Extreme Starkniederschläge können überall auftreten und jeden treffen, wobei die präzise örtliche und zeitliche Vorhersage des exakten Auftretens solcher Ereignisse bisher noch sehr unsicher ist. In der Vergangenheit wurden in Berlin immer wieder Starkregenereignisse beobachtet (April 1902, August 1959, Juli 2016, Juni 2017, Juli 2017, Juli 2018, August 2019 etc.). Obwohl die Fließgeschwindigkeit und Zerstörungskraft des Wassers im Vergleich zu bergigen Regionen geringer sind, entstehen dennoch beträchtliche Schäden. Rund 34 % der Berliner Stadtfläche sind versiegelt, wodurch die natürliche Versickerung von Regenwasser stark eingeschränkt wird. Berlin wächst weiter. Das bestehende Kanalnetz ist nicht für Starkregenereignisse ausgelegt und kann nur mit sehr hohem Aufwand erweitert werden, was zu Überlastungen führt. Gleichzeitig nimmt durch den Klimawandel die Wahrscheinlichkeit von Starkregen weiter zu. Straßen können sich auch in Berlin in Fließwege verwandeln, kleine Gewässer anschwellen, und Schäden auch Abseits von Gewässern an Gebäuden, Fahrzeugen und der städtischen Infrastruktur entstehen. Angesichts der hohen Sachwerte Berlins – darunter Gebäude, kulturelle Einrichtungen und kritische Infrastrukturen – ist das Schadenspotenzial besonders groß. Ein absoluter Schutz vor den negativen Auswirkungen von Überflutungen durch Starkregen ist nicht möglich. Die Schäden können jedoch durch ein effektives Starkregenrisikomanagement bzw. Starkregenvorsorge deutlich reduziert werden. Starkregengefahrenkarten und darauf aufbauende Risikoanalysen liefern die Grundlagen für die Erarbeitung von Handlungskonzepten zur Vermeidung oder Minderung von Schäden durch Starkregenereignisse. Sie sensibilisieren beteiligte Handelnde und potenziell Betroffene und helfen, die Gefahr und das Risiko gegenüber Überflutungen aus Starkregen einzuschätzen sowie Maßnahmen zu priorisieren und zu planen. Für Berlin liegt eine flächendeckende Starkregenhinweiskarte vor, die eine erste Orientierungshilfe darstellt. Die Starkregenhinweiskarte bietet eine einfache Gefahrenabschätzung basierend auf einer Kombination aus potenziell zu erwartenden Wasserständen und Fließgeschwindigkeiten für zwei unterschiedliche Regenszenarien, einer topographischen Senkenanalyse und starkregenbedingten Feuerwehreinsatzdaten. Die zu erwartenden Wasserstände und Fließgeschwindigkeiten für ein außergewöhnliches und ein extremes Ereignis wurden durch das Bundesamt für Kartographie und Geodäsie (BKG) zusammen mit den Ländern für Berlin-Brandenburg erarbeitet. Dies umfasst eine 2D-Niederschlags-Abfluss-Analyse der Oberfläche ohne Berücksichtigung des Kanalnetzes und der Infiltration in den Boden. Zudem konnten Geländedetails, etwa auch Durchlässe unter Straßen etc., nicht immer vollständig berücksichtigt werden. Die Starkregenhinweiskarte zeigt potenzielle Überflutungsbereiche und –tiefen sowie Fließgeschwindigkeiten und verweist auf vergangene Starkregenereignisse, die Schäden verursacht haben. Dadurch kann eine Ersteinschätzung von potenziell durch Starkregen gefährdeten Gebieten erfolgen, um somit auch den Schutz von Gebäuden, Infrastrukturen und neuen Bauvorhaben zu verbessern. In den Bereichen, wo Starkregengefahrenkarten vorliegen (siehe unten), sollten diese für die Bewertung hinsichtlich