haben zur Aufklaerung von Biosynthesewegen der PHF und zur Entdeckung neuer Bausteine von PHF sowie zur Klonierung und Ermittlung der Primaerstrukturen des Schluesselenzyms PHF-Synthase aus ca 20 Bakterien beigetragen. Durch Screening nach neuen Wildtypen, durch Verwendung von Mutanten und mit gentechnischen Methoden gelang es, Polyester mit ungewoehnlichen Hydroxyfettsaeuren aus einfachen Kohlenstoffquellen verfuegbar zu machen. In Zusammenarbeit mit Industriepartnern und gefoerdert durch das BMBF und das BML sollen Reststoffe, Kohlen und nachwachsende Rohstoffe fuer die Produktion dieser Polyester erschlossen werden. Ein Biotechnikum mit Bioreaktoren von 1 bis 20 l Nutzvolumen, welches demnaechst durch einen Anbau und einen Bioreaktor von 450 L Nutzvolumen erweitert wird, erlaubt die Herstellung von Polymermustern zur Ermittlung der Materialeigenschaften durch hieran interessierte Kooperationspartner. Ferner kommt der Zusammenarbeit mit Pflanzengenetikern, die Gene fuer PHF Biosynthese aus Bakterien in Pflanzen ...
Einzellige Eukaryonten sind ideale Modellorganismen, die mit evolutionären Prozessen assoziierter Organismengruppen über unterschiedliche Zeitskalen, sogar über geologischer Zeiträume hinweg, kombiniert werden können. Mittels moderner molekularer und bioinformatischer Methoden sowie Kultivierungs- und Isolationstechniken sollen evolutionäre, insbesondere co-evolutionäre Prozesse von Populationen/Arten im ariden Lebensraum untersucht werden. Primäres Ziel ist es, populationsgenetische Diversitätsmuster symbiontischer Protisten, welche im Darm endemischer Insektenpopulationen vorkommen und zum Großteil genetisch separiert sind, im Zusammenhang mit den Wirtspopulationen zu untersuchen (B02). Darüber hinaus gilt es die genetische Struktur der Protistenpopulationen, welche mit einem bestimmten Microbiom (z. B. Rhizosphäre/Phyllosphäre; B04) assoziiert sind, im Zusammenhang mit dem Boden (B05) und der 'Wirts'-Pflanze (B01) zu analysieren, wobei die fragmentierten Salare in der Atacama von gesondertem Interesse sind.
Im Rahmen eines Beispielsvorhabens wurde damit begonnen, einen Leitfaden zu entwickeln, um Landwirten und deren Beratern - Methoden zur selbstaendigen Planung und Durchfuehrung von pflanzenbaulichen Experimenten verfuegbar zu machen, - durch die Anlage und Auswertung von Experimenten eine in den Betriebsablauf integrierte Weiterentwicklung bzw. Optimierung von Anbauverfahren und -strategien zu ermoeglichen, - mit Hilfe des Leitfadens eine Standardisierung bei der Durchfuehrung von Versuchen in landwirtschaftlichen Betrieben zu erzielen, - durch Kooperation zwischen Praxis, Beratung und Forschungsinstitution eine ueberbetriebliche bzw. ueberregionale Vergleichbarkeit/Nutzung der Ergebnisse zu ermoeglichen.
Meeressedimente enthalten schätzungsweise größer als 10^29 mikrobielle Zellen, welche bis zu 2.500 Meter unter dem Meeresboden vorkommen. Mikrobielle Zellen katabolisieren unter diesen sehr stabilen und geologisch alten Bedingungen bis zu einer Million mal langsamer als Modellorganismen in nährstoffreichen Kulturen und wachsen in Zeiträumen von Jahrtausenden, anstelle von Stunden bis Tagen. Aufgrund der extrem niedrigen Aktivitätsraten, ist es eine Herausforderung die metabolische Aktivität von Mikroorganismen unterhalb des Meeresbodens zu untersuchen. Die Transkriptionsaktivität von diesen mikroben kann seit Kurzem metatranskriptomisch untersucht werden, z.B. durch den Einsatz von Hochdurchsatzsequenzierung von aktiv transkribierter Boten-RNA (mRNA), die aus Sedimentproben extrahiert wird. Tiefseetone zeigen ein Eindringen von Sauerstoff bis zum Grundgebirge, welches auf eine geringe Sedimentationsrate im ultra-oligotrophen Ozean zurückzuführen ist. Der Sauerstoffverbrauch wird durch langsam respirierende mikrobielle Gemeinschaften geprägt, deren Zellzahlen und Atmungsraten sehr niedrig gehalten werden durch die äußerst geringe Menge organischer Substanz, die aus dem darüber liegendem extrem oligotrophen Ozean abgelagert wird. Die zellulären Mechanismen dieser aeroben mikroben bleiben unbekannt. Im Jahr 2014 hat eine Expedition erfolgreich Sedimentkerne von sauerstoffangereichertem Tiefseeton genommen. Vorläufige metatranskriptomische Analysen dieser Proben zeigen, dass der metatranskriptomische Ansatz erfolgreich auf die aeroben mikrobiellen Gemeinschaften in diesen Tiefseetonen angewendet werden kann. Wir schlagen daher vor diese Methode mit einem hohen Maß an Replikation, in 300 Proben von vier Standorten, anzuwenden. Dieser Einsatz wird es uns ermöglichen, Hypothesen in Bezug auf zelluläre Aktivitäten unterhalb des Meeresbodens, mit einer beispiellosen statistischen Unterstützung, zu testen.Wir warden den aeroben Stoffwechsel, welcher die langfristige Existenz von Organismen in Tiefseetonen unterstützt, bestimmen, Subsistenzstrategien identifizieren in aeroben und anaeroben Gemeinden unterhalb des Meeresbodens, und extrazelluläre Enzyme und ihr Potenzial für den organischen Substanzabbau charakterisieren. Die folgenden Fragen werden damit beantwortet: Wie das Leben im Untergrund über geologische Zeiträume unter aeroben Bedingungen überlebt? Was die allgegenwärtigen und einzigartigen Mechanismen sind, die langfristiges Überleben in Zellen unter aeroben und anaeroben Bedingungen fördert? Was die Auswirkungen von Sedimenttiefe und Verfügbarkeit von organischer Substanz auf die mikrobielle Produktion von extrazellulären Hydrolasen unter aeroben und anaeroben Bedingungen sind? Dies wird sowohl ein besseres Verständnis dafür liefern, wie mikrobielle Aktivitäten unterhalb des Meeresbodens verteilt sind und was ihre Rolle in biogeochemischen Zyklen ist, als auch wie das Leben über geologische Zeiträume unter extremer Energiebegrenzung überlebt.
| Origin | Count |
|---|---|
| Bund | 511 |
| Land | 4 |
| Wissenschaft | 2 |
| Type | Count |
|---|---|
| Daten und Messstellen | 2 |
| Ereignis | 2 |
| Förderprogramm | 484 |
| Text | 12 |
| unbekannt | 17 |
| License | Count |
|---|---|
| geschlossen | 30 |
| offen | 487 |
| Language | Count |
|---|---|
| Deutsch | 457 |
| Englisch | 123 |
| Resource type | Count |
|---|---|
| Archiv | 2 |
| Bild | 1 |
| Datei | 1 |
| Dokument | 7 |
| Keine | 384 |
| Webseite | 125 |
| Topic | Count |
|---|---|
| Boden | 335 |
| Lebewesen und Lebensräume | 484 |
| Luft | 255 |
| Mensch und Umwelt | 517 |
| Wasser | 288 |
| Weitere | 508 |