Durch Berücksichtigung geowissenschaftlicher und rohstoffwirtschaftlicher Kenntnisse ist es möglich, Rohstoffgebiete zu klassifizieren und auf Karten entsprechend darzustellen. Das Ergebnis ist die Rohstoffsicherungskarte 1 : 25 000 (RSK25), die für Niedersachsen flächendeckend digital vorliegt und fortlaufend aktualisiert wird. Diese Information über rohstoffwirtschaftlich prioritäre Gebiete wird Raumplanern zur Verfügung gestellt. Für ihre Arbeit ist es erforderlich und hilfreich, die Rohstoffgebiete in Wertstufen einzuteilen. Wegen der Vielzahl der konkurrierenden Nutzungsansprüche an den begrenzten Naturraum ist es nur so möglich, das Rohstoffpotenzial großflächig, verbindlich und langfristig zu schützen. Die Auswahl der Flächen, die für die ausreichende Rohstoffversorgung des Landes unbedingt gesichert werden müssen, erfordert einerseits umfassende geowissenschaftliche Daten, andererseits aber auch möglichst detaillierte Kenntnisse über die regionalen und überregionalen Wirtschaftsstrukturen. Wichtige Grundlage für die Bewertung ist nicht nur die Qualität der unterschiedlichen Rohstoffe, sondern auch eine grobe Einschätzung des langfristigen regionalen und landesweiten Bedarfs. In diesem Zusammenhang muss beispielsweise die Verkehrsanbindung der einzelnen Flächen berücksichtigt werden, ebenso wie die Standortgebundenheit bestimmter Industriezweige. Ein Beispiel dafür ist die Zementindustrie, für die aufgrund sehr hoher betrieblicher Investitionen und eines sehr großen Rohstoffbedarfs die planerische Sicherung von Lagerstätten in unmittelbarer Nähe zum Werksstandort erfolgen muss. Seit mehreren Jahrzehnten werden deshalb vom LBEG neben geowissenschaftlichen auch zahlreiche andere Daten erhoben. In Regionen, in denen ausreichende Basisdaten fehlen, werden vom LBEG spezielle Bohrprogramme sowie mineralogische und geochemische Untersuchungen von Rohstoffen durchgeführt.
Dieser Dienst stellt für das INSPIRE-Thema Geologie aus der oberflächennahen Rohstoffabbauflächen umgesetzte Daten, des Landesamt für Umwelt- und Arbeitsschutz bereit.:Dieser Dienst (WMS Gruppe) stellt ins Inspire-Datenmodell „Geologie“ transformierte Daten der oberflächennahen Rohstoffabbauflächen des Landesamt für Umwelt- und Arbeitsschutz (LUA) bereit.
Der Kartendienst (WMS-Gruppe) stellt die digitalen Kartengrundlagen aus dem Themenbereich Geologie des Saarlandes dar.:In dem Datensatz „Rohstoffpotenzialflächen – Kategorie 1“ im Massstab 1:50.000 werden mögliche Vorrangflächen dargestellt.
