Im Rahmen des Forschungsprojekts "Klimaerlebnis Würzburg" am Zentrum Stadtnatur und Klimaanpassung (ZSK) wurden im Jahr 2018 acht Messstationen in Würzburg und Gerbrunn eingerichtet. Diese zeichnen seitdem an jedem Standort das Wetter und/oder die Leistungen der dortigen Bäume auf. Das Forschungsprojekt endete im Jahr 2022. Die Messstationen, durch orangefarbene Baumfässer erkennbar, werden seitdem aber weitergeführt.Das Projekt sollte aufzeigen,inwieweit sich das Klima und die Leistung der Bäume an verschiedenen Standorten in der Stadt unterscheiden undinwieweit sich Stadtbäume und Klima an einem Standort gegenseitig beeinflussen.Die bis heute weiter aufgezeichneten Messergebnisse sollen verdeutlichen, wie mit Hilfe von Bäumen und ihrer Ökosystemdienstleistungen die nachhaltige Stadt der Zukunft an die Folgen des Klimawandels angepasst werden kann. Zudem kann die Öffentlichkeit mit diesen Datenreihen für das Thema Stadtklima und Stadtgrün sensibilisiert werden. Um dies voranzutreiben, werden davon ausgewählte Datenspalten seit November 2024, unbereinigt und zu stündlichen Daten automatisiert zusammengefasst, hier auf dem Open Data Portal Würzburg veröffentlicht.An der Station in Rottendorf sind mehrere Bäume der Art Robinia mit Sensoren versehen. Die Daten eines dieser Bäume stehen in diesem Datensatz in der oben beschriebenen, verarbeiteten Form zur Verfügung.Allgemeines zu den Standorten wie der grobe Messaufbau, Hinweise zur Datennutzung und Verlinkungen zu weiterführenden Papern finden Sie im Folgenden.Messaufbau des Baumlabors und der WetterstationMithilfe des Saftflusssensors (1) kann der Wasserverbrauch des Baums bestimmt werden. Davon lässt sich die Kühlleistung durch Verdunstung ableiten und der Trockenstress abschätzen. Im Kronenraum wird die Temperatur für den Vergleich mit der Klimastation gemessen (2), um die Abkühlwirkung des Baumes zu bestimmen. Das Dendrometer (3) misst das Dickenwachstum des Stammes. Dadurch kann man berechnen, wieviel der gesamte Baum an Biomasse zunimmt und an CO2speichert. Der Bodenfeuchtesensor (4) misst den Wassergehalt im Wurzelraum. Damit kann auf die Wasserversorgung des Baumes geschlossen werden.Der Temperatur- und Feuchtesensor (6) misst die Lufttemperatur und die relative Luftfeuchtigkeit. Der Windsensor (7) erfasst Windrichtung und Windgeschwindigkeit. Mit diesen beiden Messgrößen kann der Frischlufteintrag, aber auch die Anströmungsrichtung festgestellt werden. Der Strahlungssensor (8) misst, wieviel Energie die Sonne am Erdboden freisetzt. Mit diesem Wert lässt sich feststellen, wie stark sich Flächen aufheizen. Ebenso lässt sich hiermit die photosynthetische Leistung des Baumes bestimmen. Aus Temperatur, Luftfeuchte, Windgeschwindigkeit und Solarstrahlung lässt sich die gefühlte Temperatur berechnen. Der Niederschlagssensor (9) erfasst Regen und Schnee.In den Datenloggern (10) werden die Messwerte gesammelt, gespeichert und alle 10 Minuten online versendet, um sie auf dem Smart City Hub Würzburg zu speichern und hier auf dem Open Data Portal stündlich aggregiert darzustellen. Bei einigen der Wetterstationen ist zudem ein Luftdruck-Barometer verbaut.Hinweis:Bei den zur Verfügung gestellten Daten handelt es sich um eine automatisiert abgeänderte Version der Rohdaten der einzelnen Stationen. Eine Qualitätskontrolle durch den Plattformbetreiber findet vorab nicht statt. Es ist daher punktuell mit Messfehlern und Messlücken zu rechnen. Für die Korrektheit der Daten wird keine Haftung übernommen. Quellenangabe:Quelle im Rohdatenformat: [Bis 13.11.2024 13 