API src

Found 3354 results.

Similar terms

s/ros/Rom/gi

Model Output Statistics for Saldenburg-Entschenreuth (P586)

DWD’s fully automatic MOSMIX product optimizes and interprets the forecast calculations of the NWP models ICON (DWD) and IFS (ECMWF), combines these and calculates statistically optimized weather forecasts in terms of point forecasts (PFCs). Thus, statistically corrected, updated forecasts for the next ten days are calculated for about 5400 locations around the world. Most forecasting locations are spread over Germany and Europe. MOSMIX forecasts (PFCs) include nearly all common meteorological parameters measured by weather stations. For further information please refer to: [in German: https://www.dwd.de/DE/leistungen/met_verfahren_mosmix/met_verfahren_mosmix.html ] [in English: https://www.dwd.de/EN/ourservices/met_application_mosmix/met_application_mosmix.html ]

Model Output Statistics for AADORF / TAENIKON (06679)

DWD’s fully automatic MOSMIX product optimizes and interprets the forecast calculations of the NWP models ICON (DWD) and IFS (ECMWF), combines these and calculates statistically optimized weather forecasts in terms of point forecasts (PFCs). Thus, statistically corrected, updated forecasts for the next ten days are calculated for about 5400 locations around the world. Most forecasting locations are spread over Germany and Europe. MOSMIX forecasts (PFCs) include nearly all common meteorological parameters measured by weather stations. For further information please refer to: [in German: https://www.dwd.de/DE/leistungen/met_verfahren_mosmix/met_verfahren_mosmix.html ] [in English: https://www.dwd.de/EN/ourservices/met_application_mosmix/met_application_mosmix.html ]

Model Output Statistics for SAMARKAND (38696)

DWD’s fully automatic MOSMIX product optimizes and interprets the forecast calculations of the NWP models ICON (DWD) and IFS (ECMWF), combines these and calculates statistically optimized weather forecasts in terms of point forecasts (PFCs). Thus, statistically corrected, updated forecasts for the next ten days are calculated for about 5400 locations around the world. Most forecasting locations are spread over Germany and Europe. MOSMIX forecasts (PFCs) include nearly all common meteorological parameters measured by weather stations. For further information please refer to: [in German: https://www.dwd.de/DE/leistungen/met_verfahren_mosmix/met_verfahren_mosmix.html ] [in English: https://www.dwd.de/EN/ourservices/met_application_mosmix/met_application_mosmix.html ]

Model Output Statistics for BAD RADKERSBURG (11248)

DWD’s fully automatic MOSMIX product optimizes and interprets the forecast calculations of the NWP models ICON (DWD) and IFS (ECMWF), combines these and calculates statistically optimized weather forecasts in terms of point forecasts (PFCs). Thus, statistically corrected, updated forecasts for the next ten days are calculated for about 5400 locations around the world. Most forecasting locations are spread over Germany and Europe. MOSMIX forecasts (PFCs) include nearly all common meteorological parameters measured by weather stations. For further information please refer to: [in German: https://www.dwd.de/DE/leistungen/met_verfahren_mosmix/met_verfahren_mosmix.html ] [in English: https://www.dwd.de/EN/ourservices/met_application_mosmix/met_application_mosmix.html ]

Model Output Statistics for BEZNAU (06646)

DWD’s fully automatic MOSMIX product optimizes and interprets the forecast calculations of the NWP models ICON (DWD) and IFS (ECMWF), combines these and calculates statistically optimized weather forecasts in terms of point forecasts (PFCs). Thus, statistically corrected, updated forecasts for the next ten days are calculated for about 5400 locations around the world. Most forecasting locations are spread over Germany and Europe. MOSMIX forecasts (PFCs) include nearly all common meteorological parameters measured by weather stations. For further information please refer to: [in German: https://www.dwd.de/DE/leistungen/met_verfahren_mosmix/met_verfahren_mosmix.html ] [in English: https://www.dwd.de/EN/ourservices/met_application_mosmix/met_application_mosmix.html ]

Model Output Statistics for Berlin-Tempelhof (10384)

DWD’s fully automatic MOSMIX product optimizes and interprets the forecast calculations of the NWP models ICON (DWD) and IFS (ECMWF), combines these and calculates statistically optimized weather forecasts in terms of point forecasts (PFCs). Thus, statistically corrected, updated forecasts for the next ten days are calculated for about 5400 locations around the world. Most forecasting locations are spread over Germany and Europe. MOSMIX forecasts (PFCs) include nearly all common meteorological parameters measured by weather stations. For further information please refer to: [in German: https://www.dwd.de/DE/leistungen/met_verfahren_mosmix/met_verfahren_mosmix.html ] [in English: https://www.dwd.de/EN/ourservices/met_application_mosmix/met_application_mosmix.html ]

Model Output Statistics for Wahlsburg-Lippoldsberg (L031)

DWD’s fully automatic MOSMIX product optimizes and interprets the forecast calculations of the NWP models ICON (DWD) and IFS (ECMWF), combines these and calculates statistically optimized weather forecasts in terms of point forecasts (PFCs). Thus, statistically corrected, updated forecasts for the next ten days are calculated for about 5400 locations around the world. Most forecasting locations are spread over Germany and Europe. MOSMIX forecasts (PFCs) include nearly all common meteorological parameters measured by weather stations. For further information please refer to: [in German: https://www.dwd.de/DE/leistungen/met_verfahren_mosmix/met_verfahren_mosmix.html ] [in English: https://www.dwd.de/EN/ourservices/met_application_mosmix/met_application_mosmix.html ]

Fortschreibung Braunkohlenplan Tagebau Nochten (Region Oberlausitz-Niederschlesien)