The northwestern Australian continental margin can be considered as a passive continental margin of the rifted atlantic type (Whitworth 1969; Powell 1973, 1976; Falvey 1974; Veevers 1974; Willcox 1974, 1976; Exon et al. 1975) which are usually associated with heavy accumulation of sediments (Beck et al. 1974) and are therefore of interest for hydrocarbon exploration in the longer term. The Federal Institute for Geosciences and Natural Resources (BGR, Hannover, Germany) has conducted geoscientific surveys at various continental margins of the Atlantic Ocean in the past years (Seibold 1972; Hinz et al. 1973; Seibold, Hinz 1974/1976; Seibold et al. 1975; Roeser et al. 1971) and the marine research programme of the Bureau of Mineral Resources, Geology & Geophysics (BMR, Canberra, Australia) is putting the focal point as well on the survey of the continental margins. Hence in the frame of the Australian-German contract of scientific and technical cooperation, BGR has proposed joint geoscientific surveys of the continental margins with the German research vessel VALDIVIA. The Scott-Plateau (NW-Australia) has been chosen as investigation area because BMR has carried out geophysical overview measurements previously in that region. The survey has been planned with the main focus on the geological processes at the early rift stadium and the set of problems about the "transition of oceanic to continental crust". The following regional geological units are known: the archaic-proterozoic Kimberley shield is followed by the Browse Basin - a NE striking epicontinental basin filled with mesozoic and tertiary sediments showing a thickness of up to 10 km (Powell 1976). It is presumed that the Browse Basin is delimitated by the Scott Plateau. Presumably, the Scott Plateau consists of continental crust which thins out to the north in direction to the Argo Abyssal Plain. The development of the Browse Basin is ascribed to a series of rift processes in the late paleozoic and triassic age where gas condensates have been detected at the drill hole Scott Reef 1. The contemporary configuration of the NW-Australian basins and the NW-Australian continental margin has been formed by an important middle jurassic rift phase and a subsequent drift phase. The cruises VA16-2A from 6th to the 25th of February 1977 with geophysical measurements and VA16-2B from 25th of February to 9th of March 1977 with geological sample recovery should clarify these processes. The working area of cruise VA16-2C from 11th to 23rd of March 1977 has been the Timor Trough and the Savu Sea which separate the islands Timor, Roti, Savu and Sumba from the volcanic islands of the inner Banda island arc. The crustal structure of Sumba, of the Savu Sea and of the inner Banda island arc near Flores should be investigated with seismic methods (small explosive charges fired from the research vessel VALDIVIA in the Savu Sea and intended recording units of the Flinders University on the islands Savu, Sumba and Flores) as well as with sonobuoy stations of BGR. Newer investigations (Audley Charles 1975, Chamalaun 1974) suggest that the islands of the Banda island arc (Sumba, Savu, Roti, Timor etc.) represent the northern border of the Australian continent being underlain by the crust of the Australian continent as opposed to the assumption of other investigators (e.g. Beck and Lehner 1974) who presume the northern border of the Australian continent at the Timor Trough south of the Timor island and postulate a subduction zone between the outer Banda island arc and Australia. BMR has provided 9 tons of explosives (Nitramon) with accessories for refraction seismics. The Flinders University has prepared 7 on-shore recording units and sent to Indonesia together with operating staff. BGR conducted the marine seismic work with explosive charges and off-shore recordings with sonobuoys for refraction seismic as well as reflection seismic, gravimetric and magnetic measurements.
Der Kartendienst (WFS-Gruppe) stellt ausgewählte Geodaten aus dem Bereich Geologiedes Saarlandes dar.:Die Karte der oberflächennahen Rohstoffe 1: 50 000 (KOR 50) Abbauflächenstellt die Verbreitung der nutzbaren Industrieminerale, Steine und Erden dar und bildet die Datengrundlage für die Karte der oberflächen¬nahen Rohstoffe 1:200 000 der BRD.