der Gefahren aus Überflutungen durch Starkregen verwendet werden, da aufgrund der Vereinfachungen im Modell die Aussagekraft der Starkregenhinweiskarte geringer ist als in der Starkregengefahrenkarte. Ein Abgleich der Ergebnisse mit der Situation vor Ort ist erforderlich. Die Starkregengefahrenkarte beinhaltet eine detaillierte Bewertung der räumlichen Ausdehnung von Überflutungen, den Überflutungstiefen und den Fließgeschwindigkeiten bei verschiedenen Starkregenszenarien. Sie bilden die Grundlage des kommunalen Starkregenrisikomanagements. Die Starkregengefahrenkarte zeigt die räumliche Ausdehnung von Überflutungen, Überflutungstiefen (Wasserstand über Gelände) und Fließgeschwindigkeiten eines starkregenbedingten Hochwassers bei verschiedenen Szenarien (seltenes, außergewöhnliches und extremes Ereignis). Der Oberflächenabfluss infolge von Starkregen wird hier zweidimensional berechnet und zusätzlich wird das Kanalnetz berücksichtigt (1D/2D gekoppeltes Modell) . Im Jahr 2021 wurde mit der Erstellung einer Starkregengefahrenkarte für einzelne Gebiete begonnen. Berlin wird aufgrund seiner Größe in verschiedene Einzugsgebiete unterteilt. Die Berliner Wasserbetriebe (BWB) und die für die Wasserwirtschaft zuständige Senatsverwaltung werden zukünftig gemeinsam für weitere Gebiete Starkregengefahrenkarten erarbeiten und die Starkregengefahrenkarte für Berlin wird somit sukzessive ergänzt werden. Die Priorisierung dieser Gebiete basiert auf der Notwendigkeit bzw. Dringlichkeit der Starkregenvorsorge sowie den geplanten Sanierungsmaßnahmen für das Kanalnetz in der Stadt. Bis zum Vorhandensein einer flächendeckenden Starkregengefahrenkarte für Berlin gibt die Starkregenhinweiskarte (siehe oben) einen Überblick über die potentielle Gefährdung durch starkregenbedingte Überflutungen sowie dokumentierte Ereignisse für Gesamtberlin. Die Starkregenhinweiskarte und/oder die Starkregengefahrenkarte ist ein wichtiges Element der Risikovorsorge für Starkregen und Grundlage für die risikoangepasste Planung und Vorsorge. Die Starkregengefahrenkarte kann Planende, Betreibende kritischer Infrastrukturen, Unternehmerinnen und Unternehmer, Anwohnerinnen und Anwohner bei der Identifikation von wassersensiblen Bereichen unterstützen. Die Karte ermöglicht, die Gefahren durch Starkregen zu identifizieren und durch die Identifikation von Wassertiefen, Fließwegen, Entstehungs- und Einzugsgebieten können Maßnahmen gezielt geplant werden. Somit unterstützt die Karte die Vorsorge vor seltenen, außergewöhnlichen und extremen Niederschlagsereignissen und die Anpassung an sich aus der Überflutungsgefahr ergebenden Starkregenrisiken.
Zur richtigen Beurteilung der Gefahrensituation in einem Wildbach und zur Ableitung dementsprechender Schutzmassnahmen sind verschiedenste Untersuchungsschritte notwendig. Von besonderer Bedeutung sind die Ereignisdokumentation und Ereignisanalyse, die Beurteilung der Massenverlagerungsprozesse und die Dimensionierung von technischen und passiven Maßnahmen. Das Projekt zielt auf die Verbesserung der Aufnahmemethodik im Zuge der Ereignisdokumentation, die Gewinnung von Daten aus 'Mustereinzugsgebieten', die Verbesserung und Neuentwicklung der Meßsensorik, die Aufnahme von Daten zur Bemessung von aktiven und passiven Schutzmassnahmen ab.
