Für die Bewertung der Bodenteilfunktion „Ausgleichsmedium für stoffliche Einwirkungen“ wird u.a. das Kriterium „Filter und Puffer für Schadstoffe“ herangezogen. Unter „Filter und Puffer für Schadstoffe“ wird die Fähigkeit des Bodens verstanden, gelöste oder suspendierte Stoffe von ihrem Transportmittel zu trennen. Die Fähigkeit kann aus mechanischen oder physikalisch-chemischen Filtereigenschaften abgeleitet werden. Böden nehmen mit der Deposition aus der Luft oder direkt durch anthropogenen Auftrag Stoffe auf, verlagern und speichern diese vorrangig in den Bodenporen. Je nach Bodeneigenschaft variiert das Speicher- oder Filterpotential. Die Bewertung des Kriteriums „Filter und Puffer für Schadstoffe“ erfolgt durch die Beurteilung der potenziellen Kationenaustauschkapazität sowie der Luftkapazität des Bodens bis in die Bodentiefe des effektiven Wurzelraumes. Die Kenndaten hierfür sind: Bodenart des Feinbodens, Grobbodenanteile, Durchwurzelungstiefe, Luftkapazität, Bodendichte sowie Humusgehalte des Bodens. Für die Ableitung werden die Horizont- und Schichtdaten der Leitprofile des FIS Boden herangezogen. Böden in hoher Hangneigung erhalten Bewertungsabschläge. Bei der Bewertung wird die Geländeposition und die klimatischen Standortbedingungen nicht direkt bewertet, obwohl diese für das Wasserspeichervermögen relevant sind.
Für die Bewertung der Bodenteilfunktion „Bestandteil des Wasserkreislaufs Lebensraum“ wird u.a. das Kriterium „Wasserspeichervermögen des Bodens“ herangezogen. Böden nehmen Niederschlagswasser auf und speichern es in ihren Bodenporen. Damit haben sie einen wesentlichen Einfluss auf den Wasserhaushalt. Ein hohes Wasserspeichervermögen zeichnet Böden als besonders schutzwürdig aus. Die Bewertung des "Wasserspeichervermögens" erfolgt durch die Beurteilung der nutzbaren Feldkapazität des potentiellen Wurzelraumes bis ein eine Bodentiefe von max. 1,5 Meter. Die Kenndaten hierfür sind: Bodenart des Feinbodens, Grobbodenanteile, Durchwurzelungstiefe, nutzbare Feldkapazität, Bodendichte sowie Humusgehalte des Bodens. Für die Ableitung des Wasserspeichervermögens werden Kartierungsdaten (Leitprofildaten) des FIS Boden des Freistaates Sachsen herangezogen. Böden in hoher Hangneigung erhalten Bewertungsabschläge. Bei der Bewertung wird die Geländeposition und die klimatischen Standortbedingungen nicht direkt bewertet, obwohl diese für das Wasserspeichervermögen relevant sind.
Der Bewertung der Bodenteilfunktion „Lebensraum“ liegt u.a. das Kriterium „Natürliche Bodenfruchtbarkeit“ zu Grunde. Unter Natürliche Bodenfruchtbarkeit wird die natürliche Produktionsfähigkeit (Ertragsfähigkeit) des Bodens in seiner Funktion für höhere Pflanzen verstanden. Hierbei bleibt unberücksichtigt inwieweit die Ertragsleistung von der Bewirtschaftung und Pflanzenart abhängt. Die Bewertung der "Natürlichen Bodenfruchtbarkeit" erfolgt durch die Beurteilung der nutzbaren Feldkapazität im effektiven Wurzelraum. Die Kenndaten hierfür sind u.a.: Bodenart des Feinbodens, Grobbodenanteile, Durchwurzelungstiefe, nutzbare Feldkapazität, Bodendichte sowie Humusgehalte des Bodens. Für die Ableitung der Bodenfruchtbarkeit werden die Horizont- und Schichtdaten der Leitprofile des FIS Boden herangezogen. Zusätzlich wurde die Waldfläche und die Grünlandfläche für die Bodenbewertung integriert. Böden unter Waldnutzung erhalten einen Zuschlag der Durchwurzelungstiefe, Grünlandböden erhalten einen Abschlag. Böden in hoher Hangneigung erhalten Bewertungsabschläge. Bei der Bewertung werden die Geländeposition und die klimatischen Standortbedingungen nicht direkt bewertet, obwohl diese für die landwirtschaftliche Ertragsleistung relevant sind.
