API src

Found 6479 results.

Related terms

Bauabfälle

<p>Bauabfälle</p><p>Der Bausektor gehört zu den ressourcenintensivsten Wirtschaftssektoren. Entsprechend hoch sind auch die anfallenden mineralischen Bauabfälle. Im Jahr 2022 waren es insgesamt fast 208 Mio. t derartiger Abfälle. Das entspricht etwa 61 Prozent des Gesamtabfallaufkommens in Deutschland. Der größte Teil der Abfälle wurde recycelt oder anderweitig verwertet.</p><p>Verwertung von Bau- und Abbruchabfällen</p><p>Deutschland befindet sich in einer notwendigen Transformation zu einer ressourcenschonenden und auf ⁠<a href="https://www.umweltbundesamt.de/service/glossar/n?tag=Nachhaltigkeit#alphabar">Nachhaltigkeit</a>⁠ ausgerichteten Kreislaufwirtschaft. Für den Umgang mit Abfällen, die beim Bau und beim Abbruch von Gebäuden anfallen, aber auch etwa bei Bau und Sanierung von Straßen, Gleisen oder Tunneln, bedeutet dies dreierlei:</p><p>Nur so können natürliche Rohstoffe und Deponieraum eingespart und die Ziele des<a href="https://www.bmuv.de/gesetz/kreislaufwirtschaftsgesetz">Kreislaufwirtschaftsgesetzes</a>, der europäischen<a href="https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX%3A32008L0098&amp;qid=1651054748037">Abfallrahmenrichtlinie</a>oder des<a href="https://www.bmuv.de/publikation/deutsches-ressourceneffizienzprogramm-iii-2020-bis-2023">Deutschen Ressourceneffizienzprogramms (ProgRess III)</a>erreicht werden.</p><p>Die Daten aus den folgenden Darstellungen stammen aus dem im Jahr 2024 erschienenen Bericht zum Aufkommen und zum Verbleib mineralischer Bauabfälle im Jahr 2022<a href="https://kreislaufwirtschaft-bau.de/Download/Bericht-14.pdf">(14. Monitoring-Bericht der Bauwirtschaft)</a>.</p><p>Mineralische Bauabfälle</p><p>Bauabfälle fallen als Bauschutt, Straßenaufbruch, Boden und Steine sowie als Baustellenabfälle an. Bauabfälle auf Gipsbasis werden separat erfasst. Im Jahr 2022 waren die mineralischen Bauabfälle einschließlich des Bodenaushubs – das sind Böden und Steine – mit 207,9 Millionen Tonnen (Mio. t) die mengenmäßig wichtigste Abfallgruppe in Deutschland (siehe Abb. „Statistisch erfasste Mengen mineralischer Bauabfälle 2022“).</p><p>Boden und Steine, Bauschutt und Straßenaufbruch</p><p>Im Jahr 2022 fielen 294,4,1 Mio. t an Bodenaushub, Baggergut, Gleisschotter, Bauschutt und Straßenaufbruch an.</p><p>Bauabfälle auf Gipsbasis und Baustellenabfälle</p><p>Im Jahr 2022 fielen etwa 0,640 Mio. t Bauabfälle auf Gipsbasis an. Mit 0,38 Mio. t wurden 59,5 % im übertägigen Bergbau und im Deponiebau verwertet. 0,26 Mio. t (40,5 %) wurden auf Deponien beseitigt (siehe Abb. „Verbleib von Bauabfällen auf Gipsbasis 2022“). Wegen der hohen Nachfrage durch die – aus ökologischer Sicht umstrittene – sonstige Verwertung im Bergbau ist das hochwertige Recycling von Bauabfällen auf Gipsbasis in den letzten Jahren nicht im erwünschten Maße in Gang gekommen.