Uhr](https://opendata.smartandpublic.eu/datasets/9b901002-a1fd-47b0-89d4-eb12f9117233?locale=en#iss=https%3A%2F%2Fidp.smartcityhub.smartandpublic.eu%2Frealms%2Fsmartcityhub), [ab 23.11.2024 14 Uhr](https://opendata.smartandpublic.eu/datasets/713101d0-8137-4da5-9010-8281fadd8bff?locale=en#iss=https%3A%2F%2Fidp.smartcityhub.smartandpublic.eu%2Frealms%2Fsmartcityhub)Autor(en): Projekt Klimaerlebnis Würzburg (2018-2022), Stadt Würzburg (2023-jetzt)Hinweis: Es gelten keine zusätzlichen Bedingungen.Für weiterführende Informationen, lesen Sie die aus dem Projekt "Klimaerlebnis Würzburg" hervorgegangenen Paper:Hartmann, Christian, et al. "The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020; The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020." Meteorologische Zeitschrift 32.1 (2023): 49-65.Rahman, M.A., Franceschi, E., Pattnaik, N. et al. Spatial and temporal changes of outdoor thermal stress: influence of urban land cover types. Sci Rep 12, 671 (2022). [https://doi.org/10.1038/s41598-021-04669-8](https://doi.org/10.1038/s41598-021-04669-8)Rahman, Mohammad A., et al. "Tree cooling effects and human thermal comfort under contrasting species and sites." Agricultural and Forest Meteorology 287 (2020): 107947.Rötzer, T., et al. "Urban tree growth and ecosystem services under extreme drought." Agricultural and Forest Meteorology 308 (2021): 108532.Bildquelle und mehr Informationen zu den Messstationen: [Webarchiv: Klimaerlebnis Würzburg](https://webarchiv.it.ls.tum.de/klimaerlebnis.wzw.tum.de/das-projekt/index.html)
Der interoperable INSPIRE-Datensatz beinhaltet Daten vom LBGR über die mittlere Nitrataustragsgefährdung (Berechnung nach Bundesmethode) Brandenburg, zugeordnet in das INSPIRE-Zielschema Boden. Damit wird das mittlere Risiko einer Nitratauswaschung aus dem Wurzelraum der Vegetation durch versickerndes Bodenwasser bewertet. Weiterführende Informationen finden Sie hier: https://geo.brandenburg.de/karten/htdocs/21042020_Sickerwasserrate.pdf. Der Datensatz wird über je einen interoperablen Darstellungs- und Downloaddienst bereitgestellt. --- The compliant INSPIRE data set contains data about the mean risk of nitrate leaching (calculation according to federal method) in the State of Brandenburg from the LBGR, assigned to the INSPIRE target schema Soil. This evaluates the mean risk of nitrate leaching from the root zone of the vegetation due to seeping ground water. Further information can be found here: https://geo.brandenburg.de/karten/htdocs/21042020_Sickerwasserrate.pdf. The data set is provided via compliant view and download services.
Der interoperable INSPIRE-Datensatz beinhaltet Daten vom LBGR über die maximale Nitrataustragsgefährdung (Berechnung nach Bundesmethode) Brandenburg, zugeordnet in das INSPIRE-Zielschema Boden. Damit wird das maximale Risiko einer Nitratauswaschung aus dem Wurzelraum der Vegetation durch versickerndes Bodenwasser bewertet. Weiterführende Informationen finden Sie hier: https://geo.brandenburg.de/karten/htdocs/21042020_Sickerwasserrate.pdf. Der Datensatz wird über je einen interoperablen Darstellungs- und Downloaddienst bereitgestellt. --- The compliant INSPIRE data set contains data about the maximum risk of nitrate leaching (calculation according to federal method) in the State of Brandenburg from the LBGR, assigned to the INSPIRE target schema Soil. This evaluates the maximum risk of nitrate leaching from the root zone of the vegetation due to seeping ground water. Further information can be found here: https://geo.brandenburg.de/karten/htdocs/21042020_Sickerwasserrate.pdf. The data set is provided via compliant view and download services.