Natronlaugeherstellung (Amalgamverfahren); Natronlauge (NaOH) wird heute elektrochemisch dargestellt. In dieser Prozeßeinheit wird die Herstellung der Natronlauge durch Elektrolyse von Natriumchlorid (Chlor/Alkali-Elektrolyse) nach dem Amalgamverfahren bilanziert. Der Prozeß liefert neben Natronlauge stets Chlor (Cl2) und Wasserstoff (H2). Ausgangsstoff des Verfahrens ist Natriumchlorid (NaCl) in Wasser gelöst. Der Elektrolyt wird im Kreis geführt. Das Kernstück des Verfahrens ist die Quecksilberzelle, in der an einer Graphit- oder Titan-Elektrode aus der Kochsalzlösung reines gasförmiges Chlor abgezogen werden kann. An der flüssigen Quecksilberkathode bildet sich eine Natrium-Quecksilberverbindung (Amalgam), aus der im Amalgamzersetzer eine sehr reine 50 %ige Natronlauge gewonnen wird. Die Hauptnachteile des Verfahrens liegen in den Quecksilberemissionen und dem hohen Stromverbrauch. Der Vorteil gegenüber anderen Verfahren ist die hochreine Natronlauge. Prozeßsituierung Es stehen drei verschiedene Elektrolyseverfahren zur Herstellung von Natronlauge aus NaCl zur Verfügung: das Amalgamverfahren, das Diaphragmaverfahren und das Membranverfahren. Die weltweite Verteilung der Produktionskapazitäten auf die verschiedenen Verfahren kann für das Jahr 1990 der Tabelle 1 entnommen werden (Ullmann 1993). In der BRD entfielen 1985 ca. 63 % der gesamten Chlorproduktion auf das Amalgamverfahren, ca. 31 % auf das Diaphragmaverfahren und ca. 6 % auf sonstige Verfahren (HCl, Schmelzfluß) (#1). Das Membranverfahren stellt das derzeit modernste Verfahren dar. In der Bundesrepublik sind jedoch nur Versuchsanlagen bei der Hoechst AG und der Bayer AG in Betrieb (UBA 1991). Die Produktion an NaOH betrug 1990 in Europa ca. 8,67 Mio. Tonnen. Die Weltproduktion belief sich 1990 auf 38,43 Mio. Tonnen pro Jahr (#2). Die Kennziffern dieser Prozeßeinheit beziehen sich auf die Natronlaugeherstellung in Deutschland Ende der 80er Jahre. Tabelle 1 Produktionskapazitäten 1990 in Prozent (#2). Prozeß USA Kanada Westeuropa Japan Amalgam 18 15 65 0 Diaphragma 76 81 29 20 Membran 6 4 6 80 Allokation: Bei der Elektrolyse entstehen Cl und NaOH im molaren Verhältnis von 1 zu 1. Entsprechend diesem Verhältnis werden die Gesamtwerte der Elektrolyse (Massenbilanz, Energiebedarf, Emissionen, Wasser) zwischen Chlor und Natriumhydroxid zu gleichen Anteilen aufgeteilt. Rechnet man das molare Verhältnis auf Massen um, so enstehen pro Tonne NaOH (100 %ig) 0,887 Tonnen Cl2. Die Kennziffern werden für 100 %iges Natriumhydroxid berechnet. Das verkaufsfertige Produkt des Prozesses stellt 50 %ige Natronlauge (wässrige Lösung) dar. Um diesem Unterschied zwischen der Bilanzierung und dem tatsächlichen Produkt Rechnung zu tragen, wird der hier bilanzierten Prozeßeinheit der Natronlaugeherstellung eine fiktive Verdünnung der 100 %igen NaOH zu wässriger 50 %iger Natronlauge nachgeschaltet (Prozeßeinheit: Chem-Anorg\NaOH 50 %). Bei der Elektrolyse entstehen weiterhin 24,8 kg Wasserstoff (H2)/t NaOH. Es wird angenommen, daß der Wasserstoff energetisch verwertet wird (Verbrennung). Entsprechend wird für H2 eine Energiegutschrift berechnet (siehe „H2-Kessel-D“), die zu jeweils 50 % der Chlor- und der Natronlaugeherstellung gutgeschrieben wird. Genese der Kennziffern Massenbilanz: Zur Herstellung einer Tonne NaOH (und gleichzeitig 0,887 t Cl2) werden als Rohstoff 1516 kg Natriumchlorid benötigt. Um Verunreinigungen aus dem Elektrolyten vor der Elektrolyse zu entfernen werden 48 kg Fällungsmittel (NaOH, Na2CO3, BaCO3) eingesetzt. Die Verunreinigungen fallen als Abfall (134 kg, feucht) an. Bei