Verfahrensstand Titel: Fortschreibung zum Braunkohlenplan Tagebau Nochten Aufstellungsbeschluss am 24.10.2007 Freigabe des Vorentwurfs durch die Verbandsversammlung zur Beteiligung nach § 6 Abs. 1 SächsLPlG am 12.06.2008 Freigabe des geänderten Vorentwurfs durch die Verbandsversammlung zur Beteiligung nach § 6 Abs. 1 SächsLPlG am 16.12.2009 Abwägung der im Beteiligungsverfahren nach § 6 Abs. 1 SächsLPlG vorgebrachten Hinweise und Anregungen durch die Verbandsversammlung am 12.11.2010 Freigabe des Entwurfs durch die Verbandsversammlung zur Beteiligung nach § 10 Abs. 1 ROG i. V. m. § 6 Abs. 2 SächsLPlG am 04.10.2011 Beteiligungsverfahren gemäß § 10 Abs. 1 ROG i.V.m. § 6 Abs. 2 SächsLPlG vom 07.11.2011 bis 20.01.2012 Erörterung vom 11. bis 13.12.2012 in Schleife Beschlussfassung über die im Rahmen des Beteiligungsverfahrens vorgebrachten Hinweise und Anregungen am 01.07.2013 Satzungsbeschluss am 01.10.2013 Genehmigung der Satzung durch die oberste Landesplanungs- und Raumordnungsbehörde (Sächsisches Staatsministerium des Innern) am 05.03.2014 Beschluss über den Beitritt zum Genehmigungsbescheid vom 02.04.2014 In Kraft getreten am 15.05.2014 (Öffentliche Bekanntmachung im Amtlicher Anzeiger Nr. 20 des Sächsischen Amtsblattes vom 15.05.2014, S. 276)

Weiterentwicklung und Betreuung der Software ProBat zum fledermausangepassten Betrieb von Windenergieanlagen in Deutschland

Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Modellierung kleinskaliger Prozesse im antarktischen Meereis und ihre Auswirkungen auf die biologische Kohlenstoffpumpe im zukünftigen Südpolarmeer - ein physikalisch-biologischer gekoppelter zweiskalen Ansatz

Die jahreszeitliche Variabilität der globalen Meereisbedeckung ist eine wichtige Komponente des globalen Klimas. Jedoch ist der kleinskalige Einfluss des Meereises in globalen Klimamodellen bis heute nur unzureichend beschrieben. Dieser Antrag hat daher das Ziel, die physikalischen (P) und bio-geo-chemischen (BGC) Schlüsselprozesse im Meereis mit einem hochaufgelösten Zweiskalenmodell mathematisch zu beschreiben. Die Ergebnisse können dann parametrisiert in globale Klimamodelle (GCMs) einfließen, sodass eine verbesserte Prognosefähigkeit erreicht wird.Die Ozeanerwärmung wird die Mikrostruktur des Meereises erheblich verändern. Wir entwickeln daher ein P-BGC-Modell einer antarktischen Meereisscholle, um die komplexen gekoppelten Zusammenhänge zwischen Eisbildung, Nährstofftransport, Salinität und Solekanalverteilung, Photosynthese und Karbonatchemie mathematisch zu beschreiben. Damit simulieren wir verschiedene Szenarien der Meereisbildung und ihrer Auswirkungen auf das Wachstum von Meereisalgen, die einen großen Einfluss auf den vertikalen Kohlenstoff-Export (biologische Kohlenstoffpumpe) besitzen.Damit leistet dieses Projekt einen wesentlichen Beitrag zum Forschungsschwerpunkt ‘3.2.D - Verbessertes Verständnis der polaren Prozesse und Mechanismen’ bei. Im Einzelnen gehen wir auf drei übergeordnete Ziele ein:Schritt 1: Beschreibung der Meereisstruktur Wir verwenden ein gekoppeltes Zweiskalenmodell, mit dem relevante Aspekte des Gefrierens und Schmelzens im Zusammenhang mit Deformation, Salinität und Soletransport beschrieben werden. Auf der Makroebene dient dafür eine kontinuumsmechanische Beschreibung im Rahmen der erweiterten Theorie poröser Medien (eTPM). Damit können über einen gekoppelten Gleichungssatz partieller Differentialgleichungen (PDE) Deformations-, Transport und Reaktionsprozesse beschrieben werden. Für das physikalische Phänomen der Phasentransformation zwischen Wasser und Eis dient das Phasenfeldmodell (PF) als Mikromodell, welches ebenfalls aus gekoppelten PDEs besteht. Daraus resultiert eine PDE-PDE Kopplung.Schritt 2: Kopplung mit dem erweiterten RecoM2 Modul als Mikromodell Damit können die BGC Phänomene beschrieben werden. Das RecoM2 Modul besteht aus einem Gleichungssystem gewöhnlicher Differentialgleichungen, sodass hier eine PDE-ODE Kopplung zu einem P-BGC Modell erfolgt. Schritt 3: Bewertung der Modellansätze Dies beinhaltet die Verifizierung und Validierung des kombinierten P-BGC-Modells mittels Literatur- sowie experimenteller Daten. Für die Verwendung des hochaufgelösten zweiskaligen P-BGC Modells in globalen Klimamodellen muss die Berechnungseffizienz gesteigert werden. Zu diesem Zweck werden Reduzierte-Basis-Modell (ROM) zur Erzeugung von Surrogaten des Vollen-Basis-Modells (FOM) eingesetzt, die die Modellkomplexität verringern, z.B. durch datengetriebene Machine-Learning (ML)-Techniken oder “Generalized Proper Decomposition” (GPD).

1 2 3 4 5334 335 336