</p><p>Bei den Baustellenabfällen haben sich im Vergleich zum vorigen Berichtsjahr 2020 der Anfall und die Verwertungsrate nur geringfügig geändert. Von den insgesamt 12,9 Mio. t wurden 0,1 Mio. t (0,8 %) deponiert, 0,3 Mio.&nbsp;t (2,3 %) recycelt und 12,5 Mio.&nbsp;t (96,9 %) sonstig verwertet, d.h. thermisch verwertet, also für Energie- und Wärmeerzeugung verbrannt, oder verfüllt (siehe Abb. „Verbleib der Baustellenabfälle 2022“).</p><p>Recycling Baustoffe</p><p>Recycling-Baustoffe werden überwiegend als Gesteinskörnungen im Straßen-, Erd- und Deponiebau eingesetzt.</p><p>Von den recycelten Baustoffen wurden lediglich 14,5 Mio. t als Gesteinskörnung in der Asphalt- und Betonherstellung eingesetzt. Weitere 35,8 Mio. t wurden im Straßenbau verwertet, 18,4 Mio. t im Erdbau und 6,6 Mio. t in sonstigen Anwendungen wie dem Bau von Deponien (siehe Abb. „Verbleib der Recycling-Baustoffe 2022“). Diese recycelten Baustoffe deckten einen Anteil von 13,3 % des Gesamtbedarfs an Gesteinskörnungen: Im Hoch- und Tiefbau sowie dem Straßenbau wurden im Jahr 2022 insgesamt 564,1 Mio. t an Gesteinskörnungen verwendet. Technisch ließen sich bereits heute noch mehr Recycling-Gesteinskörnungen aus dem Hochbau wieder im Hochbau einsetzen, wie das<a href="https://www.umweltbundesamt.de/publikationen/ermittlung-von-ressourcenschonungspotenzialen-bei">Umweltbundesamt</a>im Jahr 2010 am Beispiel des Betonbruchs zeigte. Mittelfristig ist es wichtig, die große Abhängigkeit vom Straßen(neu)bau bei der Entsorgung von Abbruchabfällen zu reduzieren, denn der materialintensive Neubau von Straßen wird, vor allem in strukturell benachteiligten Regionen, abnehmen. In Regionen mit eher geringem Neubau von Straßen liegen die ökologischen Vorteile, Gesteinskörnungen im Hochbau zu verwerten, auf der Hand.</p><p>Baustoffrecycling wird gefördert</p><p>Einige Bundesländer wollen den Einsatz gütegesicherter Recyclingbaustoffe und damit die Kreislaufwirtschaft am Bau fördern. Die Landesregierung in Rheinland-Pfalz ging voran. Sie gründete ein Bündnis für eine diskriminierungsfreie Ausschreibung von gütegesicherten Recycling-Baustoffen. Dieses Bündnis<a href="https://kreislaufwirtschaft-bau.rlp.de/buendnis-kreislaufwirtschaft-bau">Kreislaufwirtschaft auf dem Bau</a>wirbt für Ressourcenschonung und Wiederverwertung im Baubereich. An der Initiative beteiligen sich auch die Landesverbände der kommunalen Spitzenverbände, die Architektenkammer, die Ingenieurkammer, der Landesverband Bauindustrie, der Baugewerbeverband, der Industrieverband Steine und Erden und der Baustoffüberwachungsverein. Die Vereinbarung für die umfassende Wiederverwertung von Bauabfällen auf dem Bau finden Sie<a href="https://kreislaufwirtschaft-bau.rlp.de/fileadmin/kreislaufwirtschaft-bau/Startseite/Buendnis/Buendnis_Kreislaufwirtschaft.pdf">hier</a>.</p>