Das Wasserspeichervermögen gilt als wichtiges Kriterium für die Beurteilung von Böden als Bestandteil des Wasserkreislaufes. Auf Basis des Bodenbewertungsinstrumentes Sachsen (2022) wurde Bodenkarte Dresden (2024) abgeleitet. Hauptparameter ist die nutzbare Feldkapazität des potenziellen Wurzelraumes (nFKWp) unter zusätzlicher Berücksichtigung der Hangneigung.
Die Karte zeigt die mittlere Veränderung des potenziellen Zusatzwasserbedarfs (in mm) 2071-2100 gegenüber 1971-2000 unter dem „Kein-Klimaschutz“-Szenario (RCP8.5). Unter Zusatzwasserbedarf wird die mittlere Wassermenge innerhalb der Vegetationsperiode (April-September) verstanden, die zur Aufrechterhaltung von 40 % nutzbarer Feldkapazität (nFK) im effektiven Wurzelraum (nFKWe) erforderlich ist. Berechnet wird die mittlere Wassermenge für einen Mittelwert der Fruchtarten Winterweizen, Wintergerste, Wintergerste mit Zwischenfrucht, Sommergerste, Mais, Zuckerrüben und Kartoffeln. Die Klimamodelle sind mit dem „Kein-Klimaschutz“-Szenario (RCP8.5) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches einen kontinuierlichen Anstieg der globalen Treibhausgasemissionen beschreibt, der bis zum Ende des 21. Jahrhunderts einen zusätzlichen Strahlungsantrieb von 8,5 Watt pro m² gegenüber dem vorindustriellen Niveau bewirkt. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden.
Die Karte zeigt die mittlere Veränderung des potenziellen Zusatzwasserbedarfs (in mm) 2031-2060 gegenüber 1971-2000 unter dem „Kein-Klimaschutz“-Szenario (RCP8.5). Unter Zusatzwasserbedarf wird die mittlere Wassermenge innerhalb der Vegetationsperiode (April-September) verstanden, die zur Aufrechterhaltung von 40 % nutzbarer Feldkapazität (nFK) im effektiven Wurzelraum (nFKWe) erforderlich ist. Berechnet wird die mittlere Wassermenge für einen Mittelwert der Fruchtarten Winterweizen, Wintergerste, Wintergerste mit Zwischenfrucht, Sommergerste, Mais, Zuckerrüben und Kartoffeln. Die Klimamodelle sind mit dem „Kein-Klimaschutz“-Szenario (RCP8.5) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches einen kontinuierlichen Anstieg der globalen Treibhausgasemissionen beschreibt, der bis zum Ende des 21. Jahrhunderts einen zusätzlichen Strahlungsantrieb von 8,5 Watt pro m² gegenüber dem vorindustriellen Niveau bewirkt. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden.