Jeder ist dazu verpflichtet, im Rahmen des Möglichen und Zumutbaren geeignete Maßnahmen zu ergreifen, um sich vor den negativen Auswirkungen von Hochwasser und Überflutungen durch Starkregen zu schützen und die Schäden zu minimieren. Das ist die Gesetzeslage in Deutschland. Daher ist es von großer Bedeutung, einerseits vorsorgende Maßnahmen zu ergreifen, aber sich zugleich auch während und nach dem konkreten Ereignisfall richtig zu verhalten. Schutzmaßnahmen, die Sie am und im Ihren Haus prüfen bzw. durchführen könnten, sind zum Beispiel: WIDERSTEHEN Eindringen von Wasser verhindern 1 Einbau wasserdichter Fenster und Türen (auch im Keller) und erhöhter Lichtschächte 2 Anbringen von Schwellen/Stufen an Eingängen, Kellerfenstern und Lichschächten 3 Einbau und regelmäßige Wartung einer Rückstausicherung 4 Regelmäßige Reinigung der Dachrinne 5 Umleitung des Wassers auf dem Gelände durch mobile Barrieren (z. B. Sandsäcke) 6 Abdichtung des Fundaments und der Bodenplatten ANPASSEN Schäden durch eingedrungenes Wasser reduzieren A Sicherung der Heizungsanlage und der Öltanks B Erhöhte Anbringung von Steckdosen in gefährdeten Bereichen C Erhöhte Lagerung von sensiblen Gegenständen bzw. keine Lagerung von Giftstoffen (z. B. Lacke) in gefährdeten Bereichen D Fahrzeuge in höher gelegenen Bereichen parken, Tiefgaragen und Keller können bei Hochwasser tödlich sein Weiterführende Informationen zu Vorsorge und Schutz vor Gefahren durch Starkregen werden im Folgenden zur Verfügung gestellt. Informationen zu Unwetter Warnung und Information der Bevölkerung in Gefahrenlagen Wasserportal – Gewässerkundliche Messdaten Naturgefahr: Starkregen – Vorbeugende Maßnahmen und Verhalten Die unterschätzten Risiken „Starkregen“ und „Sturzfluten“ – Handbuch (PDF, 33.6 MB) Starkregen – Wie man Gebäude davor schützt Leitfaden Starkregen – Objektschutz und bauliche Vorsorge (PDF, 10.4 MB)
Zu den Aufgaben des Referats Luftreinhaltung/ Atomrechtliche Aufgaben gehören: im Bereich Luftreinhaltung > die Bearbeitung von planerischen und grundsätzlichen Fragen der Luftreinhaltung, > die Zuständigkeit für - die Verordnung über Luftqualitätsstandards und Emissionshöchstmengen (39. BImSchV), - die Verordnung über Emissionsgrenzwerte für Verbrennungsmotoren (28. BImSchV), - das Hamburgisches Gesetz zur Umsetzung der europäischen Schwefel-Richtlinie 2005/33/EG, > die Steuerung der Luftqualitätsüberwachung (Luftmessnetz), > die Bewertung der Luftqualität, > die Aufstellung und Fortschreibung von Luftreinhalteplänen, > die Entwicklung und Begleitung von Luftreinhaltemaßnahmen, > die Bewertung von Luftreinhaltungsaspekten im Rahmen der Bauleitplanung, > die Mitwirkung an Rechtsetzungsverfahren, > die Vertretung Hamburger Interessen in Bund-Länder-Gremien, im Bereich Atomrechtlicher Aufgaben > die Wahrnehmung atomrechtlicher Aufgaben für das Land Hamburg in der Zusammenarbeit zwischen Bund und Ländern, > die Risikovorsorge und Gefahrenabwehr beim legalen und illegalen Umgang mit Kernbrennstoffen, > die Bearbeitung von Grundsatzfragen beim Schutz der Bevölkerung vor der schädlichen Einwirkung ionisierender Strahlung, > die Optimierung der nuklearen Katastrophenschutzvorsorge für die hamburgische Bevölkerung, im Bereich Emissionskataster > das Führung des Emissionskatasters Luft und die Erteilung von Auskünften, > die Organisation und Durchführung der Datenerhebungen in Hamburg für das Emissionskataster sowie für das nationale und das europäische PRTR (Pollutant Release and Transfer Register, Schadstofffreisetzungs- und -verbringungsregister), > die Erfüllung weiterer nationaler und europäischer Berichtspflichten, > das Verfassen von Stellungnahmen zur Bauleitplanung > die Aufbereitung und Bereitstellung der Informationen für diese Aufgaben in GIS-Systemen, sowie der Immissionsschutz vor elektromagnetischen Feldern bei Anlagen der Energie- und Kommunikationstechnik.