Herstellung wasserlöslicher NPK-Dünger sowie NK, PK auf Basis von Biogas Gärrest und Gülle, Teilvorhaben 3: Ammoniumoxidation von Schweinegülle zur Eruierung der Leistungsfähigkeit der Nitrifikanten

Maßgeschneiderte Inhaltsstoffe 2.2: PHACoat 2.2: Maßgeschneiderte PHA-Biopolymere für die Textilherstellung und Beschichtungen, Teilprojekt B

Fraktionierung und Mobilität des Phosphors in Grünlandböden

P ist für alle Lebewesen ein lebensnotwendiges Nährelement. In terrestrischen Ökosystemen ist P häufig ein limitierender Nährstoff. Der P-Gehalt im Oberboden beeinflusst die Pflanzenartenvielfalt im Dauergrünland. P ist für die Eutrophierung von Oberflächengewässern hauptverantwortlich. Außerdem gehört P zu den knappen Rohstoffen. Die Preise für mineralische P-Dünger werden deshalb in Zukunft vermutlich weiter steigen. Ein effizienter Einsatz mineralischer P-Dünger ist daher sowohl aus Gründen des Natur- und Umweltschutzes als auch aus Kostengründen notwendig. Von einer ressourcenschonenden und umweltverträglichen Grünlandbewirtschaftung wird erwartet, dass die Düngung den P-Bedarf der Pflanzen deckt, gleichzeitig aber die P-Verluste durch Erosion, Abschwemmung und Auswaschung so gering wie möglich gehalten werden. Daher ist es notwendig, die Düngung an den zeitlichen und mengenmäßigen Nährstoffbedarf der Vegetation anzupassen. Um dieses Ziel zu erreichen, muss einerseits der saisonabhängige P-Bedarf der Pflanzen bekannt sein und andererseits die P-Dynamik im Boden berücksichtigt werden. Die P-Dynamik im Boden ist von vielen Bodeneigenschaften abhängig. Entscheidend sind vor allem pH-Wert, Bodenwasserhaushalt (Redoxpotential), Bodentemperatur und mikrobielle Aktivität (Phosphataseaktivität) im Boden. Für die Optimierung von P-Düngemaßnahmen sind daher Kenntnisse über die P-Dynamik im Boden und die verschiedenen P-Pools im Boden notwendig. Davon hängt die Ausnutzbarkeit und Ertragswirksamkeit der P-Dünger und somit die bedarfsgerechte Menge und der optimale Zeitpunkt der P-Düngung ab. Über die P-Dynamik im Boden in Abhängigkeit vom Bodenwasserhaushalt und die verschiedenen P-Pools in österreichischen Grünlandböden ist bisher noch wenig bekannt. Die Thematik ist aber von großer praktischer Relevanz, weil P ein knapper Rohstoff mit großer Umweltwirkung ist. Sowohl aus landwirtschaftlicher als auch aus wasserwirtschaftlicher Sicht stellen sich folgende Fragen: - Werden die verschiedenen P-Pools im Boden durch langjährige Düngung unterschiedlich angereichert? - Welchen Einfluss hat die Höhe der jährlich ausgebrachten P-Düngermenge? - Bestehen Unterschiede zwischen mineralischer und organischer Düngung? - Welche P-Pools im Boden werden bei fehlender Düngung bevorzugt abgereichert? - Bestehen hinsichtlich P-Pools Unterschiede zwischen verschiedenen Tiefenstufen im Boden? - Welchen Einfluss haben Grundwasserspiegelschwankungen und Veränderungen des Bodenwassergehaltes auf die P-Dynamik und P-Mobilität im Boden? - Haben feuchte und nasse Grünlandstandorte einen geringeren P-Düngerbedarf als wechselfeuchte oder frische Standorte? Für die Beantwortung dieser Fragen bieten sich Langzeitfeldversuche an. Langzeitfeldversuche wurden in Gumpenstein 1960 und in Admont 1946 angelegt. Die Düngungs- und Nutzungsgeschichte auf den einzelnen Versuchsparzellen ist bestens dokumentiert. (Text gekürzt)

Entwicklung und Erprobung von funktionalen Komponenten und einer Prozesskette zur klimaneutralen Herstellung von Soda und Natron als Senke für erzeugtes CO2, Teilvorhaben: Entwicklung von Membranprozessen für CO2-Abtrennung/Reinigung zur Herstellung von Soda/Natron