Der Datensatz beinhaltet Daten vom LBGR über die maximale potenzielle Nitrataustragsgefährdung (Bundesmethode) Brandenburgs und wird über je einen Darstellungs- und Downloaddienst bereitgestellt. Mit der maximalen potenziellen Nitrataustragsgefährdung wird das maximale Risiko einer Nitratauswaschung aus dem Wurzelraum der Vegetation durch versickerndes Bodenwasser bewertet. Der Ort der Beurteilung ist hierbei die Untergrenze der durchwurzelten Bodenschicht. Der Quotient aus Sickerwasserrate und nutzbarer Feldkapazität im effektiven Wurzelraum (nFKWe) liefert zunächst die Austauschhäufigkeit des pflanzenverfügbaren Bodenwassers. Diese wird in 5 Stufen klassifiziert (sehr gering – sehr hoch) und ergibt die pNAG. Der Kennwert der potenziellen Nitrataustragsgefährdung ist zur Ableitung quantitativer Aussagen nicht geeignet, da nutzungsabhängige Einflussgrößen (u.a. Kulturart, zu- und abgeführte Stickstoffmengen, herbstliche Nitratgehalte im Boden) nicht berücksichtigt werden. Die Berechnung der potenziellen Nitrataustragsgefährdung nach Bundesmethode erfolgt auf Basis der Auswertungsmethode 5.3 (AG Boden, 2000b). Weiterführende Informationen finden Sie hier: https://geo.brandenburg.de/karten/htdocs/21042020_Sickerwasserrate.pdf
Das Ziel dieses Verbundvorhabens ist die quantitative Bestimmung der Minderung von Nitrateinträgen in das Grundwasser durch den Abbau von Nitrat zu N2O und N2 durch Denitrifikation in der Drainzone. Dazu wird die Denitrifikation in Proben aus der Drainzone in Abhängigkeit wichtiger Bodeneigenschaften gemessen und ein Modell entwickelt und parametrisiert. Dazu werden typische Standorte in Deutschland mit unterschiedlich mächtigen Drainzonen untersucht. Die modellhafte Beschreibung wird auch eine standortspezifische Bewertung des Nitratabbaus ermöglichen. Damit wird das Verbundvorhaben unsere Kenntnisse über den Nitratabbau und die N2O und N2 Produktion im Unterboden, speziell aus der Drainzone erweitern und damit die Grundlage zu einem Landmanagement legen, das die Umsätze von Nitrat in dieser Zone berücksichtigt.
Der Datensatz enthält Informationen zur effektiven Durchwurzelungstiefe (=effektiver Wurzelraum (We), in dm) bezogen auf den Unterboden der Böden in Deutschland. Grundlage für die Erstellung des Datensatzes ist die deutschlandweit harmonisiert verfügbare Bodenübersichtskarte im Maßstab 1:200.000 (BÜK 200), bereitgestellt von der BGR (2021). Es handelt sich um Mittelwerte, die landnutzungsspezifisch aus den in der BÜK200 vorliegenden Profilen eines BÜK-Polygons abgeleitet wurden. Die Daten sind keine absolut gültigen Ergebnisse, sondern stehen im Kontext der methodischen Annahmen bei der Erstellung und Verarbeitung der Ausgangsdaten. Die Ableitung des Bodenkennwertes erfolgte auf Grundlage der Bodenkundlichen Kartieranleitung (KA5; Ad-hoc-AG Boden (2005): Bodenkundliche Kartieranleitung (KA 5). Ad-hoc-Arbeitsgruppe Boden der geologischen Landesämter und der Bundesanstalt für Geowissenschaften und Rohstoffe der BRD, Hannover.). Eine grundsätzliche Beschreibung des methodischen Vorgehens findet sich in (Veröffentlichung Abschlussbericht). Diese Kenngröße wird aktuell für die Weiterentwicklung der Wasserhaushaltsmodellierung mit dem Modell LARSIM (der BfG) verwendet.