Zielsetzung: Die Auswirkungen des Klimawandels, von Hochwasser, Hitze, Dürre, Stürmen und Bodenerosion, sowie anhaltende Diversitätsverluste stellen neuartige Bedrohungsszenarien für das Kultur- und Naturerbe weltweit dar. Historische Gärten und Kulturlandschaften ebenso wie küsten- oder flussnahe Ansiedlungen sind gegenwärtig von den Folgen dieser Veränderungen besonders stark betroffen. Extremwetterereignisse beeinträchtigen die Standfestigkeit historischer Gebäude, die Struktur und Konsistenz historischer Putze, Baumaterialien und Ausstattungen. Zusammen mit dem Weltklimarat weisen Natur- und Denkmalschutzeinrichtungen deshalb vermehrt auf die Dringlichkeit von zukunftsfähigen Erhaltensstrategien hin (z.B. 'Global Research and Action Agenda on Culture, Heritage and Climate Change' von IPPC, UNESCO und ICOMOS, 2022). Noch reagiert die modulare universitäre Ausbildung in Denkmalpflege, Heritage Studies, Architektur oder Städtebau nur unzureichend auf diese Herausforderungen. Interdisziplinäre Querschnittsprojekte fehlen in der Regel ebenso wie eine Beschäftigung mit den globalen Verflechtungen der Problemlagen und andernorts erprobten nachhaltigen Lösungsansätzen. Aus diesem Grund werden elementare Interessen von Studierenden an Klimakompetenz derzeit nicht ausreichend berücksichtigt. Perspektivisch kann das kulturelle Erbe aber nur dann geschützt werden, wenn Spezialwissen in der komplexen Ursachenanalytik hinsichtlich Prävention wie auch reparaturfreundlicher Methoden und Materialkenntnisse vorhanden ist und interdisziplinäre Herangehensweisen erprobt sind. Auf die derzeitigen Desiderate in Ausbildung und Vermittlung reagiert das Pilotprojekt der Denkmallabore. Sie suchen die Ausarbeitung von Adaptation- und Mitigation-Strategien innerhalb eines komplexen Risikomanagements sowie die Entwicklung eines zukunftsweisenden Narrativs, von Wissenstransfers und Partizipationsstrukturen voranzutreiben. Diese Maßnahmen erklären sich aus den komplexen Gefährdungen des kulturellen Erbes und deren Verflechtungen im Zeichen der Klimakrise. Pflege, Reparatur und Prävention konstituieren einen neuen konservatorischen Imperativ. Schonender Umgang, wie ihn die Ökologie fordert und die Denkmalpflege seit langem praktiziert, könnte zusammen mit Strategien des Risk Preparedness und Change Management über die Sicherung des (Welt)Kulturerbes hinaus einen Wissens- und Methodenspeicher für den nachhaltigen Bestandsschutz darstellen - Denkmalpflege eine Avantgardefunktion übernehmen.