Die Gesamtzielstellung des Projektes besteht darin, entscheidende Prozessschritte für eine alternative auf Membrantrennprozessen basierende Produktionsroute für Soda und Natron zu entwickeln und zu erproben. Zentral sind dabei die Abtrennung und Reinigung von CO2 aus Biogas bzw. aus (biogenen) Verbrennungsgasen, die Entwicklung von elektrochemischen Membranverfahren und von Adsorptionseinheiten für die Überführung von Salzsole (NaCl) in Soda-/Natronlösung mittels Salzspaltung/Metathese und die Untersuchung des Einsatzes geothermischer Energie für die weiterhin notwendigen thermische Prozessschritte zur perspektivischen Substitution von Erdgas im Zuge der Produktreinigung und -konfektionierung, siehe Verfahrensfließbild. Prozesse zur Herstellung von Basischemikalien in der chemischen Industrie zählen zu den Großemittenten von CO2. Da diese Produkte in einer Vielzahl von Produktionsketten eingesetzten werden, ist ein Verzicht oder eine Substitution nach derzeitigem Kenntnisstand nicht möglich. Daraus leitet sich die Fragestellung ab, inwieweit es technisch und wirtschaftlich möglich ist, diese Prozesse künftig so zu gestalten, dass die Emission von Treibhausgasen minimiert wird und CO2 ggf. noch stärker als bisher an Stelle fossiler Kohlenstoffträger als Rohstoff dienen kann. Ein großtechnischer Prozess, bei dem dies prinzipiell relativ leicht möglich wäre, ist die Herstellung von Soda und Natron nach dem Solvayverfahren. Im Prozess werden Kochsalz, Kohle, Kalkstein und Ammoniak eingesetzt. Es entstehen sehr große Mengen hochsaliner Abwässer als Abprodukt. Eine Verwertung der FuE-Ergebnisse auf industrieller Anwendungsebene steht daher in Aussicht. Nächster Schritt wäre die Umsetzung im Pilotmaßstab. Das CO2-Vermeidungspotential beläuft sich allein in Deutschland auf ca. 1,8 Mio. t CO2. Hinzukommt die Vermeidung des Anfalls von ca. 12,5 Mio. m3/a hochsaliner Abwässer.

WIR! - Renat-BAU - Datenbank - Strategie, TP2: IAB - Systematisierung und Rohstoffkatalog

Veredelung von Melasse durch gepaarte Elektrolyse und elektrodialytische Aufarbeitung, Teilvorhaben 1: Up- und Downstream processing

Das Vorhaben hat zum Ziel Melasse als Rohstoff für die elektrochemische Umsetzung zu Folgeprodukten zu verwenden. Bisher wird Melasse vor allem als Futtermittel oder als Kohlenstoffquelle für Fermentationen verwendet. Sie zeichnet sich durch einen hohen Anteil an Kohlenhydraten aus. Diese sollen durch anodische Oxidation zu Hydroxycarbonsäuren bzw. durch gepaarte Elektrolyse zu Polyolen umgesetzt werden, wobei katalytisch aktive Nickelhydroxidelektroden als innovativer Ansatz zur Anwendung kommen sollen. Dabei kommt es zunächst zu einer Spaltung der Kohlenhydrate und Oxidation zu Hydroxycarbonsäuren, welche anschließend kathodisch hydriert werden (Domino-Oxidationsreduktions-Sequenz, DoORs). Neben den im Mittelpunkt stehenden elektrochemischen Umsetzungen sind Untersuchungen zur Zusammensetzung der Melasse sowie zu den möglichen Reaktionsprodukten notwendig. Dazu werden einerseits Kopplungsmethoden wie LC- und GC-MS eingesetzt sowie direkt an die MS gekoppelte elektrochemische Durchflusszellen (EC-MS). Störende Komponenten, die entweder die elektrochemische Umsetzung verhindern oder zu störenden Nebenprodukten führen, sollen durch eine Vorbehandlung der Melasse abgetrennt werden. Hier kommen Membranverfahren wie Nanofiltration oder Elektrodialyse zum Einsatz. Für die Optimierung der Versuchs- und Prozessbedingungen werden notwendige kinetische Parameter bestimmt und auf Basis einfacher formalkinetischer Modelle die Reaktionen beschrieben. Daneben kommen statistische Methoden der Versuchsplanung zum Einsatz, um die komplexen Zusammenhänge im Hinblick auf Selektivität, Ausbeute und Energieverbrauch zu optimieren. In einem abschließenden Arbeitspaket soll in einem Durchflussreaktor unter GMP-Bedingungen Material im kg-Maßstab für Anwendungsuntersuchungen gewonnen werden.