Kenntnisse über S-Bindungsformen und deren Flüsse in terrestrischen Ackerböden können nicht auf Sumpfreisböden übertragen werden, da nach deren Überflutung anaerobe Verhältnisse vorherrschen. Ergebnisse über die Bedeutung der einzelnen S-Fraktionen für die S-Nachlieferung in Sumpfreisböden und somit der S-Versorgung von Reis liegen kaum vor bzw. sind aufgrund des Trocknens der Bodenproben vor der Analyse nicht aussagefähig. Weiterhin wurde seither nicht berücksichtigt, dass in unmittelbarer Wurzelnähe von Reispflanzen im Gegensatz zum Restboden aerobe Verhältnisse vorherrschen. Aus diesem Grund soll in zwei typischen chinesischen Sumpfreisböden nach Dotierung mit 35S der Einbau des zugeführten Schwefels in definierte S-Fraktionen (SO42- in der Bodenlösung, adsorbiertes SO42-, FeS, FeS2, Sulfatester, Kohlenstoff gebundener S, Biomasse S) erfasst und in einer Zeitreihenuntersuchung Flüsse zwischen ihnen abgebildet werden. Dabei gilt es, zwischen der oberflächennahen aeroben Zone und der darunter liegenden anaeroben Zone bzw. dem wurzelnahen und wurzelfernen Boden zu differenzieren. Da Reisstroh häufig nach der Ernte in den Boden eingearbeitet wird, soll dessen Mineralisierungsverhalten mittels Einsatz von 35S markiertem Reisstroh untersucht werden. Des weiteren soll in speziellen Versuchsgefäßen, die das Gewinnen von Bodenproben in definierten Abständen von der Wurzeloberfläche erlauben, die Dynamik anorganischer und organischer S-Fraktionen in der Rhizosphäre erfasst werden.
Bodenmikroorganismen können Phosphor (P) sowohl mobilisieren als auch immobilisieren und beeinflussen daher stark die P-Verfügbarkeit für Pflanzen. In diesem Projekt stellen wir die Hypothese auf, dass das Verhältnis vom mikrobiellen P zum labilen P, mit der Entwicklung von P erwerbenden zu P recycelnden Ökosystemen zunimmt. Mikrobielle und pflanzliche P-Aufnahme wird mittels 33P untersucht, der in pflanzlicher und mikrobieller Biomasse und in pflanzlichen und mikrobiellen Lipiden quantifiziert wird. In welchem Maß Mikroorganismen P während des Abbaus von organischer Bodensubstanz mineralisieren und immobilisieren, wird mit einem 14C/33P markiertem Monoester überprüft. Die saisonale Dynamik von tatsächlicher und potentieller P-Mobilisierung (33P-Verdünnung und Phosphatase-Aktivität) und mikrobieller P-Immobilisierung wird anhand von Böden, die den Übergang von erwerbenden zu recycelnden Ökosystemen repräsentieren, analysiert. Darüber hinaus wird der Beitrag des P aus der organischen Auflage zum mikrobiellen P anhand eines Feldexperiments untersucht. Die räumlichen Muster mikrobieller und pflanzlicher P-Mobilisierung in der Rhizosphäre werden anhand der Verteilung von saurer und alkalischer Phosphatase-Aktivität (Boden-Zymographie) und Rhizodeposition (14C-Imaging) analysiert.