Zielsetzung: Uferfiltration ist eine gängige Methode zur Trinkwassergewinnung bei begrenztem natürlichen Grundwasserangebot und wird in vielen Regionen Deutschlands mit großen Oberflächengewässern, wie z.B. in Berlin, Düsseldorf und Hamburg eingesetzt. Rohwasser, das durch Uferfiltration gewonnen wird, ist gefährdet durch den Eintrag von Schadstoffen aus Oberflächengewässern. Schadstoffe können neben organischen Verbindungen und Schwermetallen auch Krankheitserreger, wie Viren und Bakterien, sein. Die deutsche Trinkwasserverordnung (TrinkwV) beinhaltet aktuell nur Grenzwerte für bestimmte Indikatorbakterien, wie Escherichia coli und Enterokokken. Im aktuell gesetzlich festgelegten Messprogramm für die Trinkwasserqualität sind humanpathogene Viren kein Bestandteil. Die im Jahr 2021 in Kraft getretene neue EU-Trinkwasserrichtlinie (EU-TWR) sieht vor, somatische Coliphagen als Indikatorviren für Grundwasserverunreinigungen durch humanpathogene Viren zu nutzen, da die Detektion der somatischen Coliphagen deutlich einfacher ist als die der humanpathogenen Viren, wie z.B. Adenoviren. Dabei ist zu beachten, dass somatische Coliphagen keine Krankheitserreger für Menschen sind. Auf Grund des unterschiedlichen Transportverhaltens verschiedener Viren ist jedoch davon auszugehen, dass Indikatorviren und -bakterien nur beschränkt aussagekräftig für humanpathogene Viren sind. U.a. haben unsere Untersuchungen am Rhein und im Uferfiltrat des Wasserwerks Flehe gezeigt, dass die Existenz und das Abbaupotential somatischer Coliphagen nicht in direkter Korrelation zu humanpathogenen Viren, z.B. Adenoviren, stehen muss (Knabe et al., 2023). Verschiedene Faktoren können dazu führen, dass eine erhöhte Virenbelastung im Oberflächengewässer auftreten und eine Migration in das Rohwasser zur Folge haben kann. Zum einen können hydrologische Veränderungen als Folge des Klimawandels, z.B. häufigere Extremereignisse wie Trockenperioden und besonders Hochwasser (Blöschl et al., 2019), die natürliche Reinigungswirkung der Uferfiltration verringern. Zum anderen können Bevölkerungswachstum, Urbanisierung sowie Landnutzungsänderungen dazu führen, dass die Abwasserbelastung in Flüssen zunimmt (Wen et al., 2017). Die neue EU-Trinkwasserrichtline (EU-TWR) erfordert zusätzlich zur Einhaltung von Grenzwerten risikobasierte Ansätze für die ereignis-basierte Überwachung der Wasserqualität, wie bspw. das Water-Safety-Plan-Konzept (WSP) der WHO (World Health Organization). Der WSP sieht für einen Wasserversorger die Beschreibung des gesamten Trinkwasserversorgungsystems vor, einschließlich einer Erfassung aller möglichen Eintragsquellen von Gefährdungen für die Trinkwasserqualität. Eine Risikobewertung für jede einzelne Kombination von Gefährdung und Gefährdungsereignis in Form einer Risiko-Matrix nach Eintrittswahrscheinlichkeit und Schadensausmaß, liefert klare Monitoring- und Handlungsprioritäten zur Risikominimierung. Basierend auf der neuen EU-TWR werden Wasserversorger zeitnah vor dem Problem stehen, zum Teil komplexe Risikobewertungen durchführen zu müssen. Das bedeutet, dass eine Vielzahl an Gefährdungsereignissen im Hinblick auf die Eintrittswahrscheinlichkeit einer Gefahrenquelle einzustufen ist. Ziel des Projektes ist es, Wasserwerksbetreibern eine wissenschaftlich fundierte Bewertung des Risikos und Transports humanpathogener Viren bei der Uferfiltration unter Berücksichtigung aktueller gesetzlicher Vorgaben (EU-TWR) und Empfehlungen der WHO zu ermöglichen. Dabei soll insbesondere der Einfluss von Extremwetterereignissen (Starkniederschläge, Hochwasserperioden, Niedrigwasser) und messtechnischen Unsicherheiten in der Risikobewertung berücksichtigt werden. (Text gekürzt)