Hocheffiziente, kostengünstige und langlebige Natrium-Ionen-Batterie Zellen

Zielsetzung: Batterien spielen eine entscheidende Rolle in der Transformation der (Strom-)Wirtschaft zu einer CO2 neutralen Zukunft. Die Emissionsreduktion hängt primär vom vorliegenden Strom- bzw. Energiemix ab. Einerseits für den Energieaufwand während der Erzeugung, andererseits während ihres Betriebs. Überdies dürfen CO2 Emissionen für die Erzeugung, Raffinierung und den Transport von Grundmaterialien nicht vernachlässigt werden. Hier setzen die in diesem Projekt beschriebenen Innovationen an. Aktuelle State-of-the-Art LIB Batterien verwenden einerseits nicht weltweit geläufige Rohstoffe, wie Lithium, Kobalt, Nickel, Mangan und Graphit. Diese Rohstoffe werden primär in China raffiniert. Die so hergestellten Ausgangsmaterialien werden dann ihrerseits erneut über weite Strecken transportiert. Anodenseitig wird aktuell Graphit verwendet. Beispielsweise stammen sowohl natürlicher (74%) als auch synthetischer Graphit (51%) primär aus China, weswegen chinesische Exportrestriktionen auf diesen essentiellen Zellbestandteil ein zusätzliches Hemmnis für die europäische LIB Technologie darstellen. Zusätzlich bedürfen LIB Batterien deutlich mehr CO2 in der Herstellung aufgrund der Anforderung an die Trockenräume, was bei NIB zumindest mit zusätzlicher Forschung deutlich reduzierbar wäre. Im Gegensatz dazu beruhen die Materialien für hier entworfene NIB auf weltweit geläufigen Mengenrohstoffen, was sowohl Kosten, CO2 Emissionen, Umweltbelastungen, und eben auch Abhängigkeiten von außereuropäischen Ländern minimiert. Für eine Transformation hin zu einer nachhaltigen, erneuerbaren Wirtschaft sind billige Energiespeicher essenziell. Seit langem werden in den Roadmaps NIB als die beste Zukunftstechnologie bezeichnet, um möglichst kostengünstige Energiespeicher zu bauen. Daher wurde ein Konzept der vertikalen Integration entlang der Wertschöpfungskette erarbeitet, dass mit hoher Erfolgswahrscheinlichkeit, binnen von zwei Jahren zu einem NI-Batteriepack Prototyp führen soll. Der große Vorteil darin besteht in der raschen Weitergabe von Innovationssprüngen an den Prototypen und eventuellen Produkten. Die Zielsetzung ist eine Zelle mit einer Energiedichte von 180 Wh/kg zu entwickeln, welche dann in Endanwendungen wie Gabelstapler, Heimspeicher, und stationäre Speicher eingesetzt werden kann. Durch den angestrebten niedrigen Preis pro kWh für NIB’s sind alle Anwendungen mit einer niedrigen bis mittleren Energiedichte denkbar.

WIR! - rECOmine - ResuS, TP4: Entwicklung von Verwertungskonzepten für aufbereitete, subhydrische Sedimente

Extraktion von Lithium aus thermalen Solen, Teilvorhaben: Chemische und radiologische Analytik

1 2 3 4 5646 647 648