Das hohe Aufkommen an Polymeren auf Ethylen- und Propylen-Basis führt nach deren Lebenszyklus zu erheblichen Abfallströmen. Die weltweit erwartete jährliche Menge an Kunststoffabfällen wird bis 2030 auf voraussichtlich ca. 440 Millionen Tonnen ansteigen. In Deutschland lag der Verbrauch an Kunststoff in 2019 bei 14,2 Mio. Tonnen und es fielen 6,28 Mio. Tonnen Kunststoffabfälle an. Stand der Technik ist, außer Lagerung auf Deponien, zumeist eine rein thermische Verwertung dieser Abfallströme, die zusätzlich zu den CO2-Emissionen, die bei der Herstellung entstehen, zu einer weiteren unerwünschten CO2- Freisetzung führt. Mechanisches Recycling ist nur begrenzt sinnvoll anwendbar. Somit ist bisher eine vollständige wirtschaftliche, umweltfreundliche und energieeffiziente Verwertung der anfallenden Abfallströme nicht möglich. Folglich besteht ein hoher Bedarf, diese Abfallströme als wertvollen Rohstoff einer technischen Anwendung zuzuführen. Vor dem Hintergrund der nationalen Klimaschutzziele und der notwendigen Reduktion der CO2-Emissionen im industriellen Bereich, strebt das Forschungsprojekt PYCRA eine signifikante Minderung der klimarelevanten Prozessemissionen in der deutschen Chemieindustrie an. PYCRA erforscht die Verwertung der Abfallaufkommen als Ausgangsstoff (= Feed) in Form eines chemischen Recyclings und somit als Substitut für fossile Rohstoffe (z.B. Naphtha) in petrochemischen Prozessen wie dem Steam Cracking. Hierbei soll ein völlig neues umweltschonendes Anwendungsverfahren für Pyrolyseöle entwickelt und erstmals demonstriert werden. Linde will eine erhebliche CO2-Reduktion bei der Herstellung von Ethylen im Vergleich zum Stand der Technik (Referenz: Steam-Cracker mit Naphtha-Feed) erreichen. Bei Projekterfolg kann das Verfahren neben einem nachhaltigen Beitrag zu einer Circular Economy, einen entscheidenden Hebel zur Energieeinsparung und der Reduktion von energiebedingten CO2-Emissionen darstellen.
Die Chemiewerk Bad Köstritz GmbH ist ein mittelständischer Hersteller von anorganischen Spezialchemikalien. Für die chemischen Herstellungsprozesse im Werk wird Dampf benötigt, für dessen Erzeugung Erdgas verbrannt wird. Zur Herstellung von Thiosulfaten und Sulfiten kommen flüssiges Schwefeldioxid und Schwefel zum Einsatz. Um Kieselsole und -gele herzustellen, wird konzentrierte Schwefelsäure verwendet. Bisher werden die benötigten Rohstoffe von externen Lieferanten bezogen und am Standort gelagert. Gegenstand des Vorhabens ist die Umsetzung eines innovativen Verfahrenskonzepts, mit welchem auf Basis von flüssigem Schwefel die weiteren benötigten Rohstoffe nach Bedarf am Standort hergestellt werden können. Im Zentrum steht die Errichtung einer Anlage zur Verbrennung von flüssigem Schwefel, der als Abprodukt bei Entschwefelungsprozessen in Raffinerien oder Kraftwerken anfällt. Das bei der Verbrennung entstehende Schwefeldioxid (SO 2 ) wird mit einem Abhitzekessel abgekühlt. Ein Teil davon wird im Anschluss mit Hilfe einer Adsorptionskälteanlage verflüssigt. Der andere Teil des SO 2 wird in einem Konverter mittels eines Katalysators zu Schwefeltrioxid (SO 3 ) oxidiert und anschließend in einem Adsorber in konzentrierte Schwefelsäure umgewandelt, das Verhältnis SO 2 zu H 2 SO 4 (Schwefelsäure) kann dem Bedarf der Produktion flexibel angepasst werden. Mit der bei den Prozessen entstehenden Wärme wird Dampf erzeugt, welcher für den Antrieb des Gebläses für die Verbrennungsluft, zum Betrieb der Adsorptionskälteanlage und mittels einer Turbine zur Stromerzeugung genutzt wird. Der restliche Dampf wird in das vorhandene Dampfnetz des Werks eingespeist. Der erzeugte Strom wird zum Betrieb der Anlage und darüber hinaus für den Eigenbedarf am Standort verwendet. Das innovative Verfahrenskonzept geht deutlich über den Stand der Technik in der Chemiebranche hinaus und hat Modellcharakter. Es zeigt auf, wie an einem Standort aus einem einzigen Rohstoff verschiedene Produkte wirtschaftlich, bedarfsgerecht und gleichzeitig umweltfreundlich hergestellt werden können. Die Reduzierung der Anzahl der Rohstofftransporte trägt zur Umweltentlastung bei. Das Verfahren erzeugt keine Abfälle und Abwässer. Mit der konsequenten Abwärmenutzung zur Dampferzeugung können ca. 50 Prozent des Grundbedarfs an Dampf des Werks gedeckt und dadurch etwa die Hälfte des bisher zur Dampferzeugung genutzten Erdgases eingespart werden. Gegenüber dem gegenwärtigen Produktionsverfahren können insgesamt ca. 3.400 Tonnen CO 2 -Emissionen jährlich vermieden werden, was einer Minderung um etwa 33 Prozent entspricht.