Das zunehmende weltweite Auftreten großer Hochwässer innerhalb der letzten Jahre führte zu einem starken Anstieg vieler Hochwasserwahrscheinlichkeitskurven (hier als Step change bezeichnet) und führt zu der Frage, ob Hochwässer sich verändert haben. Oft werden Klimaänderung und der Verlust der Speicherfähigkeit unserer Böden durch menschliche Eingriffe für diese Veränderung verantwortlich gemacht. Jedoch können auch bei sich nicht veränderten Bedingungen immer wieder große Hochwässer auftreten, die als extrem erscheinen, da sie noch vorher nicht beobachtet werden. Die Frage ob sich Hochwasserprozesse verändern oder nicht, ist essentiell für zuverlässige Vorhersagen des zukünftigen Hochwasserrisikos und grundlegend für viele Entscheidungen, z.B. in der Risikovorsorge, Wasserwirtschaft, Stadt- und Raumplanung oder der Versicherungswirtschaft. Ziel des Projekts ist es, zu erforschen, ob die Wechselwirkungen zwischen Klima und Landschaft in Flussgebieten extreme Hochwässer innerhalb kurzer Perioden hervorrufen können, auch wenn keine Veränderungen der äußeren Einflussfaktoren (z.B. Niederschläge) auftreten. Als Indikator für mögliche Veränderungen in der Genese extremer Hochwässer wird in diesem Projekt das Auftreten bzw. die Lage des step change, d.h. eines plötzlichen starken Anstiegs der Hochwasserwahrscheinlichkeitskurve, gewählt. Methoden zur objektiven Bestimmung der Lage des step change in Hochwasserwahrscheinlichkeitskurven werden entwickelt und es wird untersucht, ob das Auftreten von step changes in den Zeitreihen vieler Gebiete weltweit nur als Artefakt zu kurzer Datenreihen erklärt werden kann. In einem weiteren Schritt wird untersucht, welche Klima- und Landschaftscharakteristiken das Auftreten und die Position von step changes in den Hochwasserwahrscheinlichkeitskurven beeinflussen. Dies erfolgt mit Hilfe eines kürzlich entwickelten vereinfachten stochastischen Modells von Niederschlag-Abflussprozessen, welches zuverlässig die Entstehung von Hochwasserabflüssen in verschiedenen Klima- und Landschaftseinheiten weltweit wiedergeben kann. Auf Basis von Modellsimulationen wird ein Index abgeleitet, der anzeigt ob das Zusammenspiel von sich verändernden Klima- und Landschaftscharakteristiken zu step changes führt. Die Güte des Indexes die Position von step changes vorherzusagen, wird anhand einer Vielzahl unterschiedlicher Gebiete weltweit verifiziert. Auch wird der Index auf Gebiete übertragen, in denen bisher noch keine extremen Hochwasserereignisse beobachtet wurden oder keine Beobachtungsreihen verfügbar sind. Ebenso werden mögliche Änderungen des Indexes aufgrund von Klimaänderungen analysiert. Das Projekt hilft das Zusammenspiel von Klima- und Landschaftsfaktoren bei der Entstehung von extremen Hochwasserereignissen besser zu verstehen und gibt an, wie lange ein bestimmtes Gebiet beobachtet werden muss, um eine zuverlässige Abschätzung auch extremer Hochwasserabflüsse ableiten zu können.
| Origin | Count |
|---|---|
| Bund | 1314 |
| Land | 125 |
| Wissenschaft | 6 |
| Zivilgesellschaft | 1 |
| Type | Count |
|---|---|
| Daten und Messstellen | 2 |
| Ereignis | 1 |
| Förderprogramm | 924 |
| Gesetzestext | 1 |
| Text | 232 |
| Umweltprüfung | 1 |
| unbekannt | 260 |
| License | Count |
|---|---|
| geschlossen | 445 |
| offen | 971 |
| unbekannt | 5 |
| Language | Count |
|---|---|
| Deutsch | 1055 |
| Englisch | 406 |
| andere | 74 |
| Resource type | Count |
|---|---|
| Archiv | 22 |
| Bild | 10 |
| Datei | 27 |
| Dokument | 184 |
| Keine | 781 |
| Unbekannt | 8 |
| Webdienst | 29 |
| Webseite | 552 |
| Topic | Count |
|---|---|
| Boden | 1052 |
| Lebewesen und Lebensräume | 1279 |
| Luft | 998 |
| Mensch und Umwelt | 1421 |
| Wasser | 1032 |
| Weitere | 1421 |