Methode CIR Straßenbaum-Zustandsbericht 2020 Ursachen der Straßenbaumschäden Straßenbaum-Zustandsberichte 2020, 2015, 2010 Unsere Straßenbäume sind vielfältigen Schadfaktoren ausgesetzt, die in Kombination auftreten und sich teilweise durch Wechselwirkungen verstärken. Um Erkenntnisse über den Zustand der Straßenbäume in der Berliner Innenstadt zu erhalten, wird seit über 40 Jahren turnusmäßig alle 5 Jahre die Bewertung anhand von Colorinfrarot (CIR) – Luftbildaufnahmen von dem Berliner Senat beauftragt. Die Ergebnisse werden im „Straßenbaum-Zustandsbericht Berliner Innenstadt“ zusammengefasst. Dieser Bericht stellt den Zustand der Straßenbäume nach den untersuchten innerstädtischen Bereichen sowie nach den Baumgattungen Linde, Ahorn, Rosskastanie und Platane dar. Ferner enthält der Bericht einen Vergleich mit den Ergebnissen der vorhergehenden Auswertungen. Nun liegt die Auswertung der Befliegung im Sommer 2020 vor. Der Vergleich der Straßenbaum-Zustandsberichte von 2015 und 2020 offenbart hinsichtlich der Kronenvitalität der Innenstadt-Straßenbäume einen deutlichen Trend zur Verschlechterung. Genaue Aussagen über die Ursachen der Schädigungen und über die Verkehrssicherheit von Bäumen können mit der Methode der Color-Infrarot-Luftbildauswertung allerdings nicht gewonnen werden. Die Methode, den Zustand der Straßenbäume anhand von Colorinfrarot-Luftbildern zu erfassen und zu bewerten, basiert darauf, dass die Bilder den jeweiligen Vitalitätszustand der Kronen durch Reflexionsunterschiede abbilden. Die unterschiedlichen Reflexionen werden beispielsweise durch Laubschädigungen und Laubverluste hervorgerufen. Um die Vitalität der Bäume anhand eines Luftbildes bewerten zu können, ist der Vergleich von Laubfarbe, Blattmasse, Kronenform und Verzweigung mit sogenannten Referenzbäumen notwendig. Diese Referenzbäume werden zum Zeitpunkt der Befliegung vor Ort vom Boden aus auf ihren Kronenzustand hin untersucht und im Hinblick auf Schadenssymptome und Besonderheiten beschrieben. Dieser sogenannte Interpretationsschlüssel dient dem folgenden Abgleich des vor Ort festgestellten Erscheinungsbildes mit dem des Luftbildes. Nur mit Hilfe dieses Abgleiches kann der Vitalitätszustand der Bäume anhand des CIR-Luftbildes bewertet werden. Für die CIR- Methode werden Stichproben-Bäume der Hauptbaumgattungen Linde, Ahorn, Rosskastanie und Platane in Stichprobengebieten bewertet und die Ergebnisse anschließend auf den Gesamtbestand aller bis zum Jahr 1990 gepflanzten Straßenbäume der Berliner Innenstadt statistisch hochgerechnet. Die Bewertung des Zustands der Bäume nimmt eine Einteilung in Kronenvitalitätsstufen vor. Die untersuchten Hauptbaumgattungen bilden zusammen mehr als 3/4 des Innenstadt-Straßenbaumbestandes. Weitere Gattungen konnten aufgrund ihrer geringen Bestandsanteile nicht berücksichtigt werden. Als Berliner Innenstadt gilt hierbei das Gebiet innerhalb des S-Bahn-Ringes, erweitert um die geschlossenen bebauten Bereiche der Alt-Bezirke Steglitz, Weißensee, Pankow und den kompletten Alt-Bezirk Wedding. Im Ergebnis der Zustandserfassung der Befliegung des Jahres 2020 ist bei den Straßenbäumen in fast allen Berliner Bezirken eine bedeutende Zustandsverschlechterung im