Branche: Chemische und pharmazeutische Erzeugnisse, Gummi- und Kunststoffwaren
Umweltbereich: Ressourcen
Fördernehmer: Chemiewerk Bad Köstritz GmbH
Bundesland: Thüringen
Laufzeit: seit 2019
Status: Laufend
Das hohe Aufkommen an Polymeren auf Ethylen- und Propylen-Basis führt nach deren Lebenszyklus zu erheblichen Abfallströmen. Die weltweit erwartete jährliche Menge an Kunststoffabfällen wird bis 2030 auf voraussichtlich ca. 440 Millionen Tonnen ansteigen. In Deutschland lag der Verbrauch an Kunststoff in 2019 bei 14,2 Mio. Tonnen und es fielen 6,28 Mio. Tonnen Kunststoffabfälle an. Stand der Technik ist, außer Lagerung auf Deponien, zumeist eine rein thermische Verwertung dieser Abfallströme, die zusätzlich zu den CO2-Emissionen, die bei der Herstellung entstehen, zu einer weiteren unerwünschten CO2- Freisetzung führt. Mechanisches Recycling ist nur begrenzt sinnvoll anwendbar. Somit ist bisher eine vollständige wirtschaftliche, umweltfreundliche und energieeffiziente Verwertung der anfallenden Abfallströme nicht möglich. Folglich besteht ein hoher Bedarf, diese Abfallströme als wertvollen Rohstoff einer technischen Anwendung zuzuführen. Vor dem Hintergrund der nationalen Klimaschutzziele und der notwendigen Reduktion der CO2-Emissionen im industriellen Bereich, strebt das Forschungsprojekt PYCRA eine signifikante Minderung der klimarelevanten Prozessemissionen in der deutschen Chemieindustrie an. PYCRA erforscht die Verwertung der Abfallaufkommen als Ausgangsstoff (= Feed) in Form eines chemischen Recyclings und somit als Substitut für fossile Rohstoffe (z.B. Naphtha) in petrochemischen Prozessen wie dem Steam Cracking. Hierbei soll ein völlig neues umweltschonendes Anwendungsverfahren für Pyrolyseöle entwickelt und erstmals demonstriert werden. Linde will eine erhebliche CO2-Reduktion bei der Herstellung von Ethylen im Vergleich zum Stand der Technik (Referenz: Steam-Cracker mit Naphtha-Feed) erreichen. Bei Projekterfolg kann das Verfahren neben einem nachhaltigen Beitrag zu einer Circular Economy, einen entscheidenden Hebel zur Energieeinsparung und der Reduktion von energiebedingten CO2-Emissionen darstellen.
Im Rahmen des Verbundvorhabens 'GreenSolarModules' befasst sich das Teilvorhaben mit der Fragestellung, inwiefern der Material- und Energieverbrauch für die Herstellung von Solarmodulen signifikant reduziert werden kann. Das Teilprojekt verfolgt zur Unterstützung des Gesamtvorhabens mehrere innovative Ansätze zur primärseitigen Einsparung von Rohstoffen und Energie: - Erstmalig wird chemisch-thermisch behandeltes Solarglas für die Erhöhung der Biegebruchfestigkeit industriell angewendet. - Unter Federführung der EXXERGY GmbH entwickelt das Konsortium eine Beschichtungsapplikation für Solarglas, mit dem die mechanische Festigkeit von Glas so signifikant erhöht werden kann, dass die zur geforderten Bruchlast notwendige Glasdicke entsprechend reduziert werden kann. Dabei soll die Glasbeschichtung möglichst geringe Transmissionsverluste aufweisen. In diesem Teilprojekt werden Konzepte zur Verringerung des CO2eg-Fußabdrucks sowie einer signifikanten Reduktion des Rohstoffbedarfs der wesentlichen Gewichts-Komponenten von Solarmodulen über eine Verringerung des Material- und Energieverbrauchs entwickelt. Damit zielt dieses Teilprojekt umfassend auf eine Senkung der Treibhausgasemission bei der Herstellung der für Solarmodule benötigten Materialien ab. Darüber hinaus wird EXXERGY zum Thema technisches Rating von Solarmodulen ihre Expertise mit einbringen, dies schließt das Thema Energy Rating mit ein.
1
2
3
4
5
…
35
36
37