der Reaktion enstehen als Nebenprodukt 24,8 kg Wasserstoff (Energiegutschrift bei GEMIS). [Aus #1 , umgerechnet auf 1 t NaOH]. Zur Genese der Kennziffern bei GEMIS werden nach der obigen Allokationsregel der Natronlauge 50 % der aufgeführten Mengen zugeteilt. Die restlichen 50 % entfallen auf die Herstellung von Chlor. Energiebedarf Der Energiebedarf für den Gesamtprozeß der Herstellung einer Tonne Natriumhydroxid und 0,887 Tonnen Chlor für die verschiedenen Verfahren kann nach (Ullmann 1993) der Tabelle 2 entnommen werden. Als Kennziffer für die hier betrachtete Prozeßeinheit (Amalgamverfahren) wurde gemäß der Allokationsregel 50 % des Mittelwerts der Werte aus Tabelle 2 - 1500 kWh/t NaOH - eingesetzt. Tabelle 2 Energiebedarf in kWh für die Herstellung von 1t NaOH und 0,887 t Cl2 Energie [kWh] Amalgam Diaphragma Membran elektr. Energie 2800-3200 2500-2600 2300-2500 Dampf(äquivalent) 0 700-900 90-180 Summe 2800-3200 3200-3500 2390-2680 Im Vergleich dazu wird der Gesamtenergiebedarf in #1 mit 3280 kWh/t NaOH + 0,887 t Cl2 elektrischer Energie - nach Allokation: 1640 kWh/t NaOH - angegeben (Werte wurden von der Chlorherstellung auf die Herstellung von NaOH umgerechnet). Da die Werte aus #2 besser nachvollziehbar sind, werden diese für GEMIS verwendet. Emissionen: Die Quecksilber(Hg)-Emissionswerte (Luft, Wasser und Deponie) wurden auf der Grundlage von Daten aus dem Jahr 1985 berechnet [#1, siehe Tabelle 3]. In der letzten Zeile der Tabelle sind die anteiligen Emissionswerte (50 % der Gesamtemissionen) pro Tonne für die Natronlaugenherstellung 1985 (2,2 Mio. t Amalgamchlor bzw. 2,48 Mio. t NaOH) aufgelistet. Tabelle 3 Hg-Gesamtemissionen bei der Chlorherstellung in Tonnen für das Jahr 1985. Wasser Luft Produkte Deponie Summe [t] 0,20 4,20 1,10 36,30 [g Hg/t NaOH] 0,04 0,85 0,22 7,32 Die Quecksilberemissionen auf den Deponien setzen sich aus dem Filterschlamm, verbrauchten Katalysatoren, Rückständen aus der Produktreinigung und abgewrackten Anlagenteilen zusammen (#1). Aufgrund von gesetztlichen Auflagen und technischen Neuerungen kann derzeit vermutlich von geringeren Emissionen ausgegangen werden. Dies wird durch die neueren Daten in #3, die auch für GEMIS verwendet werden, bestätigt. Dort werden für die Herstellung von 1 t NaOH (Anteil für NaOH an den Gesamtemissionen) Hg-Emissionen von 0,417 g (Luft) und 0,0248 g (Wasser) aufgeführt. Die Cl2-Emissionen werden in #3 mit 0,222 g/t NaOH beziffert. Weiterhin wird in #3 für das Abwasser eine Fracht von 0,510 g an gelösten anorganischen Stoffen pro Tonne NaOH angegeben. Wasser: Das für die Chlor- und Natronlaugenherstellung benötigte Wasser setzt sich aus dem chemisch verbrauchten Wasser (450 kg, z.B. für die Bildung von Wasserstoff), dem Lösungswasser (24 kg, Lösung von NaCl und Bildung der wässrigen NaOH), dem Niederdruckdampf (222 kg), dem Prozeßwasser (1463 kg) und dem Kühlwasser (88652 kg) zusammen [aus #1, umgerechnet auf 1 t NaOH und 0,887 t Cl2]. Die Abwassermenge wird in #1 mit 0,3 bis 1,0 m3 pro Tonne produzierten Chlor angegeben. Der Wasserbedarf wurde anteilig unter den beiden Prozeßeinheiten der Chlor- und Natronlaugenherstellung aufgeteilt. Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2010 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 132% Produkt: Grundstoffe-Chemie Verwendete Allokation: Allokation durch Gutschriften
Der Kartendienst (WFS-Gruppe) stellt ausgewählte Geodaten aus dem Bereich Geologiedes Saarlandes dar.:In dem Datensatz „Rohstoffpotenzialflächen – Kategorie 1“ im Massstab 1:50.000 werden mögliche Vorrangflächen dargestellt.