Vergleich zu 2015 nachzuweisen. Damit ist leider festzustellen, dass sich der schon mit dem Straßenbaum-Zustandsbericht des Jahres 2015 aufgezeigte negative Trend fortgesetzt hat. Während im Jahre 2015 insgesamt rd. 52 % der untersuchten Bäume als nicht geschädigt eingestuft wurden, sind es für 2020 noch rd. 44 %. Im Einzelnen zeigen die Linden mit einem Anteil von rund 56 % nicht geschädigter Bäume wieder die beste Kronenvitalität (2015: rd. 60 %). Die Platane folgt mit einem Anteil von 30 % nicht geschädigter Bäume (2015: rd. 50 %). Die Rosskastanie weist rd. 11 % nicht geschädigte Stichprobenbäume auf (2015: 47 %) und der Ahorn rd. 29 % (2015: rd. 38 %). Damit gibt es insbesondere bei der Rosskastanie im Vergleich zu 2015 einen sehr deutlichen Trend zur Verschlechterung. Die jeweiligen Ursachen der Straßenbaumschäden sind durch das Luftbild nicht zu ermitteln. Ferner wirken verschiedene Schadfaktoren zusammen, so dass eine eindeutige Ursache ohne eine vorherige genaue Analyse nicht festgestellt werden kann. Die Verschlechterung des Kronenzustandes der innerstädtischen Berliner Straßenbäume zeigt aber, dass zumindest die Summe der schädigenden Einflüsse zugenommen hat. Diese dürften eine Mischung sein aus den Hauptfaktoren Stadtklima mit erhöhter Hitze, Trockenheit und Strahlung, verstärkt durch die Auswirkungen des Klimawandels, mechanische Schäden durch Bauarbeiten im Wurzelbereich und durch allgemeine Bautätigkeiten, Schädigungen durch Tausalz Beeinträchtigungen durch Bodenversiegelung und -verdichtung, Schäden durch Verkehrsunfälle und Verätzungen durch Hunde-Urin. Die Wetterextreme der letzten Jahre haben insbesondere durch die trocken-heiße Witterung mit zunehmender Strahlung die Bäume sehr gestresst und die sonstigen negativen Einflüsse verstärkt. Auch das Tausalz ist ein bedeutender Schadfaktor für die Straßenbäume der Berliner Innenstadt. Zwar wird nur bei bestimmten Wetterlagen Feuchtsalz auf bestimmten Straßen ausgebracht, doch dieses lagert sich im Boden an. Auch von privater Seite wird auf Gehwegen Tausalz gestreut, obwohl dieses verboten ist. Als Folge werden in den letzten Jahren – und besonders in den Sommern seit 2010 – wieder vermehrt tausalzbedingte Blattschadens-Symptome beobachtet, auch an jüngeren Straßenbäumen. Das Tausalz entfaltet seine negative Wirkung auf die Straßenbäume insbesondere bei hohem Wassermangel im Sommer, was wiederum durch die Auswirkungen des Klimawandels verstärkt wird.
| Origin | Count |
|---|---|
| Bund | 898 |
| Kommune | 18 |
| Land | 241 |
| Wissenschaft | 12 |
| Type | Count |
|---|---|
| Daten und Messstellen | 12 |
| Ereignis | 1 |
| Förderprogramm | 774 |
| Kartendienst | 3 |
| Text | 75 |
| Umweltprüfung | 5 |
| unbekannt | 178 |
| License | Count |
|---|---|
| geschlossen | 68 |
| offen | 973 |
| unbekannt | 6 |
| Language | Count |
|---|---|
| Deutsch | 939 |
| Englisch | 269 |
| Resource type | Count |
|---|---|
| Archiv | 26 |
| Bild | 5 |
| Datei | 26 |
| Dokument | 56 |
| Keine | 620 |
| Multimedia | 1 |
| Webdienst | 117 |
| Webseite | 383 |
| Topic | Count |
|---|---|
| Boden | 1047 |
| Lebewesen und Lebensräume | 924 |
| Luft | 569 |
| Mensch und Umwelt | 1047 |
| Wasser | 695 |
| Weitere | 1044 |