Die Sickerwasserrate ist ein Kennwert zur Bewertung des Bodens als Bestandteil des Wasserhaushaltes und beschreibt diejenige Wassermenge, die der Boden aufgrund seines beschränkten Wasserhaltevermögens nicht mehr halten kann und welche daher den Wurzelraum verlässt bzw. versickert (Grundwasserneubildung). Laterale Abflüsse (Drainage, Grabenentwässerung) werden an dieser Stelle nicht betrachtet. Sandige Böden können weniger Wasser halten als lehmige oder tonige Böden, so dass (unter sonst gleichen Bedingungen) die Sickerwasserrate unter sandigen Böden größer ist als unter lehmigen/tonigen Böden. In niederschlagsreichen Gebieten versickert mehr Wasser als in niederschlagsärmeren Gebieten. Mit der Sickerwasserrate wird eine natürliche Bodenfunktionen nach § 2 Abs. 2 BBodSchG bewertet und zwar nach Punkt 1.b) als Bestandteil des Naturhaushalts, insbesondere mit seinen Wasser- und Nährstoffkreisläufen. Das hierfür gewählte Kriterium sind die allgemeinen Wasserhaushaltsverhältnisse mit dem Kennwert Sickerwasserrate. Die Karten liegen für die folgenden Maßstabsebenen vor: - 1 : 1.000 - 10.000 für hochaufgelöste oder parzellenscharfe Planung, - 1 : 10.001 - 35.000 für Planungen auf Gemeindeebene, - 1 : 35.001 - 100.000 für Planungen in größeren Regionen, - 1 : 100.001 - 350.000 für landesweit differenzierte Planung, - 1 : 350.001 - 1000.000 für landesweite bis bundesweite Planung. In dieser Darstellung wird die Sickerwasserrate regionalspezifisch klassifiziert. Unter dem Titel "Bodenbewertung - Sickerwasserrate (SWR), landesweit bewertet" gibt es noch eine Klassifikation der Sickerwasserrate, die die Sickerwasserrate über die Naturraumgrenzen hinweg landesweit einheitlich darstellt.
Der interoperable INSPIRE-Datensatz beinhaltet Daten vom LBGR über die minimale Nitrataustragsgefährdung (Berechnung nach Bundesmethode) Brandenburg, zugeordnet in das INSPIRE-Zielschema Boden. Damit wird das minimale Risiko einer Nitratauswaschung aus dem Wurzelraum der Vegetation durch versickerndes Bodenwasser bewertet. Weiterführende Informationen finden Sie hier: https://geo.brandenburg.de/karten/htdocs/21042020_Sickerwasserrate.pdf. Der Datensatz wird über je einen interoperablen Darstellungs- und Downloaddienst bereitgestellt. --- The compliant INSPIRE data set contains data about the minimum risk of nitrate leaching (calculation according to federal method) in the State of Brandenburg from the LBGR, assigned to the INSPIRE annex schema Soil. This evaluates the minimum risk of nitrate leaching from the root zone of the vegetation due to seeping ground water. Further information can be found here: https://geo.brandenburg.de/karten/htdocs/21042020_Sickerwasserrate.pdf. The data set is provided via compliant view and download services.
Mit der maximalen potenziellen Nitrataustragsgefährdung wird das maximale Risiko einer Nitratauswaschung aus dem Wurzelraum der Vegetation durch versickerndes Bodenwasser bewertet. Der Ort der Beurteilung ist hierbei die Untergrenze der durchwurzelten Bodenschicht. Der Quotient aus Sickerwasserrate und nutzbarer Feldkapazität im effektiven Wurzelraum (nFKWe) liefert zunächst die Austauschhäufigkeit des pflanzenverfügbaren Bodenwassers. Diese wird in 5 Stufen klassifiziert (sehr gering – sehr hoch) und ergibt die pNAG. Der Kennwert der potenziellen Nitrataustragsgefährdung ist zur Ableitung quantitativer Aussagen nicht geeignet, da nutzungsabhängige Einflussgrößen (u.a. Kulturart, zu- und abgeführte Stickstoffmengen, herbstliche Nitratgehalte im Boden) nicht berücksichtigt werden. Die Landesmethode zur Berechnung der potenziellen Nitrataustragsgefährdung stellt eine Modifikation der Bundesmethode dar, in der die besondere Gefährdung von