Dieser Dienst stellt für das INSPIRE-Thema Mineralische Bodenschätze aus dem Geofachdaten umgesetzte Daten bereit.:Das in der EarthResource enthaltene wirtschaftlich bedeutsame Material.
Mecklenburg-Vorpommern verfügt über verschiedene Steine-und-Erden-Rohstoffe in oberflächennaher, abbauwürdiger Position. Dazu zählen vor allem die Lockergesteine Kiessand und Sand, tonige Rohstoffe, Kreidekalk, Kieselgur sowie Torf und Raseneisenerz. Ihre stratigraphische Stellung reicht vom Unteren Jura (Lias) bis zum Holozän. Die Nutzung des rolligen Materials reicht von Schütt- und Bettungsmaterial über Rohstoffe für Mörtel, Gasbeton, Kalksandstein bis zum Betonzuschlagstoff, dadurch dominieren die Massenrohstoffe Kiessand- und Sand.
Die Karte der oberflächennahen Rohstoffe 1: 50 000 (KOR 50) stellt die Verbreitung der nutzbaren Industrieminerale, Steine und Erden dar und bildet die Datengrundlage für die Karte der oberflächennahen Rohstoffe 1:200 000 der BRD. Sie enthält die zur Rohstoffgewinnung genehmigten Gewinnungsflächen. Die Daten wurden ins GDZ importiert und dort als Werte der Multifeatureklasse Wert Geologie modelliert, die sich zusammensetzt aus der flächenhaften Featureklasse GDZ2010.A_ghgeowt (enthält die Gk100, die GK25, und die Rohstoffflächen) der linienhaften Featureklasse GDZ2010.L_ghgeowt (enthält die GK15_Bänke, die GK25_Tektonik und die GK100_Tektonik) , der punkthaften Featureklasse GDZ2010.P_ghgeowt (enthält die Geotope) und der dazugehörigen Businessklasse GDZ2010.ghgeowt. Anschließend wurden die Werte für die Objektart = rabfl exportiert in die Filegeodatabase GDZ_GDB. Folgende Attribute sind relevant: NAME: Art der Abbaufläche und Namen; ROHST_NR: Rohstoffnummer; ROHST_ART: Rohstoffart; UEBERWACH: BauG=Baugesetz, WHG=Wasserhaushalts Gesetz, BBergG=Bundesberggesetz; PRODUKT: Art des Rohstoffes; PARAM: Parameter Kürzel; PARAMLG: Parameter
Origin | Count |
---|---|
Bund | 5743 |
Europa | 1 |
Land | 756 |
Wissenschaft | 5 |
Zivilgesellschaft | 11 |
Type | Count |
---|---|
Ereignis | 7 |
Förderprogramm | 3630 |
Kartendienst | 1 |
Messwerte | 1 |
Text | 1855 |
Umweltprüfung | 82 |
unbekannt | 598 |
License | Count |
---|---|
geschlossen | 1795 |
offen | 3912 |
unbekannt | 466 |
Language | Count |
---|---|
Deutsch | 6032 |
Englisch | 434 |
unbekannt | 12 |
Resource type | Count |
---|---|
Archiv | 570 |
Bild | 22 |
Datei | 449 |
Dokument | 772 |
Keine | 3618 |
Multimedia | 3 |
Unbekannt | 3 |
Webdienst | 240 |
Webseite | 1901 |
Topic | Count |
---|---|
Boden | 6173 |
Lebewesen & Lebensräume | 3959 |
Luft | 2680 |
Mensch & Umwelt | 6173 |
Wasser | 2464 |
Weitere | 5986 |