grundwassernahen Standorten und Moorstandorten berücksichtigt wird. Weiterführende Informationen finden Sie hier: Mit der potenziellen Nitrataustragsgefährdung wird das Risiko einer Nitratauswaschung aus dem Wurzelraum der Vegetation durch versickerndes Bodenwasser bewertet. Der Ort der Beurteilung ist hierbei die Untergrenze der durchwurzelten Bodenschicht. Der Quotient aus Sickerwasserrate und nutzbarer Feldkapazität im effektiven Wurzelraum (nFKWe) liefert zunächst die Austauschhäufigkeit des pflanzenverfügbaren Bodenwassers. Diese wird in 5 Stufen klassifiziert (sehr gering – sehr hoch) und ergibt die pNAG. Der Kennwert der potenziellen Nitrataustragsgefährdung ist zur Ableitung quantitativer Aussagen nicht geeignet, da nutzungsabhängige Einflussgrößen (u.a. Kulturart, zu- und abgeführte Stickstoffmengen, herbstliche Nitratgehalte im Boden) nicht berücksichtigt werden. Die Landesmethode zur Berechnung der potenziellen Nitrataustragsgefährdung stellt eine Modifikation der Bundesmethode dar, in der die besondere Gefährdung von grundwassernahen Standorten und Moorstandorten berücksichtigt wird. Weiterführende Informationen finden Sie hier: https://geo.brandenburg.de/karten/htdocs/21042020_Sickerwasserrate.pdf
Arsenic-contaminated ground- and drinking water is a global environmental problem with about 1-2Prozent of the world's population being affected. The upper drinking water limit for arsenic (10 Micro g/l) recommended by the WHO is often exceeded, even in industrial nations in Europe and the USA. Chronic intake of arsenic causes severe health problems like skin diseases (e.g. blackfoot disease) and cancer. In addition to drinking water, seafood and rice are the main reservoirs for arsenic uptake. Arsenic is oftentimes of geogenic origin and in the environment it is mainly bound to iron(III) minerals. Iron(III)-reducing bacteria are able to dissolve these iron minerals and therefore release the arsenic to the environment. In turn, iron(II)-oxidizing bacteria have the potential to co-precipitate or sorb arsenic during iron(II)- oxidation at neutral pH followed by iron(III) mineral precipitation. This process may reduce arsenic concentrations in the environment drastically, lowering the potential risk for humans dramatically.The main goal of this study therefore is to quantify, identify and isolate anaerobic and aerobic Fe(II)-oxidizing microorganisms in arsenic-containing paddy soil. The co-precipitation and thus removal of arsenic by iron mineral producing bacteria will be determined in batch and microcosm experiments. Finally the influence of rhizosphere redox status on microbial Fe oxidation and arsenic uptake into rice plants will be evaluated in microcosm experiments. The long-term goal of this research is to better understand arsenic-co-precipitation and thus arsenic-immobilization by iron(II)-oxidizing bacteria in rice paddy soil. Potentially these results can lead to an improvement of living conditions in affected countries, e.g. in China or Bangladesh.
Origin | Count |
---|---|
Bund | 774 |
Kommune | 2 |
Land | 242 |
Wissenschaft | 9 |
Type | Count |
---|---|
Ereignis | 1 |
Förderprogramm | 700 |
Kartendienst | 2 |
Messwerte | 6 |
Strukturierter Datensatz | 8 |
Text | 68 |
Umweltprüfung | 5 |
unbekannt | 165 |
License | Count |
---|---|
geschlossen | 59 |
offen | 884 |
unbekannt | 6 |
Language | Count |
---|---|
Deutsch | 861 |
Englisch | 196 |
Resource type | Count |
---|---|
Archiv | 18 |
Bild | 4 |
Datei | 7 |
Dokument | 43 |
Keine | 615 |
Multimedia | 1 |
Webdienst | 124 |
Webseite | 305 |
Topic | Count |
---|---|
Boden | 949 |
Lebewesen & Lebensräume | 870 |
Luft | 537 |
Mensch & Umwelt | 949 |
Wasser | 655 |
Weitere | 934 |